File: cln.texi

package info (click to toggle)
cln 1.3.7-1
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,996 kB
  • sloc: cpp: 80,860; sh: 5,138; ansic: 3,174; makefile: 1,274
file content (4072 lines) | stat: -rw-r--r-- 138,105 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
\input texinfo  @c -*-texinfo-*-
@c %**start of header
@setfilename cln.info
@settitle CLN, a Class Library for Numbers
@c @setchapternewpage off
@c I hate putting "@noindent" in front of every paragraph.
@c For `info' and TeX only.
@paragraphindent 0
@c %**end of header

@dircategory Mathematics
@direntry
* CLN: (cln).                       Class Library for Numbers (C++).
@end direntry

@c My own index.
@defindex my
@c Don't need the other types of indices.
@synindex cp my
@synindex fn my
@synindex vr my
@synindex ky my
@synindex pg my
@synindex tp my

@ifnottex
@node Top
@top CLN
@end ifnottex

@c For `info' only.
@ifnottex
This manual documents @sc{cln}, a Class Library for Numbers.

Published by Bruno Haible, @code{<haible@@clisp.cons.org>} and
Richard B. Kreckel, @code{<kreckel@@ginac.de>}.

Copyright (C)  Bruno Haible 1988 - 2024.
Copyright (C)  Richard B. Kreckel 2000 - 2024.
Copyright (C)  Alexei Sheplyakov 2008 - 2010.

Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.

@ignore
Permission is granted to process this file through TeX and print the
results, provided the printed document carries copying permission
notice identical to this one except for the removal of this paragraph
(this paragraph not being relevant to the printed manual).

@end ignore
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.

Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation approved
by the author.
@end ifnottex


@c For TeX only.
@c prevent ugly black rectangles on overfull hbox lines:
@finalout
@titlepage
@title CLN, a Class Library for Numbers

@author @uref{http://www.ginac.de/CLN}
@page
@vskip 0pt plus 1filll
Copyright @copyright{} Bruno Haible 1988 - 2024.
@sp 0
Copyright @copyright{} Richard B. Kreckel 2000 - 2024.
@sp 0
Copyright @copyright{} Alexei Sheplyakov 2008 - 2010.

@sp 2
Published by Bruno Haible, @code{<haible@@clisp.cons.org>} and
Richard B. Kreckel, @code{<kreckel@@ginac.de>}.

Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.

Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation approved
by the authors.

@end titlepage
@page

@iftex
@c Table of contents
@contents
@end iftex


@menu
* Introduction::                
* Installation::                
* Ordinary number types::       
* Functions on numbers::        
* Input/Output::                
* Rings::                       
* Modular integers::            
* Symbolic data types::         
* Univariate polynomials::      
* Internals::                   
* Using the library::           
* Customizing::                 
* Index::

@detailmenu
 --- The Detailed Node Listing ---

Installation

* Prerequisites::               
* Building the library::        
* Installing the library::      
* Cleaning up::                 

Prerequisites

* C++ compiler::                
* Make utility::                
* Sed utility::                 

Building the library

* Using the GNU MP Library::    

Ordinary number types

* Exact numbers::               
* Floating-point numbers::      
* Complex numbers::             
* Conversions::                 

Functions on numbers

* Constructing numbers::        
* Elementary functions::        
* Elementary rational functions::  
* Elementary complex functions::  
* Comparisons::                 
* Rounding functions::          
* Roots::                       
* Transcendental functions::    
* Functions on integers::       
* Functions on floating-point numbers::  
* Conversion functions::        
* Random number generators::    
* Modifying operators::       

Constructing numbers

* Constructing integers::       
* Constructing rational numbers::  
* Constructing floating-point numbers::  
* Constructing complex numbers::  

Transcendental functions

* Exponential and logarithmic functions::  
* Trigonometric functions::     
* Hyperbolic functions::        
* Euler gamma::                 
* Riemann zeta::                

Functions on integers

* Logical functions::           
* Number theoretic functions::  
* Combinatorial functions::     

Conversion functions

* Conversion to floating-point numbers::  
* Conversion to rational numbers::  

Input/Output

* Internal and printed representation::  
* Input functions::             
* Output functions::            

Modular integers

* Modular integer rings::       
* Functions on modular integers::  

Symbolic data types

* Strings::                     
* Symbols::                     

Univariate polynomials

* Univariate polynomial rings::  
* Functions on univariate polynomials::  
* Special polynomials::         

Internals

* Why C++ ?::                   
* Memory efficiency::           
* Speed efficiency::            
* Garbage collection::          

Using the library

* Compiler options::            
* Include files::               
* An Example::                  
* Debugging support::           
* Reporting Problems::          

Customizing

* Error handling::              
* Floating-point underflow::    
* Customizing I/O::             
* Customizing the memory allocator::  

@end detailmenu
@end menu

@node Introduction
@chapter Introduction

@noindent
CLN is a library for computations with all kinds of numbers.
It has a rich set of number classes:

@itemize @bullet
@item
Integers (with unlimited precision),

@item
Rational numbers,

@item
Floating-point numbers:

@itemize @minus
@item
Short float,
@item
Single float,
@item
Double float,
@item
Long float (with unlimited precision),
@end itemize

@item
Complex numbers,

@item
Modular integers (integers modulo a fixed integer),

@item
Univariate polynomials.
@end itemize

@noindent
The subtypes of the complex numbers among these are exactly the
types of numbers known to the Common Lisp language. Therefore
@code{CLN} can be used for Common Lisp implementations, giving
@samp{CLN} another meaning: it becomes an abbreviation of
``Common Lisp Numbers''.

@noindent
The CLN package implements

@itemize @bullet
@item
Elementary functions (@code{+}, @code{-}, @code{*}, @code{/}, @code{sqrt},
comparisons, @dots{}),

@item
Logical functions (logical @code{and}, @code{or}, @code{not}, @dots{}),

@item
Transcendental functions (exponential, logarithmic, trigonometric, hyperbolic
functions and their inverse functions).
@end itemize

@noindent
CLN is a C++ library. Using C++ as an implementation language provides

@itemize @bullet
@item
efficiency: it compiles to machine code,
@item
type safety: the C++ compiler knows about the number types and complains
if, for example, you try to assign a float to an integer variable.
@item
algebraic syntax: You can use the @code{+}, @code{-}, @code{*}, @code{=},
@code{==}, @dots{} operators as in C or C++.
@end itemize

@noindent
CLN is memory efficient:

@itemize @bullet
@item
Small integers and short floats are immediate, not heap allocated.
@item
Heap-allocated memory is reclaimed through an automatic, non-interruptive
garbage collection.
@end itemize

@noindent
CLN is speed efficient:

@itemize @bullet
@item
The kernel of CLN has been written in assembly language for some CPUs
(@code{i386}, @code{m68k}, @code{sparc}, @code{mips}, @code{arm}).
@item
@cindex GMP
On all CPUs, CLN may be configured to use the superefficient low-level
routines from GNU GMP version 3.
@item
It uses Karatsuba multiplication, which is significantly faster
for large numbers than the standard multiplication algorithm.
@item
For very large numbers (more than 12000 decimal digits), it uses
@iftex
Sch{@"o}nhage-Strassen
@cindex Sch{@"o}nhage-Strassen multiplication
@end iftex
@ifinfo
Schoenhage-Strassen
@cindex Schoenhage-Strassen multiplication
@end ifinfo
multiplication, which is an asymptotically optimal multiplication
algorithm, for multiplication, division and radix conversion.
@item 
@cindex binary splitting
It uses binary splitting for fast evaluation of series of rational
numbers as they occur in the evaluation of elementary functions and some
constants.
@end itemize

@noindent
CLN aims at being easily integrated into larger software packages:

@itemize @bullet
@item
The garbage collection imposes no burden on the main application.
@item
The library provides hooks for memory allocation and throws exceptions
in case of errors.
@item
@cindex namespace
All non-macro identifiers are hidden in namespace @code{cln} in 
order to avoid name clashes.
@end itemize


@node Installation
@chapter Installation

This section describes how to install the CLN package on your system.


@menu
* Prerequisites::               
* Building the library::        
* Installing the library::      
* Cleaning up::                 
@end menu

@node Prerequisites, Building the library, Installation, Installation
@section Prerequisites

@menu
* C++ compiler::                
* Make utility::                
* Sed utility::                 
@end menu

@node C++ compiler
@subsection C++ compiler

To build CLN, you need a C++11 compiler.
GNU @code{g++ 4.8.1} or newer is recommended.

The following C++ features are used:
classes, member functions, overloading of functions and operators,
constructors and destructors, inline, const, multiple inheritance,
templates and namespaces.

The following C++ features are not used:
@code{new}, @code{delete}, virtual inheritance.

CLN relies on semi-automatic ordering of initializations of static and
global variables, a feature which I could implement for GNU g++
only. Also, it is not known whether this semi-automatic ordering works
on all platforms when a non-GNU assembler is being used.

@node Make utility
@subsection Make utility
@cindex @code{make}

To build CLN, you also need to have GNU @code{make} installed.

@node Sed utility
@subsection Sed utility
@cindex @code{sed}

To build CLN on HP-UX, you also need to have GNU @code{sed} installed.
This is because the libtool script, which creates the CLN library, relies
on @code{sed}, and the vendor's @code{sed} utility on these systems is too
limited.


@node Building the library
@section Building the library

As with any autoconfiguring GNU software, installation is as easy as this:

@example
$ ./configure
$ make
$ make check
@end example

If on your system, @samp{make} is not GNU @code{make}, you have to use
@samp{gmake} instead of @samp{make} above.

The @code{configure} command checks out some features of your system and
C++ compiler and builds the @code{Makefile}s. The @code{make} command
builds the library. This step may take about half an hour on an average
workstation.  The @code{make check} runs some test to check that no
important subroutine has been miscompiled.

The @code{configure} command accepts options. To get a summary of them, try

@example
$ ./configure --help
@end example

Some of the options are explained in detail in the @samp{INSTALL.generic} file.

You can specify the C compiler, the C++ compiler and their options through
the following environment variables when running @code{configure}:

@table @code
@item CC
Specifies the C compiler.

@item CFLAGS
Flags to be given to the C compiler when compiling programs (not when linking).

@item CXX
Specifies the C++ compiler.

@item CXXFLAGS
Flags to be given to the C++ compiler when compiling programs (not when linking).

@item CPPFLAGS
Flags to be given to the C/C++ preprocessor.

@item LDFLAGS
Flags to be given to the linker.
@end table

Examples:

@example
$ CC="gcc" CFLAGS="-O" CXX="g++" CXXFLAGS="-O" ./configure
@end example
@example
$ CC=gcc CFLAGS="-O2 -finline-limit=1000" \
  CXX=g++ CXXFLAGS="-O2 -finline-limit=1000" \
  CPPFLAGS="-DNO_ASM" ./configure
@end example
@example
$ CC="gcc-9" CFLAGS="-O2" CXX="g++-9" CXXFLAGS="-O2" ./configure
@end example

Note that for these environment variables to take effect, you have to set
them (assuming a Bourne-compatible shell) on the same line as the
@code{configure} command. If you made the settings in earlier shell
commands, you have to @code{export} the environment variables before
calling @code{configure}. In a @code{csh} shell, you have to use the
@samp{setenv} command for setting each of the environment variables.

Currently CLN works only with the GNU @code{g++} compiler, and only in
optimizing mode. So you should specify at least @code{-O} in the
CXXFLAGS, or no CXXFLAGS at all. If CXXFLAGS is not set, CLN will be
compiled with @code{-O}.

The assembler language kernel can be turned off by specifying
@code{-DNO_ASM} in the CPPFLAGS. If @code{make check} reports any
problems, you may try to clean up (see @ref{Cleaning up}) and configure
and compile again, this time with @code{-DNO_ASM}.

If you use @code{g++} 3.2.x or earlier, I recommend adding
@samp{-finline-limit=1000} to the CXXFLAGS. This is essential for good
code.

If you use @code{g++} from gcc-3.0.4 or older on Sparc, add either
@samp{-O}, @samp{-O1} or @samp{-O2 -fno-schedule-insns} to the
CXXFLAGS. With full @samp{-O2}, @code{g++} miscompiles the division
routines. Also, do not use gcc-3.0 on Sparc for compiling CLN, it
won't work at all.

Also, please do not compile CLN with @code{g++} using the @code{-O3}
optimization level.  This leads to inferior code quality.

Some newer versions of @code{g++} require quite an amount of memory.
You might need some swap space if your machine doesn't have 512 MB of
RAM.

By default, both a shared and a static library are built.  You can build
CLN as a static (or shared) library only, by calling @code{configure}
with the option @samp{--disable-shared} (or @samp{--disable-static}).
While shared libraries are usually more convenient to use, they may not
work on all architectures.  Try disabling them if you run into linker
problems.  Also, they are generally slightly slower than static
libraries so runtime-critical applications should be linked statically.


@menu
* Using the GNU MP Library::    
@end menu

@node Using the GNU MP Library
@subsection Using the GNU MP Library
@cindex GMP

CLN may be configured to make use of a preinstalled @code{gmp} library
for some low-level routines.  Please make sure that you have at least
@code{gmp} version 3.0 installed since earlier versions are unsupported
and likely not to work.  Using @code{gmp} is known to be quite a boost
for CLN's performance.

By default, CLN will autodetect @code{gmp} and use it. If you do not
want CLN to make use of a preinstalled @code{gmp} library, then you can
explicitly specify so by calling @code{configure} with the option
@samp{--without-gmp}.

If you have installed the @code{gmp} library and its header files in
some place where the compiler cannot find it by default, you must help
@code{configure} and specify the prefix that was used when @code{gmp}
was configured. Here is an example:

@example
$ ./configure --with-gmp=/opt/gmp-4.2.2
@end example

This assumes that the @code{gmp} header files have been installed in
@file{/opt/gmp-4.2.2/include/} and the library in
@file{/opt/gmp-4.2.2/lib/}. More uncommon GMP installations can be
handled by setting CPPFLAGS and LDFLAGS appropriately prior to running
@code{configure}.


@node Installing the library
@section Installing the library
@cindex installation

As with any autoconfiguring GNU software, installation is as easy as this:

@example
$ make install
@end example

The @samp{make install} command installs the library and the include files
into public places (@file{/usr/local/lib/} and @file{/usr/local/include/},
if you haven't specified a @code{--prefix} option to @code{configure}).
This step may require superuser privileges.

If you have already built the library and wish to install it, but didn't
specify @code{--prefix=@dots{}} at configure time, just re-run
@code{configure}, giving it the same options as the first time, plus
the @code{--prefix=@dots{}} option.


@node Cleaning up
@section Cleaning up

You can remove system-dependent files generated by @code{make} through

@example
$ make clean
@end example

You can remove all files generated by @code{make}, thus reverting to a
virgin distribution of CLN, through

@example
$ make distclean
@end example


@node Ordinary number types
@chapter Ordinary number types

CLN implements the following class hierarchy:

@example
                        Number
                      cl_number
                    <cln/number.h>
                          |
                          |
                 Real or complex number
                        cl_N
                    <cln/complex.h>
                          |
                          |
                     Real number
                        cl_R
                     <cln/real.h>
                          |
      +-------------------+-------------------+
      |                                       |
Rational number                     Floating-point number
    cl_RA                                   cl_F
<cln/rational.h>                         <cln/float.h>
      |                                       |
      |                +--------------+--------------+--------------+
   Integer             |              |              |              |
    cl_I          Short-Float    Single-Float   Double-Float    Long-Float
<cln/integer.h>      cl_SF          cl_FF          cl_DF          cl_LF
                 <cln/sfloat.h> <cln/ffloat.h> <cln/dfloat.h> <cln/lfloat.h>
@end example

@cindex @code{cl_number}
@cindex abstract class
The base class @code{cl_number} is an abstract base class.
It is not useful to declare a variable of this type except if you want
to completely disable compile-time type checking and use run-time type
checking instead.

@cindex @code{cl_N}
@cindex real number
@cindex complex number
The class @code{cl_N} comprises real and complex numbers. There is
no special class for complex numbers since complex numbers with imaginary
part @code{0} are automatically converted to real numbers.

@cindex @code{cl_R}
The class @code{cl_R} comprises real numbers of different kinds. It is an
abstract class.

@cindex @code{cl_RA}
@cindex rational number
@cindex integer
The class @code{cl_RA} comprises exact real numbers: rational numbers, including
integers. There is no special class for non-integral rational numbers
since rational numbers with denominator @code{1} are automatically converted
to integers.

@cindex @code{cl_F}
The class @code{cl_F} implements floating-point approximations to real numbers.
It is an abstract class.


@menu
* Exact numbers::               
* Floating-point numbers::      
* Complex numbers::             
* Conversions::                 
@end menu

@node Exact numbers
@section Exact numbers
@cindex exact number

Some numbers are represented as exact numbers: there is no loss of information
when such a number is converted from its mathematical value to its internal
representation. On exact numbers, the elementary operations (@code{+},
@code{-}, @code{*}, @code{/}, comparisons, @dots{}) compute the completely
correct result.

In CLN, the exact numbers are:

@itemize @bullet
@item
rational numbers (including integers),
@item
complex numbers whose real and imaginary parts are both rational numbers.
@end itemize

Rational numbers are always normalized to the form
@code{@var{numerator}/@var{denominator}} where the numerator and denominator
are coprime integers and the denominator is positive. If the resulting
denominator is @code{1}, the rational number is converted to an integer.

@cindex immediate numbers
Small integers (typically in the range @code{-2^29}@dots{}@code{2^29-1},
for 32-bit machines) are especially efficient, because they consume no heap
allocation. Otherwise the distinction between these immediate integers
(called ``fixnums'') and heap allocated integers (called ``bignums'')
is completely transparent.


@node Floating-point numbers
@section Floating-point numbers
@cindex floating-point number

Not all real numbers can be represented exactly. (There is an easy mathematical
proof for this: Only a countable set of numbers can be stored exactly in
a computer, even if one assumes that it has unlimited storage. But there
are uncountably many real numbers.) So some approximation is needed.
CLN implements ordinary floating-point numbers, with mantissa and exponent.

@cindex rounding error
The elementary operations (@code{+}, @code{-}, @code{*}, @code{/}, @dots{})
only return approximate results. For example, the value of the expression
@code{(cl_F) 0.3 + (cl_F) 0.4} prints as @samp{0.70000005}, not as
@samp{0.7}. Rounding errors like this one are inevitable when computing
with floating-point numbers.

Nevertheless, CLN rounds the floating-point results of the operations @code{+},
@code{-}, @code{*}, @code{/}, @code{sqrt} according to the ``round-to-even''
rule: It first computes the exact mathematical result and then returns the
floating-point number which is nearest to this. If two floating-point numbers
are equally distant from the ideal result, the one with a @code{0} in its least
significant mantissa bit is chosen.

Similarly, testing floating point numbers for equality @samp{x == y}
is gambling with random errors. Better check for @samp{abs(x - y) < epsilon}
for some well-chosen @code{epsilon}.

Floating point numbers come in four flavors:

@itemize @bullet
@item
@cindex @code{cl_SF}
Short floats, type @code{cl_SF}.
They have 1 sign bit, 8 exponent bits (including the exponent's sign),
and 17 mantissa bits (including the ``hidden'' bit).
They don't consume heap allocation.

@item
@cindex @code{cl_FF}
Single floats, type @code{cl_FF}.
They have 1 sign bit, 8 exponent bits (including the exponent's sign),
and 24 mantissa bits (including the ``hidden'' bit).
In CLN, they are represented as IEEE single-precision floating point numbers.
This corresponds closely to the C/C++ type @samp{float}.

@item
@cindex @code{cl_DF}
Double floats, type @code{cl_DF}.
They have 1 sign bit, 11 exponent bits (including the exponent's sign),
and 53 mantissa bits (including the ``hidden'' bit).
In CLN, they are represented as IEEE double-precision floating point numbers.
This corresponds closely to the C/C++ type @samp{double}.

@item
@cindex @code{cl_LF}
Long floats, type @code{cl_LF}.
They have 1 sign bit, 32 exponent bits (including the exponent's sign),
and n mantissa bits (including the ``hidden'' bit), where n >= 64.
The precision of a long float is unlimited, but once created, a long float
has a fixed precision. (No ``lazy recomputation''.)
@end itemize

Of course, computations with long floats are more expensive than those
with smaller floating-point formats.

CLN does not implement features like NaNs, denormalized numbers and
gradual underflow. If the exponent range of some floating-point type
is too limited for your application, choose another floating-point type
with larger exponent range.

@cindex @code{cl_F}
As a user of CLN, you can forget about the differences between the
four floating-point types and just declare all your floating-point
variables as being of type @code{cl_F}. This has the advantage that
when you change the precision of some computation (say, from @code{cl_DF}
to @code{cl_LF}), you don't have to change the code, only the precision
of the initial values. Also, many transcendental functions have been
declared as returning a @code{cl_F} when the argument is a @code{cl_F},
but such declarations are missing for the types @code{cl_SF}, @code{cl_FF},
@code{cl_DF}, @code{cl_LF}. (Such declarations would be wrong if
the floating point contagion rule happened to change in the future.)


@node Complex numbers
@section Complex numbers
@cindex complex number

Complex numbers, as implemented by the class @code{cl_N}, have a real
part and an imaginary part, both real numbers. A complex number whose
imaginary part is the exact number @code{0} is automatically converted
to a real number.

Complex numbers can arise from real numbers alone, for example
through application of @code{sqrt} or transcendental functions.


@node Conversions
@section Conversions
@cindex conversion

Conversions from any class to any its superclasses (``base classes'' in
C++ terminology) is done automatically.

Conversions from the C built-in types @samp{long} and @samp{unsigned long}
are provided for the classes @code{cl_I}, @code{cl_RA}, @code{cl_R},
@code{cl_N} and @code{cl_number}.

Conversions from the C built-in types @samp{int} and @samp{unsigned int}
are provided for the classes @code{cl_I}, @code{cl_RA}, @code{cl_R},
@code{cl_N} and @code{cl_number}. However, these conversions emphasize
efficiency. On 32-bit systems, their range is therefore limited:

@itemize @minus
@item
The conversion from @samp{int} works only if the argument is < 2^29 and >= -2^29.
@item
The conversion from @samp{unsigned int} works only if the argument is < 2^29.
@end itemize

In a declaration like @samp{cl_I x = 10;} the C++ compiler is able to
do the conversion of @code{10} from @samp{int} to @samp{cl_I} at compile time
already. On the other hand, code like @samp{cl_I x = 1000000000;} is
in error on 32-bit machines.
So, if you want to be sure that an @samp{int} whose magnitude is not guaranteed
to be < 2^29 is correctly converted to a @samp{cl_I}, first convert it to a
@samp{long}. Similarly, if a large @samp{unsigned int} is to be converted to a
@samp{cl_I}, first convert it to an @samp{unsigned long}. On 64-bit machines
there is no such restriction. There, conversions from arbitrary 32-bit @samp{int}
values always works correctly.

Conversions from the C built-in type @samp{float} are provided for the classes
@code{cl_FF}, @code{cl_F}, @code{cl_R}, @code{cl_N} and @code{cl_number}.

Conversions from the C built-in type @samp{double} are provided for the classes
@code{cl_DF}, @code{cl_F}, @code{cl_R}, @code{cl_N} and @code{cl_number}.

Conversions from @samp{const char *} are provided for the classes
@code{cl_I}, @code{cl_RA},
@code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}, @code{cl_F},
@code{cl_R}, @code{cl_N}.
The easiest way to specify a value which is outside of the range of the
C++ built-in types is therefore to specify it as a string, like this:
@cindex Rubik's cube
@example
   cl_I order_of_rubiks_cube_group = "43252003274489856000";
@end example
Note that this conversion is done at runtime, not at compile-time.

Conversions from @code{cl_I} to the C built-in types @samp{int},
@samp{unsigned int}, @samp{long}, @samp{unsigned long} are provided through
the functions

@table @code
@item int cl_I_to_int (const cl_I& x)
@cindex @code{cl_I_to_int ()}
@itemx unsigned int cl_I_to_uint (const cl_I& x)
@cindex @code{cl_I_to_uint ()}
@itemx long cl_I_to_long (const cl_I& x)
@cindex @code{cl_I_to_long ()}
@itemx unsigned long cl_I_to_ulong (const cl_I& x)
@cindex @code{cl_I_to_ulong ()}
Returns @code{x} as element of the C type @var{ctype}. If @code{x} is not
representable in the range of @var{ctype}, a runtime error occurs.
@end table

Conversions from the classes @code{cl_I}, @code{cl_RA},
@code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}, @code{cl_F} and
@code{cl_R}
to the C built-in types @samp{float} and @samp{double} are provided through
the functions

@table @code
@item float float_approx (const @var{type}& x)
@cindex @code{float_approx ()}
@itemx double double_approx (const @var{type}& x)
@cindex @code{double_approx ()}
Returns an approximation of @code{x} of C type @var{ctype}.
If @code{abs(x)} is too close to 0 (underflow), 0 is returned.
If @code{abs(x)} is too large (overflow), an IEEE infinity is returned.
@end table

Conversions from any class to any of its subclasses (``derived classes'' in
C++ terminology) are not provided. Instead, you can assert and check
that a value belongs to a certain subclass, and return it as element of that
class, using the @samp{As} and @samp{The} macros.
@cindex cast
@cindex @code{As()()}
@code{As(@var{type})(@var{value})} checks that @var{value} belongs to
@var{type} and returns it as such.
@cindex @code{The()()}
@code{The(@var{type})(@var{value})} assumes that @var{value} belongs to
@var{type} and returns it as such. It is your responsibility to ensure
that this assumption is valid.  Since macros and namespaces don't go
together well, there is an equivalent to @samp{The}: the template
@samp{the}.

Example:

@example
@group
   cl_I x = @dots{};
   if (!(x >= 0)) abort();
   cl_I ten_x_a = The(cl_I)(expt(10,x)); // If x >= 0, 10^x is an integer.
                // In general, it would be a rational number.
   cl_I ten_x_b = the<cl_I>(expt(10,x)); // The same as above.
@end group
@end example


@node Functions on numbers
@chapter Functions on numbers

Each of the number classes declares its mathematical operations in the
corresponding include file. For example, if your code operates with
objects of type @code{cl_I}, it should @code{#include <cln/integer.h>}.


@menu
* Constructing numbers::        
* Elementary functions::        
* Elementary rational functions::  
* Elementary complex functions::  
* Comparisons::                 
* Rounding functions::          
* Roots::                       
* Transcendental functions::    
* Functions on integers::       
* Functions on floating-point numbers::  
* Conversion functions::        
* Random number generators::    
* Modifying operators::       
@end menu

@node Constructing numbers
@section Constructing numbers

Here is how to create number objects ``from nothing''.


@menu
* Constructing integers::       
* Constructing rational numbers::  
* Constructing floating-point numbers::  
* Constructing complex numbers::  
@end menu

@node Constructing integers
@subsection Constructing integers

@code{cl_I} objects are most easily constructed from C integers and from
strings. See @ref{Conversions}.


@node Constructing rational numbers
@subsection Constructing rational numbers

@code{cl_RA} objects can be constructed from strings. The syntax
for rational numbers is described in @ref{Internal and printed representation}.
Another standard way to produce a rational number is through application
of @samp{operator /} or @samp{recip} on integers.


@node Constructing floating-point numbers
@subsection Constructing floating-point numbers

@code{cl_F} objects with low precision are most easily constructed from
C @samp{float} and @samp{double}. See @ref{Conversions}.

To construct a @code{cl_F} with high precision, you can use the conversion
from @samp{const char *}, but you have to specify the desired precision
within the string. (See @ref{Internal and printed representation}.)
Example:
@example
   cl_F e = "0.271828182845904523536028747135266249775724709369996e+1_40";
@end example
will set @samp{e} to the given value, with a precision of 40 decimal digits.

The programmatic way to construct a @code{cl_F} with high precision is
through the @code{cl_float} conversion function, see
@ref{Conversion to floating-point numbers}. For example, to compute
@code{e} to 40 decimal places, first construct 1.0 to 40 decimal places
and then apply the exponential function:
@example
   float_format_t precision = float_format(40);
   cl_F e = exp(cl_float(1,precision));
@end example


@node Constructing complex numbers
@subsection Constructing complex numbers

Non-real @code{cl_N} objects are normally constructed through the function
@example
   cl_N complex (const cl_R& realpart, const cl_R& imagpart)
@end example
See @ref{Elementary complex functions}.


@node Elementary functions
@section Elementary functions

Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operations:

@table @code
@item @var{type} operator + (const @var{type}&, const @var{type}&)
@cindex @code{operator + ()}
Addition.

@item @var{type} operator - (const @var{type}&, const @var{type}&)
@cindex @code{operator - ()}
Subtraction.

@item @var{type} operator - (const @var{type}&)
Returns the negative of the argument.

@item @var{type} plus1 (const @var{type}& x)
@cindex @code{plus1 ()}
Returns @code{x + 1}.

@item @var{type} minus1 (const @var{type}& x)
@cindex @code{minus1 ()}
Returns @code{x - 1}.

@item @var{type} operator * (const @var{type}&, const @var{type}&)
@cindex @code{operator * ()}
Multiplication.

@item @var{type} square (const @var{type}& x)
@cindex @code{square ()}
Returns @code{x * x}.
@end table

Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operations:

@table @code
@item @var{type} operator / (const @var{type}&, const @var{type}&)
@cindex @code{operator / ()}
Division.

@item @var{type} recip (const @var{type}&)
@cindex @code{recip ()}
Returns the reciprocal of the argument.
@end table

The class @code{cl_I} doesn't define a @samp{/} operation because
in the C/C++ language this operator, applied to integral types,
denotes the @samp{floor} or @samp{truncate} operation (which one of these,
is implementation dependent). (@xref{Rounding functions}.)
Instead, @code{cl_I} defines an ``exact quotient'' function:

@table @code
@item cl_I exquo (const cl_I& x, const cl_I& y)
@cindex @code{exquo ()}
Checks that @code{y} divides @code{x}, and returns the quotient @code{x}/@code{y}.
@end table

The following exponentiation functions are defined:

@table @code
@item cl_I expt_pos (const cl_I& x, const cl_I& y)
@cindex @code{expt_pos ()}
@itemx cl_RA expt_pos (const cl_RA& x, const cl_I& y)
@code{y} must be > 0. Returns @code{x^y}.

@item cl_RA expt (const cl_RA& x, const cl_I& y)
@cindex @code{expt ()}
@itemx cl_R expt (const cl_R& x, const cl_I& y)
@itemx cl_N expt (const cl_N& x, const cl_I& y)
Returns @code{x^y}.
@end table

Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operation:

@table @code
@item @var{type} abs (const @var{type}& x)
@cindex @code{abs ()}
Returns the absolute value of @code{x}.
This is @code{x} if @code{x >= 0}, and @code{-x} if @code{x <= 0}.
@end table

The class @code{cl_N} implements this as follows:

@table @code
@item cl_R abs (const cl_N x)
Returns the absolute value of @code{x}.
@end table

Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operation:

@table @code
@item @var{type} signum (const @var{type}& x)
@cindex @code{signum ()}
Returns the sign of @code{x}, in the same number format as @code{x}.
This is defined as @code{x / abs(x)} if @code{x} is non-zero, and
@code{x} if @code{x} is zero. If @code{x} is real, the value is either
0 or 1 or -1.
@end table


@node Elementary rational functions
@section Elementary rational functions

Each of the classes @code{cl_RA}, @code{cl_I} defines the following operations:

@table @code
@item cl_I numerator (const @var{type}& x)
@cindex @code{numerator ()}
Returns the numerator of @code{x}.

@item cl_I denominator (const @var{type}& x)
@cindex @code{denominator ()}
Returns the denominator of @code{x}.
@end table

The numerator and denominator of a rational number are normalized in such
a way that they have no factor in common and the denominator is positive.


@node Elementary complex functions
@section Elementary complex functions

The class @code{cl_N} defines the following operation:

@table @code
@item cl_N complex (const cl_R& a, const cl_R& b)
@cindex @code{complex ()}
Returns the complex number @code{a+bi}, that is, the complex number with
real part @code{a} and imaginary part @code{b}.
@end table

Each of the classes @code{cl_N}, @code{cl_R} defines the following operations:

@table @code
@item cl_R realpart (const @var{type}& x)
@cindex @code{realpart ()}
Returns the real part of @code{x}.

@item cl_R imagpart (const @var{type}& x)
@cindex @code{imagpart ()}
Returns the imaginary part of @code{x}.

@item @var{type} conjugate (const @var{type}& x)
@cindex @code{conjugate ()}
Returns the complex conjugate of @code{x}.
@end table

We have the relations

@itemize @w{}
@item
@code{x = complex(realpart(x), imagpart(x))}
@item
@code{conjugate(x) = complex(realpart(x), -imagpart(x))}
@end itemize


@node Comparisons
@section Comparisons
@cindex comparison

Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operations:

@table @code
@item bool operator == (const @var{type}&, const @var{type}&)
@cindex @code{operator == ()}
@itemx bool operator != (const @var{type}&, const @var{type}&)
@cindex @code{operator != ()}
Comparison, as in C and C++.

@item uint32 equal_hashcode (const @var{type}&)
@cindex @code{equal_hashcode ()}
Returns a 32-bit hash code that is the same for any two numbers which are
the same according to @code{==}. This hash code depends on the number's value,
not its type or precision.

@item bool zerop (const @var{type}& x)
@cindex @code{zerop ()}
Compare against zero: @code{x == 0}
@end table

Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operations:

@table @code
@item cl_signean compare (const @var{type}& x, const @var{type}& y)
@cindex @code{compare ()}
Compares @code{x} and @code{y}. Returns +1 if @code{x}>@code{y},
-1 if @code{x}<@code{y}, 0 if @code{x}=@code{y}.

@item bool operator <= (const @var{type}&, const @var{type}&)
@cindex @code{operator <= ()}
@itemx bool operator < (const @var{type}&, const @var{type}&)
@cindex @code{operator < ()}
@itemx bool operator >= (const @var{type}&, const @var{type}&)
@cindex @code{operator >= ()}
@itemx bool operator > (const @var{type}&, const @var{type}&)
@cindex @code{operator > ()}
Comparison, as in C and C++.

@item bool minusp (const @var{type}& x)
@cindex @code{minusp ()}
Compare against zero: @code{x < 0}

@item bool plusp (const @var{type}& x)
@cindex @code{plusp ()}
Compare against zero: @code{x > 0}

@item @var{type} max (const @var{type}& x, const @var{type}& y)
@cindex @code{max ()}
Return the maximum of @code{x} and @code{y}.

@item @var{type} min (const @var{type}& x, const @var{type}& y)
@cindex @code{min ()}
Return the minimum of @code{x} and @code{y}.
@end table

When a floating point number and a rational number are compared, the float
is first converted to a rational number using the function @code{rational}.
Since a floating point number actually represents an interval of real numbers,
the result might be surprising.
For example, @code{(cl_F)(cl_R)"1/3" == (cl_R)"1/3"} returns false because
there is no floating point number whose value is exactly @code{1/3}.


@node Rounding functions
@section Rounding functions
@cindex rounding

When a real number is to be converted to an integer, there is no ``best''
rounding. The desired rounding function depends on the application.
The Common Lisp and ISO Lisp standards offer four rounding functions:

@table @code
@item floor(x)
This is the largest integer <=@code{x}.

@item ceiling(x)
This is the smallest integer >=@code{x}.

@item truncate(x)
Among the integers between 0 and @code{x} (inclusive) the one nearest to @code{x}.

@item round(x)
The integer nearest to @code{x}. If @code{x} is exactly halfway between two
integers, choose the even one.
@end table

These functions have different advantages:

@code{floor} and @code{ceiling} are translation invariant:
@code{floor(x+n) = floor(x) + n} and @code{ceiling(x+n) = ceiling(x) + n}
for every @code{x} and every integer @code{n}.

On the other hand, @code{truncate} and @code{round} are symmetric:
@code{truncate(-x) = -truncate(x)} and @code{round(-x) = -round(x)},
and furthermore @code{round} is unbiased: on the ``average'', it rounds
down exactly as often as it rounds up.

The functions are related like this:

@itemize @w{}
@item
@code{ceiling(m/n) = floor((m+n-1)/n) = floor((m-1)/n)+1}
for rational numbers @code{m/n} (@code{m}, @code{n} integers, @code{n}>0), and
@item
@code{truncate(x) = sign(x) * floor(abs(x))}
@end itemize

Each of the classes @code{cl_R}, @code{cl_RA},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operations:

@table @code
@item cl_I floor1 (const @var{type}& x)
@cindex @code{floor1 ()}
Returns @code{floor(x)}.
@item cl_I ceiling1 (const @var{type}& x)
@cindex @code{ceiling1 ()}
Returns @code{ceiling(x)}.
@item cl_I truncate1 (const @var{type}& x)
@cindex @code{truncate1 ()}
Returns @code{truncate(x)}.
@item cl_I round1 (const @var{type}& x)
@cindex @code{round1 ()}
Returns @code{round(x)}.
@end table

Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operations:

@table @code
@item cl_I floor1 (const @var{type}& x, const @var{type}& y)
Returns @code{floor(x/y)}.
@item cl_I ceiling1 (const @var{type}& x, const @var{type}& y)
Returns @code{ceiling(x/y)}.
@item cl_I truncate1 (const @var{type}& x, const @var{type}& y)
Returns @code{truncate(x/y)}.
@item cl_I round1 (const @var{type}& x, const @var{type}& y)
Returns @code{round(x/y)}.
@end table

These functions are called @samp{floor1}, @dots{} here instead of
@samp{floor}, @dots{}, because on some systems, system dependent include
files define @samp{floor} and @samp{ceiling} as macros.

In many cases, one needs both the quotient and the remainder of a division.
It is more efficient to compute both at the same time than to perform
two divisions, one for quotient and the next one for the remainder.
The following functions therefore return a structure containing both
the quotient and the remainder. The suffix @samp{2} indicates the number
of ``return values''. The remainder is defined as follows:

@itemize @bullet
@item
for the computation of @code{quotient = floor(x)},
@code{remainder = x - quotient},
@item
for the computation of @code{quotient = floor(x,y)},
@code{remainder = x - quotient*y},
@end itemize

and similarly for the other three operations.

Each of the classes @code{cl_R}, @code{cl_RA},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operations:

@table @code
@item struct @var{type}_div_t @{ cl_I quotient; @var{type} remainder; @};
@itemx @var{type}_div_t floor2 (const @var{type}& x)
@itemx @var{type}_div_t ceiling2 (const @var{type}& x)
@itemx @var{type}_div_t truncate2 (const @var{type}& x)
@itemx @var{type}_div_t round2 (const @var{type}& x)
@end table

Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operations:

@table @code
@item struct @var{type}_div_t @{ cl_I quotient; @var{type} remainder; @};
@itemx @var{type}_div_t floor2 (const @var{type}& x, const @var{type}& y)
@cindex @code{floor2 ()}
@itemx @var{type}_div_t ceiling2 (const @var{type}& x, const @var{type}& y)
@cindex @code{ceiling2 ()}
@itemx @var{type}_div_t truncate2 (const @var{type}& x, const @var{type}& y)
@cindex @code{truncate2 ()}
@itemx @var{type}_div_t round2 (const @var{type}& x, const @var{type}& y)
@cindex @code{round2 ()}
@end table

Sometimes, one wants the quotient as a floating-point number (of the
same format as the argument, if the argument is a float) instead of as
an integer. The prefix @samp{f} indicates this.

Each of the classes
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operations:

@table @code
@item @var{type} ffloor (const @var{type}& x)
@cindex @code{ffloor ()}
@itemx @var{type} fceiling (const @var{type}& x)
@cindex @code{fceiling ()}
@itemx @var{type} ftruncate (const @var{type}& x)
@cindex @code{ftruncate ()}
@itemx @var{type} fround (const @var{type}& x)
@cindex @code{fround ()}
@end table

and similarly for class @code{cl_R}, but with return type @code{cl_F}.

The class @code{cl_R} defines the following operations:

@table @code
@item cl_F ffloor (const @var{type}& x, const @var{type}& y)
@itemx cl_F fceiling (const @var{type}& x, const @var{type}& y)
@itemx cl_F ftruncate (const @var{type}& x, const @var{type}& y)
@itemx cl_F fround (const @var{type}& x, const @var{type}& y)
@end table

These functions also exist in versions which return both the quotient
and the remainder. The suffix @samp{2} indicates this.

Each of the classes
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operations:
@cindex @code{cl_F_fdiv_t}
@cindex @code{cl_SF_fdiv_t}
@cindex @code{cl_FF_fdiv_t}
@cindex @code{cl_DF_fdiv_t}
@cindex @code{cl_LF_fdiv_t}

@table @code
@item struct @var{type}_fdiv_t @{ @var{type} quotient; @var{type} remainder; @};
@itemx @var{type}_fdiv_t ffloor2 (const @var{type}& x)
@cindex @code{ffloor2 ()}
@itemx @var{type}_fdiv_t fceiling2 (const @var{type}& x)
@cindex @code{fceiling2 ()}
@itemx @var{type}_fdiv_t ftruncate2 (const @var{type}& x)
@cindex @code{ftruncate2 ()}
@itemx @var{type}_fdiv_t fround2 (const @var{type}& x)
@cindex @code{fround2 ()}
@end table
and similarly for class @code{cl_R}, but with quotient type @code{cl_F}.
@cindex @code{cl_R_fdiv_t}

The class @code{cl_R} defines the following operations:

@table @code
@item struct @var{type}_fdiv_t @{ cl_F quotient; cl_R remainder; @};
@itemx @var{type}_fdiv_t ffloor2 (const @var{type}& x, const @var{type}& y)
@itemx @var{type}_fdiv_t fceiling2 (const @var{type}& x, const @var{type}& y)
@itemx @var{type}_fdiv_t ftruncate2 (const @var{type}& x, const @var{type}& y)
@itemx @var{type}_fdiv_t fround2 (const @var{type}& x, const @var{type}& y)
@end table

Other applications need only the remainder of a division.
The remainder of @samp{floor} and @samp{ffloor} is called @samp{mod}
(abbreviation of ``modulo''). The remainder @samp{truncate} and
@samp{ftruncate} is called @samp{rem} (abbreviation of ``remainder'').

@itemize @bullet
@item
@code{mod(x,y) = floor2(x,y).remainder = x - floor(x/y)*y}
@item
@code{rem(x,y) = truncate2(x,y).remainder = x - truncate(x/y)*y}
@end itemize

If @code{x} and @code{y} are both >= 0, @code{mod(x,y) = rem(x,y) >= 0}.
In general, @code{mod(x,y)} has the sign of @code{y} or is zero,
and @code{rem(x,y)} has the sign of @code{x} or is zero.

The classes @code{cl_R}, @code{cl_I} define the following operations:

@table @code
@item @var{type} mod (const @var{type}& x, const @var{type}& y)
@cindex @code{mod ()}
@itemx @var{type} rem (const @var{type}& x, const @var{type}& y)
@cindex @code{rem ()}
@end table


@node Roots
@section Roots

Each of the classes @code{cl_R},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operation:

@table @code
@item @var{type} sqrt (const @var{type}& x)
@cindex @code{sqrt ()}
@code{x} must be >= 0. This function returns the square root of @code{x},
normalized to be >= 0. If @code{x} is the square of a rational number,
@code{sqrt(x)} will be a rational number, else it will return a
floating-point approximation.
@end table

The classes @code{cl_RA}, @code{cl_I} define the following operation:

@table @code
@item bool sqrtp (const @var{type}& x, @var{type}* root)
@cindex @code{sqrtp ()}
This tests whether @code{x} is a perfect square. If so, it returns true
and the exact square root in @code{*root}, else it returns false.
@end table

Furthermore, for integers, similarly:

@table @code
@item bool isqrt (const @var{type}& x, @var{type}* root)
@cindex @code{isqrt ()}
@code{x} should be >= 0. This function sets @code{*root} to
@code{floor(sqrt(x))} and returns the same value as @code{sqrtp}:
the boolean value @code{(expt(*root,2) == x)}.
@end table

For @code{n}th roots, the classes @code{cl_RA}, @code{cl_I}
define the following operation:

@table @code
@item bool rootp (const @var{type}& x, const cl_I& n, @var{type}* root)
@cindex @code{rootp ()}
@code{x} must be >= 0. @code{n} must be > 0.
This tests whether @code{x} is an @code{n}th power of a rational number.
If so, it returns true and the exact root in @code{*root}, else it returns
false.
@end table

The only square root function which accepts negative numbers is the one
for class @code{cl_N}:

@table @code
@item cl_N sqrt (const cl_N& z)
@cindex @code{sqrt ()}
Returns the square root of @code{z}, as defined by the formula
@code{sqrt(z) = exp(log(z)/2)}. Conversion to a floating-point type
or to a complex number are done if necessary. The range of the result is the
right half plane @code{realpart(sqrt(z)) >= 0}
including the positive imaginary axis and 0, but excluding
the negative imaginary axis.
The result is an exact number only if @code{z} is an exact number.
@end table


@node Transcendental functions
@section Transcendental functions
@cindex transcendental functions

The transcendental functions return an exact result if the argument
is exact and the result is exact as well. Otherwise they must return
inexact numbers even if the argument is exact.
For example, @code{cos(0) = 1} returns the rational number @code{1}.


@menu
* Exponential and logarithmic functions::  
* Trigonometric functions::     
* Hyperbolic functions::        
* Euler gamma::                 
* Riemann zeta::                
@end menu

@node Exponential and logarithmic functions
@subsection Exponential and logarithmic functions

@table @code
@item cl_R exp (const cl_R& x)
@cindex @code{exp ()}
@itemx cl_N exp (const cl_N& x)
Returns the exponential function of @code{x}. This is @code{e^x} where
@code{e} is the base of the natural logarithms. The range of the result
is the entire complex plane excluding 0.

@item cl_R ln (const cl_R& x)
@cindex @code{ln ()}
@code{x} must be > 0. Returns the (natural) logarithm of x.

@item cl_N log (const cl_N& x)
@cindex @code{log ()}
Returns the (natural) logarithm of x. If @code{x} is real and positive,
this is @code{ln(x)}. In general, @code{log(x) = log(abs(x)) + i*phase(x)}.
The range of the result is the strip in the complex plane
@code{-pi < imagpart(log(x)) <= pi}.

@item cl_R phase (const cl_N& x)
@cindex @code{phase ()}
Returns the angle part of @code{x} in its polar representation as a
complex number. That is, @code{phase(x) = atan(realpart(x),imagpart(x))}.
This is also the imaginary part of @code{log(x)}.
The range of the result is the interval @code{-pi < phase(x) <= pi}.
The result will be an exact number only if @code{zerop(x)} or
if @code{x} is real and positive.

@item cl_R log (const cl_R& a, const cl_R& b)
@code{a} and @code{b} must be > 0. Returns the logarithm of @code{a} with
respect to base @code{b}. @code{log(a,b) = ln(a)/ln(b)}.
The result can be exact only if @code{a = 1} or if @code{a} and @code{b}
are both rational.

@item cl_N log (const cl_N& a, const cl_N& b)
Returns the logarithm of @code{a} with respect to base @code{b}.
@code{log(a,b) = log(a)/log(b)}.

@item cl_N expt (const cl_N& x, const cl_N& y)
@cindex @code{expt ()}
Exponentiation: Returns @code{x^y = exp(y*log(x))}.
@end table

The constant e = exp(1) = 2.71828@dots{} is returned by the following functions:

@table @code
@item cl_F exp1 (float_format_t f)
@cindex @code{exp1 ()}
Returns e as a float of format @code{f}.

@item cl_F exp1 (const cl_F& y)
Returns e in the float format of @code{y}.

@item cl_F exp1 (void)
Returns e as a float of format @code{default_float_format}.
@end table


@node Trigonometric functions
@subsection Trigonometric functions

@table @code
@item cl_R sin (const cl_R& x)
@cindex @code{sin ()}
Returns @code{sin(x)}. The range of the result is the interval
@code{-1 <= sin(x) <= 1}.

@item cl_N sin (const cl_N& z)
Returns @code{sin(z)}. The range of the result is the entire complex plane.

@item cl_R cos (const cl_R& x)
@cindex @code{cos ()}
Returns @code{cos(x)}. The range of the result is the interval
@code{-1 <= cos(x) <= 1}.

@item cl_N cos (const cl_N& x)
Returns @code{cos(z)}. The range of the result is the entire complex plane.

@item struct cos_sin_t @{ cl_R cos; cl_R sin; @};
@cindex @code{cos_sin_t}
@itemx cos_sin_t cos_sin (const cl_R& x)
Returns both @code{sin(x)} and @code{cos(x)}. This is more efficient than
@cindex @code{cos_sin ()}
computing them separately. The relation @code{cos^2 + sin^2 = 1} will
hold only approximately.

@item cl_R tan (const cl_R& x)
@cindex @code{tan ()}
@itemx cl_N tan (const cl_N& x)
Returns @code{tan(x) = sin(x)/cos(x)}.

@item cl_N cis (const cl_R& x)
@cindex @code{cis ()}
@itemx cl_N cis (const cl_N& x)
Returns @code{exp(i*x)}. The name @samp{cis} means ``cos + i sin'', because
@code{e^(i*x) = cos(x) + i*sin(x)}.

@cindex @code{asin}
@cindex @code{asin ()}
@item cl_N asin (const cl_N& z)
Returns @code{arcsin(z)}. This is defined as
@code{arcsin(z) = log(iz+sqrt(1-z^2))/i} and satisfies
@code{arcsin(-z) = -arcsin(z)}.
The range of the result is the strip in the complex domain
@code{-pi/2 <= realpart(arcsin(z)) <= pi/2}, excluding the numbers
with @code{realpart = -pi/2} and @code{imagpart < 0} and the numbers
with @code{realpart = pi/2} and @code{imagpart > 0}.
@ignore
Proof: This follows from arcsin(z) = arsinh(iz)/i and the corresponding
results for arsinh.
@end ignore

@item cl_N acos (const cl_N& z)
@cindex @code{acos ()}
Returns @code{arccos(z)}. This is defined as
@code{arccos(z) = pi/2 - arcsin(z) = log(z+i*sqrt(1-z^2))/i}
@ignore
 Kahan's formula:
 @code{arccos(z) = 2*log(sqrt((1+z)/2)+i*sqrt((1-z)/2))/i}
@end ignore
and satisfies @code{arccos(-z) = pi - arccos(z)}.
The range of the result is the strip in the complex domain
@code{0 <= realpart(arcsin(z)) <= pi}, excluding the numbers
with @code{realpart = 0} and @code{imagpart < 0} and the numbers
with @code{realpart = pi} and @code{imagpart > 0}.
@ignore
Proof: This follows from the results about arcsin.
@end ignore

@cindex @code{atan}
@cindex @code{atan ()}
@item cl_R atan (const cl_R& x, const cl_R& y)
Returns the angle of the polar representation of the complex number
@code{x+iy}. This is @code{atan(y/x)} if @code{x>0}. The range of
the result is the interval @code{-pi < atan(x,y) <= pi}. The result will
be an exact number only if @code{x > 0} and @code{y} is the exact @code{0}.
WARNING: In Common Lisp, this function is called as @code{(atan y x)},
with reversed order of arguments.

@item cl_R atan (const cl_R& x)
Returns @code{arctan(x)}. This is the same as @code{atan(1,x)}. The range
of the result is the interval @code{-pi/2 < atan(x) < pi/2}. The result
will be an exact number only if @code{x} is the exact @code{0}.

@item cl_N atan (const cl_N& z)
Returns @code{arctan(z)}. This is defined as
@code{arctan(z) = (log(1+iz)-log(1-iz)) / 2i} and satisfies
@code{arctan(-z) = -arctan(z)}. The range of the result is
the strip in the complex domain
@code{-pi/2 <= realpart(arctan(z)) <= pi/2}, excluding the numbers
with @code{realpart = -pi/2} and @code{imagpart >= 0} and the numbers
with @code{realpart = pi/2} and @code{imagpart <= 0}.
@ignore
Proof: arctan(z) = artanh(iz)/i, we know the range of the artanh function.
@end ignore

@end table

@cindex pi
@cindex Archimedes' constant
Archimedes' constant pi = 3.14@dots{} is returned by the following functions:

@table @code
@item cl_F pi (float_format_t f)
@cindex @code{pi ()}
Returns pi as a float of format @code{f}.

@item cl_F pi (const cl_F& y)
Returns pi in the float format of @code{y}.

@item cl_F pi (void)
Returns pi as a float of format @code{default_float_format}.
@end table


@node Hyperbolic functions
@subsection Hyperbolic functions

@table @code
@item cl_R sinh (const cl_R& x)
@cindex @code{sinh ()}
Returns @code{sinh(x)}.

@item cl_N sinh (const cl_N& z)
Returns @code{sinh(z)}. The range of the result is the entire complex plane.

@item cl_R cosh (const cl_R& x)
@cindex @code{cosh ()}
Returns @code{cosh(x)}. The range of the result is the interval
@code{cosh(x) >= 1}.

@item cl_N cosh (const cl_N& z)
Returns @code{cosh(z)}. The range of the result is the entire complex plane.

@item struct cosh_sinh_t @{ cl_R cosh; cl_R sinh; @};
@cindex @code{cosh_sinh_t}
@itemx cosh_sinh_t cosh_sinh (const cl_R& x)
@cindex @code{cosh_sinh ()}
Returns both @code{sinh(x)} and @code{cosh(x)}. This is more efficient than
computing them separately. The relation @code{cosh^2 - sinh^2 = 1} will
hold only approximately.

@item cl_R tanh (const cl_R& x)
@cindex @code{tanh ()}
@itemx cl_N tanh (const cl_N& x)
Returns @code{tanh(x) = sinh(x)/cosh(x)}.

@item cl_N asinh (const cl_N& z)
@cindex @code{asinh ()}
Returns @code{arsinh(z)}. This is defined as
@code{arsinh(z) = log(z+sqrt(1+z^2))} and satisfies
@code{arsinh(-z) = -arsinh(z)}.
@ignore
Proof: Knowing the range of log, we know -pi < imagpart(arsinh(z)) <= pi.
Actually, z+sqrt(1+z^2) can never be real and <0, so
-pi < imagpart(arsinh(z)) < pi.
We have (z+sqrt(1+z^2))*(-z+sqrt(1+(-z)^2)) = (1+z^2)-z^2 = 1, hence the
logs of both factors sum up to 0 mod 2*pi*i, hence to 0.
@end ignore
The range of the result is the strip in the complex domain
@code{-pi/2 <= imagpart(arsinh(z)) <= pi/2}, excluding the numbers
with @code{imagpart = -pi/2} and @code{realpart > 0} and the numbers
with @code{imagpart = pi/2} and @code{realpart < 0}.
@ignore
Proof: Write z = x+iy. Because of arsinh(-z) = -arsinh(z), we may assume
that z is in Range(sqrt), that is, x>=0 and, if x=0, then y>=0.
If x > 0, then Re(z+sqrt(1+z^2)) = x + Re(sqrt(1+z^2)) >= x > 0,
so -pi/2 < imagpart(log(z+sqrt(1+z^2))) < pi/2.
If x = 0 and y >= 0, arsinh(z) = log(i*y+sqrt(1-y^2)).
  If y <= 1, the realpart is 0 and the imagpart is >= 0 and <= pi/2.
  If y >= 1, the imagpart is pi/2 and the realpart is
             log(y+sqrt(y^2-1)) >= log(y) >= 0.
@end ignore
@ignore
Moreover, if z is in Range(sqrt),
log(sqrt(1+z^2)+z) = 2 artanh(z/(1+sqrt(1+z^2)))
(for a proof, see file src/cl_C_asinh.cc).
@end ignore

@item cl_N acosh (const cl_N& z)
@cindex @code{acosh ()}
Returns @code{arcosh(z)}. This is defined as
@code{arcosh(z) = 2*log(sqrt((z+1)/2)+sqrt((z-1)/2))}.
The range of the result is the half-strip in the complex domain
@code{-pi < imagpart(arcosh(z)) <= pi, realpart(arcosh(z)) >= 0},
excluding the numbers with @code{realpart = 0} and @code{-pi < imagpart < 0}.
@ignore
Proof: sqrt((z+1)/2) and sqrt((z-1)/2)) lie in Range(sqrt), hence does
their sum, hence its log has an imagpart <= pi/2 and > -pi/2.
If z is in Range(sqrt), we have
  sqrt(z+1)*sqrt(z-1) = sqrt(z^2-1)
  ==> (sqrt((z+1)/2)+sqrt((z-1)/2))^2 = (z+1)/2 + sqrt(z^2-1) + (z-1)/2
                                      = z + sqrt(z^2-1)
  ==> arcosh(z) = log(z+sqrt(z^2-1)) mod 2*pi*i
  and since the imagpart of both expressions is > -pi, <= pi
  ==> arcosh(z) = log(z+sqrt(z^2-1))
  To prove that the realpart of this is >= 0, write z = x+iy with x>=0,
  z^2-1 = u+iv with u = x^2-y^2-1, v = 2xy,
  sqrt(z^2-1) = p+iq with p = sqrt((sqrt(u^2+v^2)+u)/2) >= 0,
                          q = sqrt((sqrt(u^2+v^2)-u)/2) * sign(v),
  then |z+sqrt(z^2-1)|^2 = |x+iy + p+iq|^2
          = (x+p)^2 + (y+q)^2
          = x^2 + 2xp + p^2 + y^2 + 2yq + q^2
          >= x^2 + p^2 + y^2 + q^2                 (since x>=0, p>=0, yq>=0)
          = x^2 + y^2 + sqrt(u^2+v^2)
          >= x^2 + y^2 + |u|
          >= x^2 + y^2 - u
          = 1 + 2*y^2
          >= 1
  hence realpart(log(z+sqrt(z^2-1))) = log(|z+sqrt(z^2-1)|) >= 0.
  Equality holds only if y = 0 and u <= 0, i.e. 0 <= x < 1.
  In this case arcosh(z) = log(x+i*sqrt(1-x^2)) has imagpart >=0.
Otherwise, -z is in Range(sqrt).
  If y != 0, sqrt((z+1)/2) = i^sign(y) * sqrt((-z-1)/2),
             sqrt((z-1)/2) = i^sign(y) * sqrt((-z+1)/2),
             hence arcosh(z) = sign(y)*pi/2*i + arcosh(-z),
             and this has realpart > 0.
  If y = 0 and -1<=x<=0, we still have sqrt(z+1)*sqrt(z-1) = sqrt(z^2-1),
             ==> arcosh(z) = log(z+sqrt(z^2-1)) = log(x+i*sqrt(1-x^2))
             has realpart = 0 and imagpart > 0.
  If y = 0 and x<=-1, however, sqrt(z+1)*sqrt(z-1) = - sqrt(z^2-1),
             ==> arcosh(z) = log(z-sqrt(z^2-1)) = pi*i + arcosh(-z).
             This has realpart >= 0 and imagpart = pi.
@end ignore

@item cl_N atanh (const cl_N& z)
@cindex @code{atanh ()}
Returns @code{artanh(z)}. This is defined as
@code{artanh(z) = (log(1+z)-log(1-z)) / 2} and satisfies
@code{artanh(-z) = -artanh(z)}. The range of the result is
the strip in the complex domain
@code{-pi/2 <= imagpart(artanh(z)) <= pi/2}, excluding the numbers
with @code{imagpart = -pi/2} and @code{realpart <= 0} and the numbers
with @code{imagpart = pi/2} and @code{realpart >= 0}.
@ignore
Proof: Write z = x+iy. Examine
  imagpart(artanh(z)) = (atan(1+x,y) - atan(1-x,-y))/2.
  Case 1: y = 0.
          x > 1 ==> imagpart = -pi/2, realpart = 1/2 log((x+1)/(x-1)) > 0,
          x < -1 ==> imagpart = pi/2, realpart = 1/2 log((-x-1)/(-x+1)) < 0,
          |x| < 1 ==> imagpart = 0
  Case 2: y > 0.
          imagpart(artanh(z))
              = (atan(1+x,y) - atan(1-x,-y))/2
              = ((pi/2 - atan((1+x)/y)) - (-pi/2 - atan((1-x)/-y)))/2
              = (pi - atan((1+x)/y) - atan((1-x)/y))/2
              > (pi -     pi/2      -     pi/2     )/2 = 0
          and (1+x)/y > (1-x)/y
              ==> atan((1+x)/y) > atan((-1+x)/y) = - atan((1-x)/y)
              ==> imagpart < pi/2.
          Hence 0 < imagpart < pi/2.
  Case 3: y < 0.
          By artanh(z) = -artanh(-z) and case 2, -pi/2 < imagpart < 0.
@end ignore
@end table


@node Euler gamma
@subsection Euler gamma
@cindex Euler's constant

Euler's constant C = 0.577@dots{} is returned by the following functions:

@table @code
@item cl_F eulerconst (float_format_t f)
@cindex @code{eulerconst ()}
Returns Euler's constant as a float of format @code{f}.

@item cl_F eulerconst (const cl_F& y)
Returns Euler's constant in the float format of @code{y}.

@item cl_F eulerconst (void)
Returns Euler's constant as a float of format @code{default_float_format}.
@end table

Catalan's constant G = 0.915@dots{} is returned by the following functions:
@cindex Catalan's constant

@table @code
@item cl_F catalanconst (float_format_t f)
@cindex @code{catalanconst ()}
Returns Catalan's constant as a float of format @code{f}.

@item cl_F catalanconst (const cl_F& y)
Returns Catalan's constant in the float format of @code{y}.

@item cl_F catalanconst (void)
Returns Catalan's constant as a float of format @code{default_float_format}.
@end table


@node Riemann zeta
@subsection Riemann zeta
@cindex Riemann's zeta

Riemann's zeta function at an integral point @code{s>1} is returned by the
following functions:

@table @code
@item cl_F zeta (int s, float_format_t f)
@cindex @code{zeta ()}
Returns Riemann's zeta function at @code{s} as a float of format @code{f}.

@item cl_F zeta (int s, const cl_F& y)
Returns Riemann's zeta function at @code{s} in the float format of @code{y}.

@item cl_F zeta (int s)
Returns Riemann's zeta function at @code{s} as a float of format
@code{default_float_format}.
@end table


@node Functions on integers
@section Functions on integers

@menu
* Logical functions::           
* Number theoretic functions::  
* Combinatorial functions::     
@end menu

@node Logical functions
@subsection Logical functions

Integers, when viewed as in two's complement notation, can be thought as
infinite bit strings where the bits' values eventually are constant.
For example,
@example
    17 = ......00010001
    -6 = ......11111010
@end example

The logical operations view integers as such bit strings and operate
on each of the bit positions in parallel.

@table @code
@item cl_I lognot (const cl_I& x)
@cindex @code{lognot ()}
@itemx cl_I operator ~ (const cl_I& x)
@cindex @code{operator ~ ()}
Logical not, like @code{~x} in C. This is the same as @code{-1-x}.

@item cl_I logand (const cl_I& x, const cl_I& y)
@cindex @code{logand ()}
@itemx cl_I operator & (const cl_I& x, const cl_I& y)
@cindex @code{operator & ()}
Logical and, like @code{x & y} in C.

@item cl_I logior (const cl_I& x, const cl_I& y)
@cindex @code{logior ()}
@itemx cl_I operator | (const cl_I& x, const cl_I& y)
@cindex @code{operator | ()}
Logical (inclusive) or, like @code{x | y} in C.

@item cl_I logxor (const cl_I& x, const cl_I& y)
@cindex @code{logxor ()}
@itemx cl_I operator ^ (const cl_I& x, const cl_I& y)
@cindex @code{operator ^ ()}
Exclusive or, like @code{x ^ y} in C.

@item cl_I logeqv (const cl_I& x, const cl_I& y)
@cindex @code{logeqv ()}
Bitwise equivalence, like @code{~(x ^ y)} in C.

@item cl_I lognand (const cl_I& x, const cl_I& y)
@cindex @code{lognand ()}
Bitwise not and, like @code{~(x & y)} in C.

@item cl_I lognor (const cl_I& x, const cl_I& y)
@cindex @code{lognor ()}
Bitwise not or, like @code{~(x | y)} in C.

@item cl_I logandc1 (const cl_I& x, const cl_I& y)
@cindex @code{logandc1 ()}
Logical and, complementing the first argument, like @code{~x & y} in C.

@item cl_I logandc2 (const cl_I& x, const cl_I& y)
@cindex @code{logandc2 ()}
Logical and, complementing the second argument, like @code{x & ~y} in C.

@item cl_I logorc1 (const cl_I& x, const cl_I& y)
@cindex @code{logorc1 ()}
Logical or, complementing the first argument, like @code{~x | y} in C.

@item cl_I logorc2 (const cl_I& x, const cl_I& y)
@cindex @code{logorc2 ()}
Logical or, complementing the second argument, like @code{x | ~y} in C.
@end table

These operations are all available though the function
@table @code
@item cl_I boole (cl_boole op, const cl_I& x, const cl_I& y)
@cindex @code{boole ()}
@end table
where @code{op} must have one of the 16 values (each one stands for a function
which combines two bits into one bit): @code{boole_clr}, @code{boole_set},
@code{boole_1}, @code{boole_2}, @code{boole_c1}, @code{boole_c2},
@code{boole_and}, @code{boole_ior}, @code{boole_xor}, @code{boole_eqv},
@code{boole_nand}, @code{boole_nor}, @code{boole_andc1}, @code{boole_andc2},
@code{boole_orc1}, @code{boole_orc2}.
@cindex @code{boole_clr}
@cindex @code{boole_set}
@cindex @code{boole_1}
@cindex @code{boole_2}
@cindex @code{boole_c1}
@cindex @code{boole_c2}
@cindex @code{boole_and}
@cindex @code{boole_xor}
@cindex @code{boole_eqv}
@cindex @code{boole_nand}
@cindex @code{boole_nor}
@cindex @code{boole_andc1}
@cindex @code{boole_andc2}
@cindex @code{boole_orc1}
@cindex @code{boole_orc2}


Other functions that view integers as bit strings:

@table @code
@item bool logtest (const cl_I& x, const cl_I& y)
@cindex @code{logtest ()}
Returns true if some bit is set in both @code{x} and @code{y}, i.e. if
@code{logand(x,y) != 0}.

@item bool logbitp (const cl_I& n, const cl_I& x)
@cindex @code{logbitp ()}
Returns true if the @code{n}th bit (from the right) of @code{x} is set.
Bit 0 is the least significant bit.

@item uintC logcount (const cl_I& x)
@cindex @code{logcount ()}
Returns the number of one bits in @code{x}, if @code{x} >= 0, or
the number of zero bits in @code{x}, if @code{x} < 0.
@end table

The following functions operate on intervals of bits in integers. 
The type
@example
struct cl_byte @{ uintC size; uintC position; @};
@end example
@cindex @code{cl_byte}
represents the bit interval containing the bits
@code{position}@dots{}@code{position+size-1} of an integer.
The constructor @code{cl_byte(size,position)} constructs a @code{cl_byte}.

@table @code
@item cl_I ldb (const cl_I& n, const cl_byte& b)
@cindex @code{ldb ()}
extracts the bits of @code{n} described by the bit interval @code{b}
and returns them as a nonnegative integer with @code{b.size} bits.

@item bool ldb_test (const cl_I& n, const cl_byte& b)
@cindex @code{ldb_test ()}
Returns true if some bit described by the bit interval @code{b} is set in
@code{n}.

@item cl_I dpb (const cl_I& newbyte, const cl_I& n, const cl_byte& b)
@cindex @code{dpb ()}
Returns @code{n}, with the bits described by the bit interval @code{b}
replaced by @code{newbyte}. Only the lowest @code{b.size} bits of
@code{newbyte} are relevant.
@end table

The functions @code{ldb} and @code{dpb} implicitly shift. The following
functions are their counterparts without shifting:

@table @code
@item cl_I mask_field (const cl_I& n, const cl_byte& b)
@cindex @code{mask_field ()}
returns an integer with the bits described by the bit interval @code{b}
copied from the corresponding bits in @code{n}, the other bits zero.

@item cl_I deposit_field (const cl_I& newbyte, const cl_I& n, const cl_byte& b)
@cindex @code{deposit_field ()}
returns an integer where the bits described by the bit interval @code{b}
come from @code{newbyte} and the other bits come from @code{n}.
@end table

The following relations hold:

@itemize @w{}
@item
@code{ldb (n, b) = mask_field(n, b) >> b.position},
@item
@code{dpb (newbyte, n, b) = deposit_field (newbyte << b.position, n, b)},
@item
@code{deposit_field(newbyte,n,b) = n ^ mask_field(n,b) ^ mask_field(new_byte,b)}.
@end itemize

The following operations on integers as bit strings are efficient shortcuts
for common arithmetic operations:

@table @code
@item bool oddp (const cl_I& x)
@cindex @code{oddp ()}
Returns true if the least significant bit of @code{x} is 1. Equivalent to
@code{mod(x,2) != 0}.

@item bool evenp (const cl_I& x)
@cindex @code{evenp ()}
Returns true if the least significant bit of @code{x} is 0. Equivalent to
@code{mod(x,2) == 0}.

@item cl_I operator << (const cl_I& x, const cl_I& n)
@cindex @code{operator << ()}
Shifts @code{x} by @code{n} bits to the left. @code{n} should be >=0.
Equivalent to @code{x * expt(2,n)}.

@item cl_I operator >> (const cl_I& x, const cl_I& n)
@cindex @code{operator >> ()}
Shifts @code{x} by @code{n} bits to the right. @code{n} should be >=0.
Bits shifted out to the right are thrown away.
Equivalent to @code{floor(x / expt(2,n))}.

@item cl_I ash (const cl_I& x, const cl_I& y)
@cindex @code{ash ()}
Shifts @code{x} by @code{y} bits to the left (if @code{y}>=0) or
by @code{-y} bits to the right (if @code{y}<=0). In other words, this
returns @code{floor(x * expt(2,y))}.

@item uintC integer_length (const cl_I& x)
@cindex @code{integer_length ()}
Returns the number of bits (excluding the sign bit) needed to represent @code{x}
in two's complement notation. This is the smallest n >= 0 such that
-2^n <= x < 2^n. If x > 0, this is the unique n > 0 such that
2^(n-1) <= x < 2^n.

@item uintC ord2 (const cl_I& x)
@cindex @code{ord2 ()}
@code{x} must be non-zero. This function returns the number of 0 bits at the
right of @code{x} in two's complement notation. This is the largest n >= 0
such that 2^n divides @code{x}.

@item uintC power2p (const cl_I& x)
@cindex @code{power2p ()}
@code{x} must be > 0. This function checks whether @code{x} is a power of 2.
If @code{x} = 2^(n-1), it returns n. Else it returns 0.
(See also the function @code{logp}.)
@end table


@node Number theoretic functions
@subsection Number theoretic functions

@table @code
@item uint32 gcd (unsigned long a, unsigned long b)
@cindex @code{gcd ()}
@itemx cl_I gcd (const cl_I& a, const cl_I& b)
This function returns the greatest common divisor of @code{a} and @code{b},
normalized to be >= 0.

@item cl_I xgcd (const cl_I& a, const cl_I& b, cl_I* u, cl_I* v)
@cindex @code{xgcd ()}
This function (``extended gcd'') returns the greatest common divisor @code{g} of
@code{a} and @code{b} and at the same time the representation of @code{g}
as an integral linear combination of @code{a} and @code{b}:
@code{u} and @code{v} with @code{u*a+v*b = g}, @code{g} >= 0.
@code{u} and @code{v} will be normalized to be of smallest possible absolute
value, in the following sense: If @code{a} and @code{b} are non-zero, and
@code{abs(a) != abs(b)}, @code{u} and @code{v} will satisfy the inequalities
@code{abs(u) <= abs(b)/(2*g)}, @code{abs(v) <= abs(a)/(2*g)}.

@item cl_I lcm (const cl_I& a, const cl_I& b)
@cindex @code{lcm ()}
This function returns the least common multiple of @code{a} and @code{b},
normalized to be >= 0.

@item bool logp (const cl_I& a, const cl_I& b, cl_RA* l)
@cindex @code{logp ()}
@itemx bool logp (const cl_RA& a, const cl_RA& b, cl_RA* l)
@code{a} must be > 0. @code{b} must be >0 and != 1. If log(a,b) is
rational number, this function returns true and sets *l = log(a,b), else
it returns false.

@item int jacobi (signed long a, signed long b)
@cindex @code{jacobi()}
@itemx int jacobi (const cl_I& a, const cl_I& b)
Returns the Jacobi symbol 
@tex 
$\left({a\over b}\right)$,
@end tex
@ifnottex 
(a/b),
@end ifnottex
@code{a,b} must be integers, @code{b>0} and odd. The result is 0
iff gcd(a,b)>1.

@item bool isprobprime (const cl_I& n)
@cindex prime
@cindex @code{isprobprime()}
Returns true if @code{n} is a small prime or passes the Miller-Rabin 
primality test. The probability of a false positive is 1:10^30.

@item cl_I nextprobprime (const cl_R& x)
@cindex @code{nextprobprime()}
Returns the smallest probable prime >=@code{x}.
@end table


@node Combinatorial functions
@subsection Combinatorial functions

@table @code
@item cl_I factorial (uintL n)
@cindex @code{factorial ()}
@code{n} must be a small integer >= 0. This function returns the factorial
@code{n}! = @code{1*2*@dots{}*n}.

@item cl_I doublefactorial (uintL n)
@cindex @code{doublefactorial ()}
@code{n} must be a small integer >= 0. This function returns the 
doublefactorial @code{n}!! = @code{1*3*@dots{}*n} or 
@code{n}!! = @code{2*4*@dots{}*n}, respectively.

@item cl_I binomial (uintL n, uintL k)
@cindex @code{binomial ()}
@code{n} and @code{k} must be small integers >= 0. This function returns the
binomial coefficient
@tex
${n \choose k} = {n! \over k! (n-k)!}$
@end tex
@ifinfo
(@code{n} choose @code{k}) = @code{n}! / @code{k}! @code{(n-k)}!
@end ifinfo
for 0 <= k <= n, 0 else.
@end table


@node Functions on floating-point numbers
@section Functions on floating-point numbers

Recall that a floating-point number consists of a sign @code{s}, an
exponent @code{e} and a mantissa @code{m}. The value of the number is
@code{(-1)^s * 2^e * m}.

Each of the classes
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines the following operations.

@table @code
@item @var{type} scale_float (const @var{type}& x, sintC delta)
@cindex @code{scale_float ()}
@itemx @var{type} scale_float (const @var{type}& x, const cl_I& delta)
Returns @code{x*2^delta}. This is more efficient than an explicit multiplication
because it copies @code{x} and modifies the exponent.
@end table

The following functions provide an abstract interface to the underlying
representation of floating-point numbers.

@table @code
@item sintE float_exponent (const @var{type}& x)
@cindex @code{float_exponent ()}
Returns the exponent @code{e} of @code{x}.
For @code{x = 0.0}, this is 0. For @code{x} non-zero, this is the unique
integer with @code{2^(e-1) <= abs(x) < 2^e}.

@item sintL float_radix (const @var{type}& x)
@cindex @code{float_radix ()}
Returns the base of the floating-point representation. This is always @code{2}.

@item @var{type} float_sign (const @var{type}& x)
@cindex @code{float_sign ()}
Returns the sign @code{s} of @code{x} as a float. The value is 1 for
@code{x} >= 0, -1 for @code{x} < 0.

@item uintC float_digits (const @var{type}& x)
@cindex @code{float_digits ()}
Returns the number of mantissa bits in the floating-point representation
of @code{x}, including the hidden bit. The value only depends on the type
of @code{x}, not on its value.

@item uintC float_precision (const @var{type}& x)
@cindex @code{float_precision ()}
Returns the number of significant mantissa bits in the floating-point
representation of @code{x}. Since denormalized numbers are not supported,
this is the same as @code{float_digits(x)} if @code{x} is non-zero, and
0 if @code{x} = 0.
@end table

The complete internal representation of a float is encoded in the type
@cindex @code{decoded_float}
@cindex @code{decoded_sfloat}
@cindex @code{decoded_ffloat}
@cindex @code{decoded_dfloat}
@cindex @code{decoded_lfloat}
@code{decoded_float} (or @code{decoded_sfloat}, @code{decoded_ffloat},
@code{decoded_dfloat}, @code{decoded_lfloat}, respectively), defined by
@example
struct decoded_@var{type}float @{
        @var{type} mantissa; cl_I exponent; @var{type} sign;
@};
@end example

and returned by the function

@table @code
@item decoded_@var{type}float decode_float (const @var{type}& x)
@cindex @code{decode_float ()}
For @code{x} non-zero, this returns @code{(-1)^s}, @code{e}, @code{m} with
@code{x = (-1)^s * 2^e * m} and @code{0.5 <= m < 1.0}. For @code{x} = 0,
it returns @code{(-1)^s}=1, @code{e}=0, @code{m}=0.
@code{e} is the same as returned by the function @code{float_exponent}.
@end table

A complete decoding in terms of integers is provided as type
@cindex @code{cl_idecoded_float}
@example
struct cl_idecoded_float @{
        cl_I mantissa; cl_I exponent; cl_I sign;
@};
@end example
by the following function:

@table @code
@item cl_idecoded_float integer_decode_float (const @var{type}& x)
@cindex @code{integer_decode_float ()}
For @code{x} non-zero, this returns @code{(-1)^s}, @code{e}, @code{m} with
@code{x = (-1)^s * 2^e * m} and @code{m} an integer with @code{float_digits(x)}
bits. For @code{x} = 0, it returns @code{(-1)^s}=1, @code{e}=0, @code{m}=0.
WARNING: The exponent @code{e} is not the same as the one returned by
the functions @code{decode_float} and @code{float_exponent}.
@end table

Some other function, implemented only for class @code{cl_F}:

@table @code
@item cl_F float_sign (const cl_F& x, const cl_F& y)
@cindex @code{float_sign ()}
This returns a floating point number whose precision and absolute value
is that of @code{y} and whose sign is that of @code{x}. If @code{x} is
zero, it is treated as positive. Same for @code{y}.
@end table


@node Conversion functions
@section Conversion functions
@cindex conversion

@menu
* Conversion to floating-point numbers::  
* Conversion to rational numbers::  
@end menu

@node Conversion to floating-point numbers
@subsection Conversion to floating-point numbers

The type @code{float_format_t} describes a floating-point format.
@cindex @code{float_format_t}

@table @code
@item float_format_t float_format (uintE n)
@cindex @code{float_format ()}
Returns the smallest float format which guarantees at least @code{n}
decimal digits in the mantissa (after the decimal point).

@item float_format_t float_format (const cl_F& x)
Returns the floating point format of @code{x}.

@item float_format_t default_float_format
@cindex @code{default_float_format}
Global variable: the default float format used when converting rational numbers
to floats.
@end table

To convert a real number to a float, each of the types
@code{cl_R}, @code{cl_F}, @code{cl_I}, @code{cl_RA},
@code{int}, @code{unsigned int}, @code{float}, @code{double}
defines the following operations:

@table @code
@item cl_F cl_float (const @var{type}&x, float_format_t f)
@cindex @code{cl_float ()}
Returns @code{x} as a float of format @code{f}.
@item cl_F cl_float (const @var{type}&x, const cl_F& y)
Returns @code{x} in the float format of @code{y}.
@item cl_F cl_float (const @var{type}&x)
Returns @code{x} as a float of format @code{default_float_format} if
it is an exact number, or @code{x} itself if it is already a float.
@end table

Of course, converting a number to a float can lose precision.

Every floating-point format has some characteristic numbers:

@table @code
@item cl_F most_positive_float (float_format_t f)
@cindex @code{most_positive_float ()}
Returns the largest (most positive) floating point number in float format @code{f}.

@item cl_F most_negative_float (float_format_t f)
@cindex @code{most_negative_float ()}
Returns the smallest (most negative) floating point number in float format @code{f}.

@item cl_F least_positive_float (float_format_t f)
@cindex @code{least_positive_float ()}
Returns the least positive floating point number (i.e. > 0 but closest to 0)
in float format @code{f}.

@item cl_F least_negative_float (float_format_t f)
@cindex @code{least_negative_float ()}
Returns the least negative floating point number (i.e. < 0 but closest to 0)
in float format @code{f}.

@item cl_F float_epsilon (float_format_t f)
@cindex @code{float_epsilon ()}
Returns the smallest floating point number e > 0 such that @code{1+e != 1}.

@item cl_F float_negative_epsilon (float_format_t f)
@cindex @code{float_negative_epsilon ()}
Returns the smallest floating point number e > 0 such that @code{1-e != 1}.
@end table


@node Conversion to rational numbers
@subsection Conversion to rational numbers

Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_F}
defines the following operation:

@table @code
@item cl_RA rational (const @var{type}& x)
@cindex @code{rational ()}
Returns the value of @code{x} as an exact number. If @code{x} is already
an exact number, this is @code{x}. If @code{x} is a floating-point number,
the value is a rational number whose denominator is a power of 2.
@end table

In order to convert back, say, @code{(cl_F)(cl_R)"1/3"} to @code{1/3}, there is
the function

@table @code
@item cl_RA rationalize (const cl_R& x)
@cindex @code{rationalize ()}
If @code{x} is a floating-point number, it actually represents an interval
of real numbers, and this function returns the rational number with
smallest denominator (and smallest numerator, in magnitude)
which lies in this interval.
If @code{x} is already an exact number, this function returns @code{x}.
@end table

If @code{x} is any float, one has

@itemize @w{}
@item
@code{cl_float(rational(x),x) = x}
@item
@code{cl_float(rationalize(x),x) = x}
@end itemize


@node Random number generators
@section Random number generators


A random generator is a machine which produces (pseudo-)random numbers.
The include file @code{<cln/random.h>} defines a class @code{random_state}
which contains the state of a random generator. If you make a copy
of the random number generator, the original one and the copy will produce
the same sequence of random numbers.

The following functions return (pseudo-)random numbers in different formats.
Calling one of these modifies the state of the random number generator in
a complicated but deterministic way.

The global variable
@cindex @code{random_state}
@cindex @code{default_random_state}
@example
random_state default_random_state
@end example
contains a default random number generator. It is used when the functions
below are called without @code{random_state} argument.

@table @code
@item uint32 random32 (random_state& randomstate)
@itemx uint32 random32 ()
@cindex @code{random32 ()}
Returns a random unsigned 32-bit number. All bits are equally random.

@item cl_I random_I (random_state& randomstate, const cl_I& n)
@itemx cl_I random_I (const cl_I& n)
@cindex @code{random_I ()}
@code{n} must be an integer > 0. This function returns a random integer @code{x}
in the range @code{0 <= x < n}.

@item cl_F random_F (random_state& randomstate, const cl_F& n)
@itemx cl_F random_F (const cl_F& n)
@cindex @code{random_F ()}
@code{n} must be a float > 0. This function returns a random floating-point
number of the same format as @code{n} in the range @code{0 <= x < n}.

@item cl_R random_R (random_state& randomstate, const cl_R& n)
@itemx cl_R random_R (const cl_R& n)
@cindex @code{random_R ()}
Behaves like @code{random_I} if @code{n} is an integer and like @code{random_F}
if @code{n} is a float.
@end table


@node Modifying operators
@section Modifying operators
@cindex modifying operators

The modifying C/C++ operators @code{+=}, @code{-=}, @code{*=}, @code{/=},
@code{&=}, @code{|=}, @code{^=}, @code{<<=}, @code{>>=}
are all available.

For the classes @code{cl_N}, @code{cl_R}, @code{cl_RA},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}:

@table @code
@item @var{type}& operator += (@var{type}&, const @var{type}&)
@cindex @code{operator += ()}
@itemx @var{type}& operator -= (@var{type}&, const @var{type}&)
@cindex @code{operator -= ()}
@itemx @var{type}& operator *= (@var{type}&, const @var{type}&)
@cindex @code{operator *= ()}
@itemx @var{type}& operator /= (@var{type}&, const @var{type}&)
@cindex @code{operator /= ()}
@end table

For the class @code{cl_I}:

@table @code
@item @var{type}& operator += (@var{type}&, const @var{type}&)
@itemx @var{type}& operator -= (@var{type}&, const @var{type}&)
@itemx @var{type}& operator *= (@var{type}&, const @var{type}&)
@itemx @var{type}& operator &= (@var{type}&, const @var{type}&)
@cindex @code{operator &= ()}
@itemx @var{type}& operator |= (@var{type}&, const @var{type}&)
@cindex @code{operator |= ()}
@itemx @var{type}& operator ^= (@var{type}&, const @var{type}&)
@cindex @code{operator ^= ()}
@itemx @var{type}& operator <<= (@var{type}&, const @var{type}&)
@cindex @code{operator <<= ()}
@itemx @var{type}& operator >>= (@var{type}&, const @var{type}&)
@cindex @code{operator >>= ()}
@end table

For the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}:

@table @code
@item @var{type}& operator ++ (@var{type}& x)
@cindex @code{operator ++ ()}
The prefix operator @code{++x}.

@item void operator ++ (@var{type}& x, int)
The postfix operator @code{x++}.

@item @var{type}& operator -- (@var{type}& x)
@cindex @code{operator -- ()}
The prefix operator @code{--x}.

@item void operator -- (@var{type}& x, int)
The postfix operator @code{x--}.
@end table

Note that by using these modifying operators, you don't gain efficiency:
In CLN @samp{x += y;} is exactly the same as  @samp{x = x+y;}, not more
efficient.


@node Input/Output
@chapter Input/Output
@cindex Input/Output

@menu
* Internal and printed representation::  
* Input functions::             
* Output functions::            
@end menu

@node Internal and printed representation
@section Internal and printed representation
@cindex representation

All computations deal with the internal representations of the numbers.

Every number has an external representation as a sequence of ASCII characters.
Several external representations may denote the same number, for example,
"20.0" and "20.000".

Converting an internal to an external representation is called ``printing'',
@cindex printing
converting an external to an internal representation is called ``reading''.
@cindex reading
In CLN, it is always true that conversion of an internal to an external
representation and then back to an internal representation will yield the
same internal representation. Symbolically: @code{read(print(x)) == x}.
This is called ``print-read consistency''. 

Different types of numbers have different external representations (case
is insignificant):

@table @asis
@item Integers
External representation: @var{sign}@{@var{digit}@}+. The reader also accepts the
Common Lisp syntaxes @var{sign}@{@var{digit}@}+@code{.} with a trailing dot
for decimal integers
and the @code{#@var{n}R}, @code{#b}, @code{#o}, @code{#x} prefixes.

@item Rational numbers
External representation: @var{sign}@{@var{digit}@}+@code{/}@{@var{digit}@}+.
The @code{#@var{n}R}, @code{#b}, @code{#o}, @code{#x} prefixes are allowed
here as well.

@item Floating-point numbers
External representation: @var{sign}@{@var{digit}@}*@var{exponent} or
@var{sign}@{@var{digit}@}*@code{.}@{@var{digit}@}*@var{exponent} or
@var{sign}@{@var{digit}@}*@code{.}@{@var{digit}@}+. A precision specifier
of the form _@var{prec} may be appended. There must be at least
one digit in the non-exponent part. The exponent has the syntax
@var{expmarker} @var{expsign} @{@var{digit}@}+.
The exponent marker is

@itemize @w{}
@item
@samp{s} for short-floats,
@item
@samp{f} for single-floats,
@item
@samp{d} for double-floats,
@item
@samp{L} for long-floats,
@end itemize

or @samp{e}, which denotes a default float format. The precision specifying
suffix has the syntax _@var{prec} where @var{prec} denotes the number of
valid mantissa digits (in decimal, excluding leading zeroes), cf. also
function @samp{float_format}.

@item Complex numbers
External representation:
@itemize @w{}
@item
In algebraic notation: @code{@var{realpart}+@var{imagpart}i}. Of course,
if @var{imagpart} is negative, its printed representation begins with
a @samp{-}, and the @samp{+} between @var{realpart} and @var{imagpart}
may be omitted. Note that this notation cannot be used when the @var{imagpart}
is rational and the rational number's base is >18, because the @samp{i}
is then read as a digit.
@item
In Common Lisp notation: @code{#C(@var{realpart} @var{imagpart})}.
@end itemize
@end table


@node Input functions
@section Input functions

Including @code{<cln/io.h>} defines flexible input functions:

@table @code
@item cl_N read_complex (std::istream& stream, const cl_read_flags& flags)
@itemx cl_R read_real (std::istream& stream, const cl_read_flags& flags)
@itemx cl_F read_float (std::istream& stream, const cl_read_flags& flags)
@itemx cl_RA read_rational (std::istream& stream, const cl_read_flags& flags)
@itemx cl_I read_integer (std::istream& stream, const cl_read_flags& flags)
Reads a number from @code{stream}. The @code{flags} are parameters which
affect the input syntax. Whitespace before the number is silently skipped.

@item cl_N read_complex (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
@itemx cl_R read_real (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
@itemx cl_F read_float (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
@itemx cl_RA read_rational (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
@itemx cl_I read_integer (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
Reads a number from a string in memory. The @code{flags} are parameters which
affect the input syntax. The string starts at @code{string} and ends at
@code{string_limit} (exclusive limit). @code{string_limit} may also be
@code{NULL}, denoting the entire string, i.e. equivalent to
@code{string_limit = string + strlen(string)}. If @code{end_of_parse} is
@code{NULL}, the string in memory must contain exactly one number and nothing
more, else an exception will be thrown. If @code{end_of_parse}
is not @code{NULL}, @code{*end_of_parse} will be assigned a pointer past
the last parsed character (i.e. @code{string_limit} if nothing came after
the number). Whitespace is not allowed.
@end table

The structure @code{cl_read_flags} contains the following fields:

@table @code
@item cl_read_syntax_t syntax
The possible results of the read operation. Possible values are
@code{syntax_number}, @code{syntax_real}, @code{syntax_rational},
@code{syntax_integer}, @code{syntax_float}, @code{syntax_sfloat},
@code{syntax_ffloat}, @code{syntax_dfloat}, @code{syntax_lfloat}.

@item cl_read_lsyntax_t lsyntax
Specifies the language-dependent syntax variant for the read operation.
Possible values are

@table @code
@item lsyntax_standard
accept standard algebraic notation only, no complex numbers,
@item lsyntax_algebraic
accept the algebraic notation @code{@var{x}+@var{y}i} for complex numbers,
@item lsyntax_commonlisp
accept the @code{#b}, @code{#o}, @code{#x} syntaxes for binary, octal,
hexadecimal numbers,
@code{#@var{base}R} for rational numbers in a given base,
@code{#c(@var{realpart} @var{imagpart})} for complex numbers,
@item lsyntax_all
accept all of these extensions.
@end table

@item unsigned int rational_base
The base in which rational numbers are read.

@item float_format_t float_flags.default_float_format
The float format used when reading floats with exponent marker @samp{e}.

@item float_format_t float_flags.default_lfloat_format
The float format used when reading floats with exponent marker @samp{l}.

@item bool float_flags.mantissa_dependent_float_format
When this flag is true, floats specified with more digits than corresponding
to the exponent marker they contain, but without @var{_nnn} suffix, will get a
precision corresponding to their number of significant digits.
@end table


@node Output functions
@section Output functions

Including @code{<cln/io.h>} defines a number of simple output functions
that write to @code{std::ostream&}:

@table @code
@item void fprintchar (std::ostream& stream, char c)
Prints the character @code{x} literally on the @code{stream}.

@item void fprint (std::ostream& stream, const char * string)
Prints the @code{string} literally on the @code{stream}.

@item void fprintdecimal (std::ostream& stream, int x)
@itemx void fprintdecimal (std::ostream& stream, const cl_I& x)
Prints the integer @code{x} in decimal on the @code{stream}.

@item void fprintbinary (std::ostream& stream, const cl_I& x)
Prints the integer @code{x} in binary (base 2, without prefix)
on the @code{stream}.

@item void fprintoctal (std::ostream& stream, const cl_I& x)
Prints the integer @code{x} in octal (base 8, without prefix)
on the @code{stream}.

@item void fprinthexadecimal (std::ostream& stream, const cl_I& x)
Prints the integer @code{x} in hexadecimal (base 16, without prefix)
on the @code{stream}.
@end table

Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
@code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
defines, in @code{<cln/@var{type}_io.h>}, the following output functions:

@table @code
@item void fprint (std::ostream& stream, const @var{type}& x)
@itemx std::ostream& operator<< (std::ostream& stream, const @var{type}& x)
Prints the number @code{x} on the @code{stream}. The output may depend
on the global printer settings in the variable @code{default_print_flags}.
The @code{ostream} flags and settings (flags, width and locale) are
ignored.
@end table

The most flexible output function, defined in @code{<cln/@var{type}_io.h>},
are the following:
@example
void print_complex  (std::ostream& stream, const cl_print_flags& flags,
                     const cl_N& z);
void print_real     (std::ostream& stream, const cl_print_flags& flags,
                     const cl_R& z);
void print_float    (std::ostream& stream, const cl_print_flags& flags,
                     const cl_F& z);
void print_rational (std::ostream& stream, const cl_print_flags& flags,
                     const cl_RA& z);
void print_integer  (std::ostream& stream, const cl_print_flags& flags,
                     const cl_I& z);
@end example
Prints the number @code{x} on the @code{stream}. The @code{flags} are
parameters which affect the output.

The structure type @code{cl_print_flags} contains the following fields:

@table @code
@item unsigned int rational_base
The base in which rational numbers are printed. Default is @code{10}.

@item bool rational_readably
If this flag is true, rational numbers are printed with radix specifiers in
Common Lisp syntax (@code{#@var{n}R} or @code{#b} or @code{#o} or @code{#x}
prefixes, trailing dot). Default is false.

@item bool float_readably
If this flag is true, type specific exponent markers have precedence over 'E'.
Default is false.

@item float_format_t default_float_format
Floating point numbers of this format will be printed using the 'E' exponent
marker. Default is @code{float_format_ffloat}.

@item bool complex_readably
If this flag is true, complex numbers will be printed using the Common Lisp
syntax @code{#C(@var{realpart} @var{imagpart})}. Default is false.

@item cl_string univpoly_varname
Univariate polynomials with no explicit indeterminate name will be printed
using this variable name. Default is @code{"x"}.
@end table

The global variable @code{default_print_flags} contains the default values,
used by the function @code{fprint}.


@node Rings
@chapter Rings

CLN has a class of abstract rings.

@example
                         Ring
                       cl_ring
                     <cln/ring.h>
@end example

Rings can be compared for equality:

@table @code
@item bool operator== (const cl_ring&, const cl_ring&)
@itemx bool operator!= (const cl_ring&, const cl_ring&)
These compare two rings for equality.
@end table

Given a ring @code{R}, the following members can be used.

@table @code
@item void R->fprint (std::ostream& stream, const cl_ring_element& x)
@cindex @code{fprint ()}
@itemx bool R->equal (const cl_ring_element& x, const cl_ring_element& y)
@cindex @code{equal ()}
@itemx cl_ring_element R->zero ()
@cindex @code{zero ()}
@itemx bool R->zerop (const cl_ring_element& x)
@cindex @code{zerop ()}
@itemx cl_ring_element R->plus (const cl_ring_element& x, const cl_ring_element& y)
@cindex @code{plus ()}
@itemx cl_ring_element R->minus (const cl_ring_element& x, const cl_ring_element& y)
@cindex @code{minus ()}
@itemx cl_ring_element R->uminus (const cl_ring_element& x)
@cindex @code{uminus ()}
@itemx cl_ring_element R->one ()
@cindex @code{one ()}
@itemx cl_ring_element R->canonhom (const cl_I& x)
@cindex @code{canonhom ()}
@itemx cl_ring_element R->mul (const cl_ring_element& x, const cl_ring_element& y)
@cindex @code{mul ()}
@itemx cl_ring_element R->square (const cl_ring_element& x)
@cindex @code{square ()}
@itemx cl_ring_element R->expt_pos (const cl_ring_element& x, const cl_I& y)
@cindex @code{expt_pos ()}
@end table

The following rings are built-in.

@table @code
@item cl_null_ring cl_0_ring
The null ring, containing only zero.

@item cl_complex_ring cl_C_ring
The ring of complex numbers. This corresponds to the type @code{cl_N}.

@item cl_real_ring cl_R_ring
The ring of real numbers. This corresponds to the type @code{cl_R}.

@item cl_rational_ring cl_RA_ring
The ring of rational numbers. This corresponds to the type @code{cl_RA}.

@item cl_integer_ring cl_I_ring
The ring of integers. This corresponds to the type @code{cl_I}.
@end table

Type tests can be performed for any of @code{cl_C_ring}, @code{cl_R_ring},
@code{cl_RA_ring}, @code{cl_I_ring}:

@table @code
@item bool instanceof (const cl_number& x, const cl_number_ring& R)
@cindex @code{instanceof ()}
Tests whether the given number is an element of the number ring R.
@end table


@node Modular integers
@chapter Modular integers
@cindex modular integer

@menu
* Modular integer rings::       
* Functions on modular integers::  
@end menu

@node Modular integer rings
@section Modular integer rings
@cindex ring

CLN implements modular integers, i.e. integers modulo a fixed integer N.
The modulus is explicitly part of every modular integer. CLN doesn't
allow you to (accidentally) mix elements of different modular rings,
e.g. @code{(3 mod 4) + (2 mod 5)} will result in a runtime error.
(Ideally one would imagine a generic data type @code{cl_MI(N)}, but C++
doesn't have generic types. So one has to live with runtime checks.)

The class of modular integer rings is

@example
                         Ring
                       cl_ring
                     <cln/ring.h>
                          |
                          |
                 Modular integer ring
                    cl_modint_ring
                  <cln/modinteger.h>
@end example
@cindex @code{cl_modint_ring}

and the class of all modular integers (elements of modular integer rings) is

@example
                    Modular integer
                         cl_MI
                   <cln/modinteger.h>
@end example

Modular integer rings are constructed using the function

@table @code
@item cl_modint_ring find_modint_ring (const cl_I& N)
@cindex @code{find_modint_ring ()}
This function returns the modular ring @samp{Z/NZ}. It takes care
of finding out about special cases of @code{N}, like powers of two
and odd numbers for which Montgomery multiplication will be a win,
@cindex Montgomery multiplication
and precomputes any necessary auxiliary data for computing modulo @code{N}.
There is a cache table of rings, indexed by @code{N} (or, more precisely,
by @code{abs(N)}). This ensures that the precomputation costs are reduced
to a minimum.
@end table

Modular integer rings can be compared for equality:

@table @code
@item bool operator== (const cl_modint_ring&, const cl_modint_ring&)
@cindex @code{operator == ()}
@itemx bool operator!= (const cl_modint_ring&, const cl_modint_ring&)
@cindex @code{operator != ()}
These compare two modular integer rings for equality. Two different calls
to @code{find_modint_ring} with the same argument necessarily return the
same ring because it is memoized in the cache table.
@end table

@node Functions on modular integers
@section Functions on modular integers

Given a modular integer ring @code{R}, the following members can be used.

@table @code
@item cl_I R->modulus
@cindex @code{modulus}
This is the ring's modulus, normalized to be nonnegative: @code{abs(N)}.

@item cl_MI R->zero()
@cindex @code{zero ()}
This returns @code{0 mod N}.

@item cl_MI R->one()
@cindex @code{one ()}
This returns @code{1 mod N}.

@item cl_MI R->canonhom (const cl_I& x)
@cindex @code{canonhom ()}
This returns @code{x mod N}.

@item cl_I R->retract (const cl_MI& x)
@cindex @code{retract ()}
This is a partial inverse function to @code{R->canonhom}. It returns the
standard representative (@code{>=0}, @code{<N}) of @code{x}.

@item cl_MI R->random(random_state& randomstate)
@itemx cl_MI R->random()
@cindex @code{random ()}
This returns a random integer modulo @code{N}.
@end table

The following operations are defined on modular integers.

@table @code
@item cl_modint_ring x.ring ()
@cindex @code{ring ()}
Returns the ring to which the modular integer @code{x} belongs.

@item cl_MI operator+ (const cl_MI&, const cl_MI&)
@cindex @code{operator + ()}
Returns the sum of two modular integers. One of the arguments may also
be a plain integer.

@item cl_MI operator- (const cl_MI&, const cl_MI&)
@cindex @code{operator - ()}
Returns the difference of two modular integers. One of the arguments may also
be a plain integer.

@item cl_MI operator- (const cl_MI&)
Returns the negative of a modular integer.

@item cl_MI operator* (const cl_MI&, const cl_MI&)
@cindex @code{operator * ()}
Returns the product of two modular integers. One of the arguments may also
be a plain integer.

@item cl_MI square (const cl_MI&)
@cindex @code{square ()}
Returns the square of a modular integer.

@item cl_MI recip (const cl_MI& x)
@cindex @code{recip ()}
Returns the reciprocal @code{x^-1} of a modular integer @code{x}. @code{x}
must be coprime to the modulus, otherwise an error message is issued.

@item cl_MI div (const cl_MI& x, const cl_MI& y)
@cindex @code{div ()}
Returns the quotient @code{x*y^-1} of two modular integers @code{x}, @code{y}.
@code{y} must be coprime to the modulus, otherwise an error message is issued.

@item cl_MI expt_pos (const cl_MI& x, const cl_I& y)
@cindex @code{expt_pos ()}
@code{y} must be > 0. Returns @code{x^y}.

@item cl_MI expt (const cl_MI& x, const cl_I& y)
@cindex @code{expt ()}
Returns @code{x^y}. If @code{y} is negative, @code{x} must be coprime to the
modulus, else an error message is issued.

@item cl_MI operator<< (const cl_MI& x, const cl_I& y)
@cindex @code{operator << ()}
Returns @code{x*2^y}.

@item cl_MI operator>> (const cl_MI& x, const cl_I& y)
@cindex @code{operator >> ()}
Returns @code{x*2^-y}. When @code{y} is positive, the modulus must be odd,
or an error message is issued.

@item bool operator== (const cl_MI&, const cl_MI&)
@cindex @code{operator == ()}
@itemx bool operator!= (const cl_MI&, const cl_MI&)
@cindex @code{operator != ()}
Compares two modular integers, belonging to the same modular integer ring,
for equality.

@item bool zerop (const cl_MI& x)
@cindex @code{zerop ()}
Returns true if @code{x} is @code{0 mod N}.
@end table

The following output functions are defined (see also the chapter on
input/output).

@table @code
@item void fprint (std::ostream& stream, const cl_MI& x)
@cindex @code{fprint ()}
@itemx std::ostream& operator<< (std::ostream& stream, const cl_MI& x)
@cindex @code{operator << ()}
Prints the modular integer @code{x} on the @code{stream}. The output may depend
on the global printer settings in the variable @code{default_print_flags}.
@end table


@node Symbolic data types
@chapter Symbolic data types
@cindex symbolic type

CLN implements two symbolic (non-numeric) data types: strings and symbols.

@menu
* Strings::                     
* Symbols::                     
@end menu

@node Strings
@section Strings
@cindex string
@cindex @code{cl_string}

The class

@example
                      String
                     cl_string
                   <cln/string.h>
@end example

implements immutable strings.

Strings are constructed through the following constructors:

@table @code
@item cl_string (const char * s)
Returns an immutable copy of the (zero-terminated) C string @code{s}.

@item cl_string (const char * ptr, unsigned long len)
Returns an immutable copy of the @code{len} characters at
@code{ptr[0]}, @dots{}, @code{ptr[len-1]}. NUL characters are allowed.
@end table

The following functions are available on strings:

@table @code
@item operator =
Assignment from @code{cl_string} and @code{const char *}.

@item s.size()
@cindex @code{size()}
@itemx strlen(s)
@cindex @code{strlen ()}
Returns the length of the string @code{s}.

@item s[i]
@cindex @code{operator [] ()}
Returns the @code{i}th character of the string @code{s}.
@code{i} must be in the range @code{0 <= i < s.size()}.

@item bool equal (const cl_string& s1, const cl_string& s2)
@cindex @code{equal ()}
Compares two strings for equality. One of the arguments may also be a
plain @code{const char *}.
@end table

@node Symbols
@section Symbols
@cindex symbol
@cindex @code{cl_symbol}

Symbols are uniquified strings: all symbols with the same name are shared.
This means that comparison of two symbols is fast (effectively just a pointer
comparison), whereas comparison of two strings must in the worst case walk
both strings until their end.
Symbols are used, for example, as tags for properties, as names of variables
in polynomial rings, etc.

Symbols are constructed through the following constructor:

@table @code
@item cl_symbol (const cl_string& s)
Looks up or creates a new symbol with a given name.
@end table

The following operations are available on symbols:

@table @code
@item cl_string (const cl_symbol& sym)
Conversion to @code{cl_string}: Returns the string which names the symbol
@code{sym}.

@item bool equal (const cl_symbol& sym1, const cl_symbol& sym2)
@cindex @code{equal ()}
Compares two symbols for equality. This is very fast.
@end table


@node Univariate polynomials
@chapter Univariate polynomials
@cindex polynomial
@cindex univariate polynomial

@menu
* Univariate polynomial rings::  
* Functions on univariate polynomials::  
* Special polynomials::         
@end menu

@node Univariate polynomial rings
@section Univariate polynomial rings

CLN implements univariate polynomials (polynomials in one variable) over an
arbitrary ring. The indeterminate variable may be either unnamed (and will be
printed according to @code{default_print_flags.univpoly_varname}, which
defaults to @samp{x}) or carry a given name. The base ring and the
indeterminate are explicitly part of every polynomial. CLN doesn't allow you to
(accidentally) mix elements of different polynomial rings, e.g.
@code{(a^2+1) * (b^3-1)} will result in a runtime error. (Ideally this should
return a multivariate polynomial, but they are not yet implemented in CLN.)

The classes of univariate polynomial rings are

@example
                           Ring
                         cl_ring
                       <cln/ring.h>
                            |
                            |
                 Univariate polynomial ring
                      cl_univpoly_ring
                      <cln/univpoly.h>
                            |
           +----------------+-------------------+
           |                |                   |
 Complex polynomial ring    |    Modular integer polynomial ring
 cl_univpoly_complex_ring   |        cl_univpoly_modint_ring
 <cln/univpoly_complex.h>   |        <cln/univpoly_modint.h>
                            |
           +----------------+
           |                |
   Real polynomial ring     |
   cl_univpoly_real_ring    |
   <cln/univpoly_real.h>    |
                            |
           +----------------+
           |                |
 Rational polynomial ring   |
 cl_univpoly_rational_ring  |
 <cln/univpoly_rational.h>  |
                            |
           +----------------+
           |
 Integer polynomial ring
 cl_univpoly_integer_ring
 <cln/univpoly_integer.h>
@end example

and the corresponding classes of univariate polynomials are

@example
                   Univariate polynomial
                          cl_UP
                      <cln/univpoly.h>
                            |
           +----------------+-------------------+
           |                |                   |
   Complex polynomial       |      Modular integer polynomial
        cl_UP_N             |                cl_UP_MI
 <cln/univpoly_complex.h>   |        <cln/univpoly_modint.h>
                            |
           +----------------+
           |                |
     Real polynomial        |
        cl_UP_R             |
  <cln/univpoly_real.h>     |
                            |
           +----------------+
           |                |
   Rational polynomial      |
        cl_UP_RA            |
 <cln/univpoly_rational.h>  |
                            |
           +----------------+
           |
   Integer polynomial
        cl_UP_I
 <cln/univpoly_integer.h>
@end example

Univariate polynomial rings are constructed using the functions

@table @code
@item cl_univpoly_ring find_univpoly_ring (const cl_ring& R)
@itemx cl_univpoly_ring find_univpoly_ring (const cl_ring& R, const cl_symbol& varname)
This function returns the polynomial ring @samp{R[X]}, unnamed or named.
@code{R} may be an arbitrary ring. This function takes care of finding out
about special cases of @code{R}, such as the rings of complex numbers,
real numbers, rational numbers, integers, or modular integer rings.
There is a cache table of rings, indexed by @code{R} and @code{varname}.
This ensures that two calls of this function with the same arguments will
return the same polynomial ring.

@item cl_univpoly_complex_ring find_univpoly_ring (const cl_complex_ring& R)
@cindex @code{find_univpoly_ring ()}
@item cl_univpoly_complex_ring find_univpoly_ring (const cl_complex_ring& R, const cl_symbol& varname)
@item cl_univpoly_real_ring find_univpoly_ring (const cl_real_ring& R)
@item cl_univpoly_real_ring find_univpoly_ring (const cl_real_ring& R, const cl_symbol& varname)
@item cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& R)
@item cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& R, const cl_symbol& varname)
@item cl_univpoly_integer_ring find_univpoly_ring (const cl_integer_ring& R)
@item cl_univpoly_integer_ring find_univpoly_ring (const cl_integer_ring& R, const cl_symbol& varname)
@item cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring& R)
@item cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring& R, const cl_symbol& varname)
These functions are equivalent to the general @code{find_univpoly_ring},
only the return type is more specific, according to the base ring's type.
@end table

@node Functions on univariate polynomials
@section Functions on univariate polynomials

Given a univariate polynomial ring @code{R}, the following members can be used.

@table @code
@item cl_ring R->basering()
@cindex @code{basering ()}
This returns the base ring, as passed to @samp{find_univpoly_ring}.

@item cl_UP R->zero()
@cindex @code{zero ()}
This returns @code{0 in R}, a polynomial of degree -1.

@item cl_UP R->one()
@cindex @code{one ()}
This returns @code{1 in R}, a polynomial of degree == 0.

@item cl_UP R->canonhom (const cl_I& x)
@cindex @code{canonhom ()}
This returns @code{x in R}, a polynomial of degree <= 0.

@item cl_UP R->monomial (const cl_ring_element& x, uintL e)
@cindex @code{monomial ()}
This returns a sparse polynomial: @code{x * X^e}, where @code{X} is the
indeterminate.

@item cl_UP R->create (sintL degree)
@cindex @code{create ()}
Creates a new polynomial with a given degree. The zero polynomial has degree
@code{-1}. After creating the polynomial, you should put in the coefficients,
using the @code{set_coeff} member function, and then call the @code{finalize}
member function.
@end table

The following are the only destructive operations on univariate polynomials.

@table @code
@item void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y)
@cindex @code{set_coeff ()}
This changes the coefficient of @code{X^index} in @code{x} to be @code{y}.
After changing a polynomial and before applying any "normal" operation on it,
you should call its @code{finalize} member function.

@item void finalize (cl_UP& x)
@cindex @code{finalize ()}
This function marks the endpoint of destructive modifications of a polynomial.
It normalizes the internal representation so that subsequent computations have
less overhead. Doing normal computations on unnormalized polynomials may
produce wrong results or crash the program.
@end table

The following operations are defined on univariate polynomials.

@table @code
@item cl_univpoly_ring x.ring ()
@cindex @code{ring ()}
Returns the ring to which the univariate polynomial @code{x} belongs.

@item cl_UP operator+ (const cl_UP&, const cl_UP&)
@cindex @code{operator + ()}
Returns the sum of two univariate polynomials.

@item cl_UP operator- (const cl_UP&, const cl_UP&)
@cindex @code{operator - ()}
Returns the difference of two univariate polynomials.

@item cl_UP operator- (const cl_UP&)
Returns the negative of a univariate polynomial.

@item cl_UP operator* (const cl_UP&, const cl_UP&)
@cindex @code{operator * ()}
Returns the product of two univariate polynomials. One of the arguments may
also be a plain integer or an element of the base ring.

@item cl_UP square (const cl_UP&)
@cindex @code{square ()}
Returns the square of a univariate polynomial.

@item cl_UP expt_pos (const cl_UP& x, const cl_I& y)
@cindex @code{expt_pos ()}
@code{y} must be > 0. Returns @code{x^y}.

@item bool operator== (const cl_UP&, const cl_UP&)
@cindex @code{operator == ()}
@itemx bool operator!= (const cl_UP&, const cl_UP&)
@cindex @code{operator != ()}
Compares two univariate polynomials, belonging to the same univariate
polynomial ring, for equality.

@item bool zerop (const cl_UP& x)
@cindex @code{zerop ()}
Returns true if @code{x} is @code{0 in R}.

@item sintL degree (const cl_UP& x)
@cindex @code{degree ()}
Returns the degree of the polynomial. The zero polynomial has degree @code{-1}.

@item sintL ldegree (const cl_UP& x)
@cindex @code{degree ()}
Returns the low degree of the polynomial. This is the degree of the first
non-vanishing polynomial coefficient. The zero polynomial has ldegree @code{-1}.

@item cl_ring_element coeff (const cl_UP& x, uintL index)
@cindex @code{coeff ()}
Returns the coefficient of @code{X^index} in the polynomial @code{x}.

@item cl_ring_element x (const cl_ring_element& y)
@cindex @code{operator () ()}
Evaluation: If @code{x} is a polynomial and @code{y} belongs to the base ring,
then @samp{x(y)} returns the value of the substitution of @code{y} into
@code{x}.

@item cl_UP deriv (const cl_UP& x)
@cindex @code{deriv ()}
Returns the derivative of the polynomial @code{x} with respect to the
indeterminate @code{X}.
@end table

The following output functions are defined (see also the chapter on
input/output).

@table @code
@item void fprint (std::ostream& stream, const cl_UP& x)
@cindex @code{fprint ()}
@itemx std::ostream& operator<< (std::ostream& stream, const cl_UP& x)
@cindex @code{operator << ()}
Prints the univariate polynomial @code{x} on the @code{stream}. The output may
depend on the global printer settings in the variable
@code{default_print_flags}.
@end table

@node Special polynomials
@section Special polynomials

The following functions return special polynomials.

@table @code
@item cl_UP_I tschebychev (sintL n)
@cindex @code{tschebychev ()}
@cindex Chebyshev polynomial
Returns the n-th Chebyshev polynomial (n >= 0).

@item cl_UP_I hermite (sintL n)
@cindex @code{hermite ()}
@cindex Hermite polynomial
Returns the n-th Hermite polynomial (n >= 0).

@item cl_UP_RA legendre (sintL n)
@cindex @code{legendre ()}
@cindex Legende polynomial
Returns the n-th Legendre polynomial (n >= 0).

@item cl_UP_I laguerre (sintL n)
@cindex @code{laguerre ()}
@cindex Laguerre polynomial
Returns the n-th Laguerre polynomial (n >= 0).
@end table

Information how to derive the differential equation satisfied by each
of these polynomials from their definition can be found in the
@code{doc/polynomial/} directory.


@node Internals
@chapter Internals

@menu
* Why C++ ?::                   
* Memory efficiency::           
* Speed efficiency::            
* Garbage collection::          
@end menu

@node Why C++ ?
@section Why C++ ?
@cindex advocacy

Using C++ as an implementation language provides

@itemize @bullet
@item
Efficiency: It compiles to machine code.

@item
@cindex portability
Portability: It runs on all platforms supporting a C++ compiler. Because
of the availability of GNU C++, this includes all currently used 32-bit and
64-bit platforms, independently of the quality of the vendor's C++ compiler.

@item
Type safety: The C++ compilers knows about the number types and complains if,
for example, you try to assign a float to an integer variable. However,
a drawback is that C++ doesn't know about generic types, hence a restriction
like that @code{operator+ (const cl_MI&, const cl_MI&)} requires that both
arguments belong to the same modular ring cannot be expressed as a compile-time
information.

@item
Algebraic syntax: The elementary operations @code{+}, @code{-}, @code{*},
@code{=}, @code{==}, ... can be used in infix notation, which is more
convenient than Lisp notation @samp{(+ x y)} or C notation @samp{add(x,y,&z)}.
@end itemize

With these language features, there is no need for two separate languages,
one for the implementation of the library and one in which the library's users
can program. This means that a prototype implementation of an algorithm
can be integrated into the library immediately after it has been tested and
debugged. No need to rewrite it in a low-level language after having prototyped
in a high-level language.


@node Memory efficiency
@section Memory efficiency

In order to save memory allocations, CLN implements:

@itemize @bullet
@item
Object sharing: An operation like @code{x+0} returns @code{x} without copying
it.
@item
@cindex garbage collection
@cindex reference counting
Garbage collection: A reference counting mechanism makes sure that any
number object's storage is freed immediately when the last reference to the
object is gone.
@item
@cindex immediate numbers
Small integers are represented as immediate values instead of pointers
to heap allocated storage. This means that integers @code{>= -2^29},
@code{< 2^29} don't consume heap memory, unless they were explicitly allocated
on the heap.
@end itemize


@node Speed efficiency
@section Speed efficiency

Speed efficiency is obtained by the combination of the following tricks
and algorithms:

@itemize @bullet
@item
Small integers, being represented as immediate values, don't require
memory access, just a couple of instructions for each elementary operation.
@item
The kernel of CLN has been written in assembly language for some CPUs
(@code{i386}, @code{m68k}, @code{sparc}, @code{mips}, @code{arm}).
@item
On all CPUs, CLN may be configured to use the superefficient low-level
routines from GNU GMP version 3.
@item
For large numbers, CLN uses, instead of the standard @code{O(N^2)}
algorithm, the Karatsuba multiplication, which is an
@iftex
@tex
$O(N^{1.6})$
@end tex
@end iftex
@ifinfo
@code{O(N^1.6)}
@end ifinfo
algorithm.
@item
For very large numbers (more than 12000 decimal digits), CLN uses
@iftex
Sch{@"o}nhage-Strassen
@cindex Sch{@"o}nhage-Strassen multiplication
@end iftex
@ifinfo
Schoenhage-Strassen
@cindex Schoenhage-Strassen multiplication
@end ifinfo
multiplication, which is an asymptotically optimal multiplication 
algorithm.
@item
These fast multiplication algorithms also give improvements in the speed
of division and radix conversion.
@end itemize


@node Garbage collection
@section Garbage collection
@cindex garbage collection

All the number classes are reference count classes: They only contain a pointer
to an object in the heap. Upon construction, assignment and destruction of
number objects, only the objects' reference count are manipulated.

Memory occupied by number objects are automatically reclaimed as soon as
their reference count drops to zero.

For number rings, another strategy is implemented: There is a cache of,
for example, the modular integer rings. A modular integer ring is destroyed
only if its reference count dropped to zero and the cache is about to be
resized. The effect of this strategy is that recently used rings remain
cached, whereas undue memory consumption through cached rings is avoided.


@node Using the library
@chapter Using the library

For the following discussion, we will assume that you have installed
the CLN source in @code{$CLN_DIR} and built it in @code{$CLN_TARGETDIR}.
For example, for me it's @code{CLN_DIR="$HOME/cln"} and
@code{CLN_TARGETDIR="$HOME/cln/linuxelf"}. You might define these as
environment variables, or directly substitute the appropriate values.


@menu
* Compiler options::            
* Include files::               
* An Example::                  
* Debugging support::           
* Reporting Problems::          
@end menu

@node Compiler options
@section Compiler options
@cindex compiler options

Until you have installed CLN in a public place, the following options are
needed:

When you compile CLN application code, add the flags
@example
   -I$CLN_DIR/include -I$CLN_TARGETDIR/include
@end example
to the C++ compiler's command line (@code{make} variable CFLAGS or CXXFLAGS).
When you link CLN application code to form an executable, add the flags
@example
   $CLN_TARGETDIR/src/libcln.a
@end example
to the C/C++ compiler's command line (@code{make} variable LIBS).

If you did a @code{make install}, the include files are installed in a
public directory (normally @code{/usr/local/include}), hence you don't
need special flags for compiling. The library has been installed to a
public directory as well (normally @code{/usr/local/lib}), hence when
linking a CLN application it is sufficient to give the flag @code{-lcln}.

@cindex @code{pkg-config}
To make the creation of software packages that use CLN easier, the
@code{pkg-config} utility can be used.  CLN provides all the necessary
metainformation in a file called @code{cln.pc} (installed in
@code{/usr/local/lib/pkgconfig} by default).  A program using CLN can
be compiled and linked using @footnote{If you installed CLN to
non-standard location @var{prefix}, you need to set the
@env{PKG_CONFIG_PATH} environment variable to @var{prefix}/lib/pkgconfig
for this to work.}
@example 
g++ `pkg-config --libs cln` `pkg-config --cflags cln` prog.cc -o prog
@end example

Software using GNU autoconf can check for CLN with the 
@code{PKG_CHECK_MODULES} macro supplied with @code{pkg-config}.
@example
PKG_CHECK_MODULES([CLN], [cln >= @var{MIN-VERSION}])
@end example
This will check for CLN version at least @var{MIN-VERSION}.  If the
required version was found, the variables @var{CLN_CFLAGS} and
@var{CLN_LIBS} are set.  Otherwise the configure script aborts.  If this
is not the desired behaviour, use the following code instead
@footnote{See the @code{pkg-config} documentation for more details.}
@example
PKG_CHECK_MODULES([CLN], [cln >= @var{MIN-VERSION}], [],
 [AC_MSG_WARNING([No suitable version of CLN can be found])])
@end example


@node Include files
@section Include files
@cindex include files
@cindex header files

Here is a summary of the include files and their contents.

@table @code
@item <cln/object.h>
General definitions, reference counting, garbage collection.
@item <cln/number.h>
The class cl_number.
@item <cln/complex.h>
Functions for class cl_N, the complex numbers.
@item <cln/real.h>
Functions for class cl_R, the real numbers.
@item <cln/float.h>
Functions for class cl_F, the floats.
@item <cln/sfloat.h>
Functions for class cl_SF, the short-floats.
@item <cln/ffloat.h>
Functions for class cl_FF, the single-floats.
@item <cln/dfloat.h>
Functions for class cl_DF, the double-floats.
@item <cln/lfloat.h>
Functions for class cl_LF, the long-floats.
@item <cln/rational.h>
Functions for class cl_RA, the rational numbers.
@item <cln/integer.h>
Functions for class cl_I, the integers.
@item <cln/io.h>
Input/Output.
@item <cln/complex_io.h>
Input/Output for class cl_N, the complex numbers.
@item <cln/real_io.h>
Input/Output for class cl_R, the real numbers.
@item <cln/float_io.h>
Input/Output for class cl_F, the floats.
@item <cln/sfloat_io.h>
Input/Output for class cl_SF, the short-floats.
@item <cln/ffloat_io.h>
Input/Output for class cl_FF, the single-floats.
@item <cln/dfloat_io.h>
Input/Output for class cl_DF, the double-floats.
@item <cln/lfloat_io.h>
Input/Output for class cl_LF, the long-floats.
@item <cln/rational_io.h>
Input/Output for class cl_RA, the rational numbers.
@item <cln/integer_io.h>
Input/Output for class cl_I, the integers.
@item <cln/input.h>
Flags for customizing input operations.
@item <cln/output.h>
Flags for customizing output operations.
@item <cln/malloc.h>
@code{malloc_hook}, @code{free_hook}.
@item <cln/exception.h>
Exception base class.
@item <cln/condition.h>
Conditions.
@item <cln/string.h>
Strings.
@item <cln/symbol.h>
Symbols.
@item <cln/proplist.h>
Property lists.
@item <cln/ring.h>
General rings.
@item <cln/null_ring.h>
The null ring.
@item <cln/complex_ring.h>
The ring of complex numbers.
@item <cln/real_ring.h>
The ring of real numbers.
@item <cln/rational_ring.h>
The ring of rational numbers.
@item <cln/integer_ring.h>
The ring of integers.
@item <cln/numtheory.h>
Number threory functions.
@item <cln/modinteger.h>
Modular integers.
@item <cln/V.h>
Vectors.
@item <cln/GV.h>
General vectors.
@item <cln/GV_number.h>
General vectors over cl_number.
@item <cln/GV_complex.h>
General vectors over cl_N.
@item <cln/GV_real.h>
General vectors over cl_R.
@item <cln/GV_rational.h>
General vectors over cl_RA.
@item <cln/GV_integer.h>
General vectors over cl_I.
@item <cln/GV_modinteger.h>
General vectors of modular integers.
@item <cln/SV.h>
Simple vectors.
@item <cln/SV_number.h>
Simple vectors over cl_number.
@item <cln/SV_complex.h>
Simple vectors over cl_N.
@item <cln/SV_real.h>
Simple vectors over cl_R.
@item <cln/SV_rational.h>
Simple vectors over cl_RA.
@item <cln/SV_integer.h>
Simple vectors over cl_I.
@item <cln/SV_ringelt.h>
Simple vectors of general ring elements.
@item <cln/univpoly.h>
Univariate polynomials.
@item <cln/univpoly_integer.h>
Univariate polynomials over the integers.
@item <cln/univpoly_rational.h>
Univariate polynomials over the rational numbers.
@item <cln/univpoly_real.h>
Univariate polynomials over the real numbers.
@item <cln/univpoly_complex.h>
Univariate polynomials over the complex numbers.
@item <cln/univpoly_modint.h>
Univariate polynomials over modular integer rings.
@item <cln/timing.h>
Timing facilities.
@item <cln/cln.h>
Includes all of the above.
@end table


@node An Example
@section An Example

A function which computes the nth Fibonacci number can be written as follows.
@cindex Fibonacci number

@example
#include <cln/integer.h>
#include <cln/real.h>
using namespace cln;

// Returns F_n, computed as the nearest integer to
// ((1+sqrt(5))/2)^n/sqrt(5). Assume n>=0.
const cl_I fibonacci (int n)
@{
        // Need a precision of ((1+sqrt(5))/2)^-n.
        float_format_t prec = float_format((int)(0.208987641*n+5));
        cl_R sqrt5 = sqrt(cl_float(5,prec));
        cl_R phi = (1+sqrt5)/2;
        return round1( expt(phi,n)/sqrt5 );
@}
@end example

Let's explain what is going on in detail.

The include file @code{<cln/integer.h>} is necessary because the type
@code{cl_I} is used in the function, and the include file @code{<cln/real.h>}
is needed for the type @code{cl_R} and the floating point number functions.
The order of the include files does not matter.  In order not to write
out @code{cln::}@var{foo} in this simple example we can safely import
the whole namespace @code{cln}.

Then comes the function declaration. The argument is an @code{int}, the
result an integer. The return type is defined as @samp{const cl_I}, not
simply @samp{cl_I}, because that allows the compiler to detect typos like
@samp{fibonacci(n) = 100}. It would be possible to declare the return
type as @code{const cl_R} (real number) or even @code{const cl_N} (complex
number). We use the most specialized possible return type because functions
which call @samp{fibonacci} will be able to profit from the compiler's type
analysis: Adding two integers is slightly more efficient than adding the
same objects declared as complex numbers, because it needs less type
dispatch. Also, when linking to CLN as a non-shared library, this minimizes
the size of the resulting executable program.

The result will be computed as expt(phi,n)/sqrt(5), rounded to the nearest
integer. In order to get a correct result, the absolute error should be less
than 1/2, i.e. the relative error should be less than sqrt(5)/(2*expt(phi,n)).
To this end, the first line computes a floating point precision for sqrt(5)
and phi.

Then sqrt(5) is computed by first converting the integer 5 to a floating point
number and than taking the square root. The converse, first taking the square
root of 5, and then converting to the desired precision, would not work in
CLN: The square root would be computed to a default precision (normally
single-float precision), and the following conversion could not help about
the lacking accuracy. This is because CLN is not a symbolic computer algebra
system and does not represent sqrt(5) in a non-numeric way.

The type @code{cl_R} for sqrt5 and, in the following line, phi is the only
possible choice. You cannot write @code{cl_F} because the C++ compiler can
only infer that @code{cl_float(5,prec)} is a real number. You cannot write
@code{cl_N} because a @samp{round1} does not exist for general complex
numbers.

When the function returns, all the local variables in the function are
automatically reclaimed (garbage collected). Only the result survives and
gets passed to the caller.

The file @code{fibonacci.cc} in the subdirectory @code{examples}
contains this implementation together with an even faster algorithm.

@node Debugging support
@section Debugging support
@cindex debugging

When debugging a CLN application with GNU @code{gdb}, two facilities are
available from the library:

@itemize @bullet
@item The library does type checks, range checks, consistency checks at
many places. When one of these fails, an exception of a type derived from
@code{runtime_exception} is thrown. When an exception is cought, the stack
has already been unwound, so it is may not be possible to tell at which
point the exception was thrown. For debugging, it is best to set up a
catchpoint at the event of throwning a C++ exception:
@example
(gdb) catch throw
@end example
When this catchpoint is hit, look at the stack's backtrace:
@example
(gdb) where
@end example
When control over the type of exception is required, it may be possible
to set a breakpoint at the @code{g++} runtime library function
@code{__raise_exception}. Refer to the documentation of GNU @code{gdb}
for details.

@item The debugger's normal @code{print} command doesn't know about
CLN's types and therefore prints mostly useless hexadecimal addresses.
CLN offers a function @code{cl_print}, callable from the debugger,
for printing number objects. In order to get this function, you have
to define the macro @samp{CL_DEBUG} and then include all the header files
for which you want @code{cl_print} debugging support. For example:
@cindex @code{CL_DEBUG}
@example
#define CL_DEBUG
#include <cln/string.h>
@end example
Now, if you have in your program a variable @code{cl_string s}, and
inspect it under @code{gdb}, the output may look like this:
@example
(gdb) print s
$7 = @{<cl_gcpointer> = @{ = @{pointer = 0x8055b60, heappointer = 0x8055b60,
  word = 134568800@}@}, @}
(gdb) call cl_print(s)
(cl_string) ""
$8 = 134568800
@end example
Note that the output of @code{cl_print} goes to the program's error output,
not to gdb's standard output.

Note, however, that the above facility does not work with all CLN types,
only with number objects and similar. Therefore CLN offers a member function
@code{debug_print()} on all CLN types. The same macro @samp{CL_DEBUG}
is needed for this member function to be implemented. Under @code{gdb},
you call it like this:
@cindex @code{debug_print ()}
@example
(gdb) print s
$7 = @{<cl_gcpointer> = @{ = @{pointer = 0x8055b60, heappointer = 0x8055b60,
  word = 134568800@}@}, @}
(gdb) call s.debug_print()
(cl_string) ""
(gdb) define cprint
>call ($1).debug_print()
>end
(gdb) cprint s
(cl_string) ""
@end example
Unfortunately, this feature does not seem to work under all circumstances.
@end itemize

@node Reporting Problems
@section Reporting Problems
@cindex bugreports
@cindex mailing list

If you encounter any problem, please don't hesitate to send a detailed
bugreport to the @code{cln-list@@ginac.de} mailing list. Please think
about your bug: consider including a short description of your operating
system and compilation environment with corresponding version numbers. A
description of your configuration options may also be helpful. Also, a
short test program together with the output you get and the output you
expect will help us to reproduce it quickly. Finally, do not forget to
report the version number of CLN.


@node Customizing
@chapter Customizing
@cindex customizing

@menu
* Error handling::              
* Floating-point underflow::    
* Customizing I/O::             
* Customizing the memory allocator::  
@end menu

@node Error handling
@section Error handling
@cindex exception
@cindex error handling

@cindex @code{runtime_exception}
CLN signals abnormal situations by throwning exceptions. All exceptions
thrown by the library are of type @code{runtime_exception} or of a
derived type. Class @code{cln::runtime_exception} in turn is derived
from the C++ standard library class @code{std::runtime_error} and
inherits the @code{.what()} member function that can be used to query
details about the cause of error.

The most important classes thrown by the library are

@cindex @code{floating_point_exception}
@cindex @code{read_number_exception}
@example
                  Exception base class
                    runtime_exception
                    <cln/exception.h>
                            | 
           +----------------+----------------+
           |                                 |
 Malformed number input             Floating-point error
 read_number_exception            floating_poing_exception
   <cln/number_io.h>                   <cln/float.h>
@end example

CLN has many more exception classes that allow for more fine-grained
control but I refrain from documenting them all here. They are all
declared in the public header files and they are all subclasses of the
above exceptions, so catching those you are always on the safe side.


@node Floating-point underflow
@section Floating-point underflow
@cindex underflow

@cindex @code{floating_point_underflow_exception}
Floating point underflow denotes the situation when a floating-point
number is to be created which is so close to @code{0} that its exponent
is too low to be represented internally. By default, this causes the
exception @code{floating_point_underflow_exception} (subclass of
@code{floating_point_exception}) to be thrown. If you set the global
variable
@example
bool cl_inhibit_floating_point_underflow
@end example
to @code{true}, the exception will be inhibited, and a floating-point
zero will be generated instead.  The default value of 
@code{cl_inhibit_floating_point_underflow} is @code{false}.


@node Customizing I/O
@section Customizing I/O

The output of the function @code{fprint} may be customized by changing the
value of the global variable @code{default_print_flags}.
@cindex @code{default_print_flags}


@node Customizing the memory allocator
@section Customizing the memory allocator

Every memory allocation of CLN is done through the function pointer
@code{malloc_hook}. Freeing of this memory is done through the function
pointer @code{free_hook}. The default versions of these functions,
provided in the library, call @code{malloc} and @code{free} and check
the @code{malloc} result against @code{NULL}.
If you want to provide another memory allocator, you need to define
the variables @code{malloc_hook} and @code{free_hook} yourself,
like this:
@example
#include <cln/malloc.h>
namespace cln @{
        void* (*malloc_hook) (size_t size) = @dots{};
        void (*free_hook) (void* ptr)      = @dots{};
@}
@end example
@cindex @code{malloc_hook ()}
@cindex @code{free_hook ()}
The @code{cl_malloc_hook} function must not return a @code{NULL} pointer.

It is not possible to change the memory allocator at runtime, because
it is already called at program startup by the constructors of some
global variables.




@c Indices

@node Index,  , Customizing, Top
@unnumbered Index

@printindex my


@bye