File: TODO

package info (click to toggle)
cln 1.3.4-4
  • links: PTS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 10,724 kB
  • sloc: cpp: 80,930; sh: 11,982; ansic: 3,278; makefile: 1,313
file content (35 lines) | stat: -rw-r--r-- 1,204 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Algorithms:

Niels Moeller's subquadratic GCD

- polynomial division and gcd
- polynomial documentation
7. add combinatorial, linear algebra, factorization, polynomial functions
   as in SAC-2.
7. finite fields, e.g.
   - gf256_log_2, gf256_antilog_2, gf256_power_of_2, gf256_add, gf256_minus,
     gf256_subtract, gf256_mul, gf256_inv, gf256_div, gf256_product, gf256_exp,
     gf256_term, gfmul, gfadd, gfinv, gfexp.
   more polynomial operations:
     x(), power, >>, <<, division, scalmult, content, primitivepart,
     gcd, xgcd, no_of_real_roots, factorization.
   modular polynomials: powmod etc.
7. chinese remainder algorithm, maybe Hensel-lifting as in Magnum.
8. factor and primality testing for small integers
8. primality test in Z:
   + polynomials cl_MUP_MI, cl_MUP_I
     use integer FFT for multiplication in cl_UP_MI and cl_MUP_MI
   + - Pollard rho
   + - complex values of j()
     - Hilbert polynomial for j() 7.6.1
   + roots of polynomials mod N 1.6.1
   + - elliptic curves, Jacobi representation
     - m.P on elliptic curve
   + Atkin's algorithm
10. factoring in Z:
   - small prime table,
   - Pollard rho,
   - multiple polynomial quadratic sieve

Document the timing class