File: genomeplots_log.R

package info (click to toggle)
clonalorigin 1.0-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,800 kB
  • sloc: cpp: 10,488; perl: 349; xml: 130; makefile: 48; sh: 33
file content (136 lines) | stat: -rwxr-xr-x 4,738 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/Rscript
# R script to plot sliding windows of various statistics along a genome
# to be used in conjunction with output from rhomulus.pl
# @author Aaron Darling
# @license GPL
#

library("zoo")

bbb <- read.table("rho_summary.txt")
ccc <- read.table("theta_summary.txt")
ddd <- read.table("delta_summary.txt")
eee <- read.table("tmrca_summary.txt")
fff <- read.table("rhotheta_summary.txt")
ggg <- read.table("rhopersite_summary.txt")
hhh <- read.table("rhodelta_summary.txt")
iii <- read.table("roverm_summary.txt")

meanie <- function(x){ sum(x[!is.na(x)])/sum(!is.na(x)) }
putter <- function(x,y,z,sitenorm){
	blob <- vector()
	for(i in 1:length(x))
	{
		if(sitenorm==TRUE)
		{
		        blob[seq(x[i],y[i],by=1)] <- z[i]/(y[i]-x[i])
       	 	}else{
			blob[seq(x[i],y[i],by=1)] <- z[i]
		}
	}
	blob
}

polyfillNA <- function(lowline,highline,mycolor)
{
i <- 1
prev <- 1
for( i in 1:length(lowline) )
{
	if(is.na(lowline[i]))
	{
		# time to plot
		if(prev < i)
		{
			ii <- i-1
			polygon(x=c(attr(lowline[prev:ii],'index'),rev(attr(highline[prev:ii],'index'))),y=c(as.numeric(lowline[prev:ii]),rev(as.numeric(highline[prev:ii]))), density=NA, col=mycolor)
		}
		prev <- i+1
	}
}
# get the last one
if(!is.na(prev))
{
	ii <- length(lowline)
	polygon(x=c(attr(lowline[prev:ii],'index'),rev(attr(highline[prev:ii],'index'))),y=c(as.numeric(lowline[prev:ii]),rev(as.numeric(highline[prev:ii]))), density=NA, col=mycolor)
}
}

plotGenomeDistribution <- function(dataset,windowsize,windowstep,sitenorm,ptitle,pylab)
{
meanval <- dataset$V2
leftends <- dataset$V4
rightends <- dataset$V5
minval <- dataset$V7
val10 <- dataset$V8
val25 <- dataset$V9
val50 <- dataset$V10
val75 <- dataset$V11
val90 <- dataset$V12
val100 <- dataset$V13


b0 <- putter(leftends,rightends,minval,sitenorm)
b0r <- rollapply(as.zoo(b0),windowsize,meanie,by=windowstep)

b10 <- putter(leftends,rightends,val10,sitenorm)
b10r <- rollapply(as.zoo(b10),windowsize,meanie,by=windowstep)

b25 <- putter(leftends,rightends,val25,sitenorm)
b25r <- rollapply(as.zoo(b25),windowsize,meanie,by=windowstep)

b50 <- putter(leftends,rightends,val50,sitenorm)
b50r <- rollapply(as.zoo(b50),windowsize,meanie,by=windowstep)

b75 <- putter(leftends,rightends,val75,sitenorm)
b75r <- rollapply(as.zoo(b75),windowsize,meanie,by=windowstep)

b90 <- putter(leftends,rightends,val90,sitenorm)
b90r <- rollapply(as.zoo(b90),windowsize,meanie,by=windowstep)

b100 <- putter(leftends,rightends,val100,sitenorm)
b100r <- rollapply(as.zoo(b100),windowsize,meanie,by=windowstep)

bmean <- putter(leftends,rightends,dataset$V2,sitenorm)



plot(log(b50r),ylim=log(c(min(b0r[!is.na(b0r)]),max(b100r[!is.na(b100r)]))),lwd=0.5,type="l",xlab="E. coli K12 MG1655",main=ptitle,ylab=pylab)
polyfillNA(log(b0r),log(b100r),rgb(.9,.9,.9))
polyfillNA(log(b10r),log(b90r),rgb(.75,.75,.75))
polyfillNA(log(b25r),log(b75r),rgb(.5,.5,.5))
polyfillNA(log(b50r),log(b50r),rgb(0,0,0))

lines(x=c(2750000,3920000), y=log(rep(meanie(bmean[2750000:3920000]),2)),col="orange",lwd=0.5)
lines(x=c(1600000,2750000), y=log(rep(meanie(bmean[1600000:2750000]),2)),col="orange",lwd=0.5)
lines(x=c(450000,1600000), y=log(rep(meanie(bmean[450000:1600000]),2)),col="orange",lwd=0.5)
lines(x=c(3920000,4650000), y=log(rep(meanie(c(bmean[1:450000],bmean[3920000:length(bmean)])),2)),col="orange",lwd=0.5)
lines(x=c(1,450000), y=log(rep(meanie(c(bmean[1:450000],bmean[3920000:length(bmean)])),2)),col="orange",lwd=0.5)

}

pdf("rhopersite_sliding.pdf",width=10,height=4.5)
plotGenomeDistribution(ggg,20000,5000,FALSE,"Smoothed posterior distribution of rho per site","log rho per site")
dev.off()
pdf("rhodelta_sliding.pdf",width=10,height=4.5)
plotGenomeDistribution(hhh,20000,5000,FALSE,"Smoothed posterior distribution of rhopersite*delta","log rpsdelta")
dev.off()
pdf("roverm_sliding.pdf",width=10,height=4.5)
plotGenomeDistribution(iii,20000,5000,FALSE,"Smoothed posterior distribution of r/m","log r/m")
dev.off()
pdf("rhotheta_sliding.pdf",width=10,height=4.5)
plotGenomeDistribution(fff,20000,5000,FALSE,"Smoothed posterior distribution of rho/theta","rho/theta")
dev.off()
pdf("rho_sliding.pdf",width=10,height=4.5)
plotGenomeDistribution(bbb,20000,5000,TRUE,"Smoothed posterior distribution of rho per site","rho per site")
dev.off()
pdf("theta_sliding.pdf",width=10,height=4.5)
plotGenomeDistribution(ccc,20000,5000,TRUE,"Smoothed posterior distribution of theta per site","theta per site")
dev.off()
pdf("delta_sliding.pdf",width=10,height=4.5)
plotGenomeDistribution(ddd,20000,5000,FALSE,"Smoothed posterior distribution of delta","delta")
dev.off()
pdf("tmrca_sliding.pdf",width=10,height=4.5)
plotGenomeDistribution(eee,20000,5000,FALSE,"Smoothed posterior distribution of tmrca","tmrca")
dev.off()