File: DataFlowAnalysisTest.java

package info (click to toggle)
closure-compiler 20130227%2Bdfsg1-10.1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,792 kB
  • sloc: java: 175,338; javascript: 20,728; xml: 371; makefile: 19; sh: 6
file content (791 lines) | stat: -rw-r--r-- 23,478 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
/*
 * Copyright 2008 The Closure Compiler Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.javascript.jscomp;

import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import com.google.javascript.jscomp.ControlFlowGraph.Branch;
import com.google.javascript.jscomp.DataFlowAnalysis.BranchedFlowState;
import com.google.javascript.jscomp.DataFlowAnalysis.BranchedForwardDataFlowAnalysis;
import com.google.javascript.jscomp.DataFlowAnalysis.FlowState;
import com.google.javascript.jscomp.DataFlowAnalysis.MaxIterationsExceededException;
import com.google.javascript.jscomp.JoinOp.BinaryJoinOp;
import com.google.javascript.jscomp.graph.DiGraph.DiGraphEdge;
import com.google.javascript.jscomp.graph.GraphNode;
import com.google.javascript.jscomp.graph.LatticeElement;

import junit.framework.TestCase;

import java.util.Comparator;
import java.util.List;
import java.util.Map;

/**
 * A test suite with a very small programming language that has two types of
 * instructions: {@link BranchInstruction} and {@link ArithmeticInstruction}.
 * Test cases must construct a small program with these instructions and
 * manually put each instruction in a {@code ControlFlowGraph}.
 *
 */
public class DataFlowAnalysisTest extends TestCase {

  /**
   * Operations supported by ArithmeticInstruction.
   */
  enum Operation {
    ADD("+"), SUB("-"), DIV("/"), MUL("*");
    private final String stringRep;

    private Operation(String stringRep) {
      this.stringRep = stringRep;
    }

    @Override
    public String toString() {
      return stringRep;
    }
  }

  /**
   * A simple value.
   */
  abstract static class Value {

    boolean isNumber() {
      return this instanceof Number;
    }

    boolean isVariable() {
      return this instanceof Variable;
    }
  }

  /**
   * A variable.
   */
  static class Variable extends Value {
    private String name;

    /**
     * Constructor.
     *
     * @param n Name of the variable.
     */
    Variable(String n) {
      name = n;
    }

    String getName() {
      return name;
    }

    @Override
    public boolean equals(Object other) {
      // Use the String's .equals()
      if (!(other instanceof Variable)) {
        return false;
      }
      return ((Variable) other).name.equals(name);
    }

    @Override
    public int hashCode() {
      return name.hashCode();
    }

    @Override
    public String toString() {
      return this.name;
    }
  }

  /**
   * A number constant.
   */
  static class Number extends Value {
    private int value;

    /**
     * Constructor
     *
     * @param v Value
     */
    Number(int v) {
      value = v;
    }

    int getValue() {
      return value;
    }

    @Override
    public String toString() {
      return "" + value;
    }

    @Override
    public int hashCode() {
      return value;
    }
  }

  /**
   * An instruction of the dummy program.
   */
  abstract static class Instruction {

    int order = 0;

    /**
     * Check whether this is an arithmetic instruction.
     *
     * @return {@code true} if it is an arithmetic instruction.
     */
    boolean isArithmetic() {
      return this instanceof ArithmeticInstruction;
    }

    /**
     * Check whether this is a branch instruction.
     *
     * @return {@code true} if it is a branch instruction.
     */
    boolean isBranch() {
      return this instanceof BranchInstruction;
    }
  }

  /**
   * Basic arithmetic instruction that only takes the form of:
   *
   * <pre>
   * Result = Operand1 operator Operand2
   * </pre>
   */
  static class ArithmeticInstruction extends Instruction {
    private Operation operation;
    private Value operand1;
    private Value operand2;
    private Variable result;

    /**
     * Constructor
     *
     * @param res Result.
     * @param op1 First Operand.
     * @param o Operator.
     * @param op2 Second Operand.
     */
    ArithmeticInstruction(Variable res, int op1, Operation o, int op2) {
      this(res, new Number(op1), o, new Number(op2));
    }

    /**
     * Constructor
     *
     * @param res Result.
     * @param op1 First Operand.
     * @param o Operator.
     * @param op2 Second Operand.
     */
    ArithmeticInstruction(Variable res, Value op1, Operation o, int op2) {
      this(res, op1, o, new Number(op2));
    }

    /**
     * Constructor
     *
     * @param res Result.
     * @param op1 First Operand.
     * @param o Operator.
     * @param op2 Second Operand.
     */
    ArithmeticInstruction(Variable res, int op1, Operation o, Value op2) {
      this(res, new Number(op1), o, op2);
    }

    /**
     * Constructor
     *
     * @param res Result.
     * @param op1 First Operand.
     * @param o Operator.
     * @param op2 Second Operand.
     */
    ArithmeticInstruction(Variable res, Value op1, Operation o, Value op2) {
      result = res;
      operand1 = op1;
      operand2 = op2;
      operation = o;
    }

    Operation getOperator() {
      return operation;
    }

    void setOperator(Operation op) {
      this.operation = op;
    }

    Value getOperand1() {
      return operand1;
    }

    void setOperand1(Value operand1) {
      this.operand1 = operand1;
    }

    Value getOperand2() {
      return operand2;
    }

    void setOperand2(Value operand2) {
      this.operand2 = operand2;
    }

    Variable getResult() {
      return result;
    }

    void setResult(Variable result) {
      this.result = result;
    }

    @Override
    public String toString() {
      StringBuilder out = new StringBuilder();
      out.append(result);
      out.append(" = ");
      out.append(operand1);
      out.append(operation);
      out.append(operand2);
      return out.toString();
    }

    @Override
    public int hashCode() {
      return toString().hashCode();
    }
  }

  public static ArithmeticInstruction
      newAssignNumberToVariableInstruction(Variable res, int num) {
    return new ArithmeticInstruction(res, num, Operation.ADD, 0);
  }

  public static ArithmeticInstruction
      newAssignVariableToVariableInstruction(Variable lhs, Variable rhs) {
    return new ArithmeticInstruction(lhs, rhs, Operation.ADD, 0);
  }

  /**
   * Branch instruction based on a {@link Value} as a condition.
   */
  static class BranchInstruction extends Instruction {
    private Value condition;

    BranchInstruction(Value cond) {
      condition = cond;
    }

    Value getCondition() {
      return condition;
    }

    void setCondition(Value condition) {
      this.condition = condition;
    }
  }

  /**
   * A lattice to represent constant states. Each variable of the program will
   * have a lattice defined as:
   *
   * <pre>
   *        TOP
   *   / / |         \
   *  0  1 2 3 ..... MAX_VALUE
   *  \  \ |         /
   *       BOTTOM
   * </pre>
   *
   * Where BOTTOM represents the variable is not a constant.
   * <p>
   * This class will represent a product lattice of each variable's lattice. The
   * whole lattice is store in a {@code HashMap}. If variable {@code x} is
   * defined to be constant 10. The map will contain the value 10 with the
   * variable {@code x} as key. Otherwise, {@code x} is not a constant.
   */
  private static class ConstPropLatticeElement implements LatticeElement {
    private final Map<Variable, Integer> constMap;
    private final boolean isTop;

    /**
     * Constructor.
     *
     * @param isTop To define if the lattice is top.
     */
    ConstPropLatticeElement(boolean isTop) {
      this.isTop = isTop;
      this.constMap = Maps.newHashMap();
    }

    /**
     * Create a lattice where every variable is defined to be not constant.
     */
    ConstPropLatticeElement() {
      this(false);
    }

    ConstPropLatticeElement(ConstPropLatticeElement other) {
      this.isTop = other.isTop;
      this.constMap = Maps.newHashMap(other.constMap);
    }

    @Override
    public String toString() {
      if (isTop) {
        return "TOP";
      }
      StringBuilder out = new StringBuilder();

      out.append("{");
      for (Variable var : constMap.keySet()) {
        out.append(var);
        out.append("=");
        out.append(constMap.get(var));
        out.append(" ");
      }
      out.append("}");
      return out.toString();
    }

    @Override
    public boolean equals(Object other) {
      if (other instanceof ConstPropLatticeElement) {
        ConstPropLatticeElement otherLattice = (ConstPropLatticeElement) other;
        return (this.isTop == otherLattice.isTop) &&
            this.constMap.equals(otherLattice.constMap);
      }
      return false;
    }
  }

  private static class ConstPropJoinOp
      extends BinaryJoinOp<ConstPropLatticeElement> {

    @Override
    public ConstPropLatticeElement apply(ConstPropLatticeElement a,
        ConstPropLatticeElement b) {
      ConstPropLatticeElement result = new ConstPropLatticeElement();
      // By the definition of TOP of the lattice.
      if (a.isTop) {
        return new ConstPropLatticeElement(a);
      }
      if (b.isTop) {
        return new ConstPropLatticeElement(b);
      }
      // Do the join for each variable's lattice.
      for (Variable var : a.constMap.keySet()) {
        if (b.constMap.containsKey(var)) {
          Integer number = b.constMap.get(var);

          // The result will contain that variable as a known constant
          // if both lattice has that variable the same constant.
          if (a.constMap.get(var).equals(number)) {
            result.constMap.put(var, number);
          }
        }
      }
      return result;
    }
  }

  /**
   * A simple forward constant propagation.
   */
  static class DummyConstPropagation extends
      DataFlowAnalysis<Instruction, ConstPropLatticeElement> {

    /**
     * Constructor.
     *
     * @param targetCfg Control Flow Graph.
     */
    DummyConstPropagation(ControlFlowGraph<Instruction> targetCfg) {
      super(targetCfg, new ConstPropJoinOp());
    }

    @Override
    boolean isForward() {
      return true;
    }

    @Override
    ConstPropLatticeElement flowThrough(Instruction node,
        ConstPropLatticeElement input) {
      if (node.isBranch()) {
        return new ConstPropLatticeElement(input);
      } else {
        return flowThroughArithmeticInstruction((ArithmeticInstruction) node,
            input);
      }
    }

    @Override
    ConstPropLatticeElement createEntryLattice() {
      return new ConstPropLatticeElement();
    }

    @Override
    ConstPropLatticeElement createInitialEstimateLattice() {
      return new ConstPropLatticeElement(true);
    }
  }

  static ConstPropLatticeElement flowThroughArithmeticInstruction(
      ArithmeticInstruction aInst, ConstPropLatticeElement input) {

    ConstPropLatticeElement out = new ConstPropLatticeElement(input);
    // Try to see if left is a number. If it is a variable, it might already
    // be a constant coming in.
    Integer leftConst = null;
    if (aInst.operand1.isNumber()) {
      leftConst = ((Number) aInst.operand1).value;
    } else {
      if (input.constMap.containsKey(aInst.operand1)) {
        leftConst = input.constMap.get(aInst.operand1);
      }
    }

    // Do the same thing to the right.
    Integer rightConst = null;
    if (aInst.operand2.isNumber()) {
      rightConst = ((Number) aInst.operand2).value;
    } else {
      if (input.constMap.containsKey(aInst.operand2)) {
        rightConst = input.constMap.get(aInst.operand2);
      }
    }

    // If both are known constant we can perform the operation.
    if (leftConst != null && rightConst != null) {
      Integer constResult = null;
      if (aInst.operation == Operation.ADD) {
        constResult = leftConst.intValue() + rightConst.intValue();
      } else if (aInst.operation == Operation.SUB) {
        constResult = leftConst.intValue() - rightConst.intValue();
      } else if (aInst.operation == Operation.MUL) {
        constResult = leftConst.intValue() * rightConst.intValue();
      } else if (aInst.operation == Operation.DIV) {
        constResult = leftConst.intValue() / rightConst.intValue();
      }
      // Put it in the map. (Possibly replacing the existing constant value)
      out.constMap.put(aInst.result, constResult);
    } else {
      // If we cannot find a constant for it
      out.constMap.remove(aInst.result);
    }
    return out;
  }

  public void testSimpleIf() {
    // if (a) { b = 1; } else { b = 1; } c = b;
    Variable a = new Variable("a");
    Variable b = new Variable("b");
    Variable c = new Variable("c");
    Instruction inst1 = new BranchInstruction(a);
    Instruction inst2 = newAssignNumberToVariableInstruction(b, 1);
    Instruction inst3 = newAssignNumberToVariableInstruction(b, 1);
    Instruction inst4 = newAssignVariableToVariableInstruction(c, b);
    ControlFlowGraph<Instruction> cfg =
      new ControlFlowGraph<Instruction>(inst1, true, true);
    GraphNode<Instruction, Branch> n1 = cfg.createNode(inst1);
    GraphNode<Instruction, Branch> n2 = cfg.createNode(inst2);
    GraphNode<Instruction, Branch> n3 = cfg.createNode(inst3);
    GraphNode<Instruction, Branch> n4 = cfg.createNode(inst4);
    cfg.connect(inst1, ControlFlowGraph.Branch.ON_FALSE, inst2);
    cfg.connect(inst1, ControlFlowGraph.Branch.ON_TRUE, inst3);
    cfg.connect(inst2, ControlFlowGraph.Branch.UNCOND, inst4);
    cfg.connect(inst3, ControlFlowGraph.Branch.UNCOND, inst4);

    DummyConstPropagation constProp = new DummyConstPropagation(cfg);
    constProp.analyze();

    // We cannot conclude anything from if (a).
    verifyInHas(n1, a, null);
    verifyInHas(n1, b, null);
    verifyInHas(n1, c, null);
    verifyOutHas(n1, a, null);
    verifyOutHas(n1, b, null);
    verifyOutHas(n1, c, null);

    // We can conclude b = 1 after the instruction.
    verifyInHas(n2, a, null);
    verifyInHas(n2, b, null);
    verifyInHas(n2, c, null);
    verifyOutHas(n2, a, null);
    verifyOutHas(n2, b, 1);
    verifyOutHas(n2, c, null);

    // Same as above.
    verifyInHas(n3, a, null);
    verifyInHas(n3, b, null);
    verifyInHas(n3, c, null);
    verifyOutHas(n3, a, null);
    verifyOutHas(n3, b, 1);
    verifyOutHas(n3, c, null);

    // After the merge we should still have b = 1.
    verifyInHas(n4, a, null);
    verifyInHas(n4, b, 1);
    verifyInHas(n4, c, null);
    verifyOutHas(n4, a, null);
    // After the instruction both b and c are 1.
    verifyOutHas(n4, b, 1);
    verifyOutHas(n4, c, 1);
  }

  public void testSimpleLoop() {
    // a = 0; do { a = a + 1 } while (b); c = a;
    Variable a = new Variable("a");
    Variable b = new Variable("b");
    Variable c = new Variable("c");
    Instruction inst1 = newAssignNumberToVariableInstruction(a, 0);
    Instruction inst2 = new ArithmeticInstruction(a, a, Operation.ADD, 1);
    Instruction inst3 = new BranchInstruction(b);
    Instruction inst4 = newAssignVariableToVariableInstruction(c, a);
    ControlFlowGraph<Instruction> cfg =
      new ControlFlowGraph<Instruction>(inst1, true, true);
    GraphNode<Instruction, Branch> n1 = cfg.createNode(inst1);
    GraphNode<Instruction, Branch> n2 = cfg.createNode(inst2);
    GraphNode<Instruction, Branch> n3 = cfg.createNode(inst3);
    GraphNode<Instruction, Branch> n4 = cfg.createNode(inst4);
    cfg.connect(inst1, ControlFlowGraph.Branch.UNCOND, inst2);
    cfg.connect(inst2, ControlFlowGraph.Branch.UNCOND, inst3);
    cfg.connect(inst3, ControlFlowGraph.Branch.ON_TRUE, inst2);
    cfg.connect(inst3, ControlFlowGraph.Branch.ON_FALSE, inst4);

    DummyConstPropagation constProp = new DummyConstPropagation(cfg);
    // This will also show that the framework terminates properly.
    constProp.analyze();

    // a = 0 is the only thing we know.
    verifyInHas(n1, a, null);
    verifyInHas(n1, b, null);
    verifyInHas(n1, c, null);
    verifyOutHas(n1, a, 0);
    verifyOutHas(n1, b, null);
    verifyOutHas(n1, c, null);

    // Nothing is provable in this program, so confirm that we haven't
    // erroneously "proven" something.
    verifyInHas(n2, a, null);
    verifyInHas(n2, b, null);
    verifyInHas(n2, c, null);
    verifyOutHas(n2, a, null);
    verifyOutHas(n2, b, null);
    verifyOutHas(n2, c, null);

    verifyInHas(n3, a, null);
    verifyInHas(n3, b, null);
    verifyInHas(n3, c, null);
    verifyOutHas(n3, a, null);
    verifyOutHas(n3, b, null);
    verifyOutHas(n3, c, null);

    verifyInHas(n4, a, null);
    verifyInHas(n4, b, null);
    verifyInHas(n4, c, null);
    verifyOutHas(n4, a, null);
    verifyOutHas(n4, b, null);
    verifyOutHas(n4, c, null);
  }

  public void testLatticeArrayMinimizationWhenMidpointIsEven() {
    assertEquals(6, JoinOp.BinaryJoinOp.computeMidPoint(12));
  }

  public void testLatticeArrayMinimizationWhenMidpointRoundsDown() {
    assertEquals(8, JoinOp.BinaryJoinOp.computeMidPoint(18));
  }

  public void testLatticeArrayMinimizationWithTwoElements() {
    assertEquals(1, JoinOp.BinaryJoinOp.computeMidPoint(2));
  }


  /**
   * A simple forward constant propagation.
   */
  static class BranchedDummyConstPropagation extends
      BranchedForwardDataFlowAnalysis<Instruction, ConstPropLatticeElement> {

    BranchedDummyConstPropagation(ControlFlowGraph<Instruction> targetCfg) {
      super(targetCfg, new ConstPropJoinOp());
    }

    @Override
    ConstPropLatticeElement flowThrough(Instruction node,
        ConstPropLatticeElement input) {
      if (node.isArithmetic()) {
        return flowThroughArithmeticInstruction(
            (ArithmeticInstruction) node, input);
      } else {
        return new ConstPropLatticeElement(input);
      }
    }

    @Override
    List<ConstPropLatticeElement> branchedFlowThrough(Instruction node,
        ConstPropLatticeElement input) {
      List<ConstPropLatticeElement> result = Lists.newArrayList();
      List<DiGraphEdge<Instruction, Branch>> outEdges =
        getCfg().getOutEdges(node);
      if (node.isArithmetic()) {
        assertTrue(outEdges.size() < 2);
        ConstPropLatticeElement aResult = flowThroughArithmeticInstruction(
            (ArithmeticInstruction) node, input);
        for (int i = 0; i < outEdges.size(); i++) {
          result.add(aResult);
        }
      } else {
        BranchInstruction branchInst = (BranchInstruction) node;
        for (DiGraphEdge<Instruction, Branch> branch : outEdges) {
          ConstPropLatticeElement edgeResult =
            new ConstPropLatticeElement(input);
          if (branch.getValue() == Branch.ON_FALSE &&
              branchInst.getCondition().isVariable()) {
            edgeResult.constMap.put((Variable) branchInst.getCondition(), 0);
          }
          result.add(edgeResult);
        }
      }
      return result;
    }

    @Override
    ConstPropLatticeElement createEntryLattice() {
      return new ConstPropLatticeElement();
    }

    @Override
    ConstPropLatticeElement createInitialEstimateLattice() {
      return new ConstPropLatticeElement(true);
    }
  }

  public void testBranchedSimpleIf() {
    // if (a) { a = 0; } else { b = 0; } c = b;
    Variable a = new Variable("a");
    Variable b = new Variable("b");
    Variable c = new Variable("c");
    Instruction inst1 = new BranchInstruction(a);
    Instruction inst2 = newAssignNumberToVariableInstruction(a, 0);
    Instruction inst3 = newAssignNumberToVariableInstruction(b, 0);
    Instruction inst4 = newAssignVariableToVariableInstruction(c, b);
    ControlFlowGraph<Instruction> cfg =
      new ControlFlowGraph<Instruction>(inst1, true, true);
    GraphNode<Instruction, Branch> n1 = cfg.createNode(inst1);
    GraphNode<Instruction, Branch> n2 = cfg.createNode(inst2);
    GraphNode<Instruction, Branch> n3 = cfg.createNode(inst3);
    GraphNode<Instruction, Branch> n4 = cfg.createNode(inst4);
    cfg.connect(inst1, ControlFlowGraph.Branch.ON_TRUE, inst2);
    cfg.connect(inst1, ControlFlowGraph.Branch.ON_FALSE, inst3);
    cfg.connect(inst2, ControlFlowGraph.Branch.UNCOND, inst4);
    cfg.connect(inst3, ControlFlowGraph.Branch.UNCOND, inst4);

    BranchedDummyConstPropagation constProp =
        new BranchedDummyConstPropagation(cfg);
    constProp.analyze();

    // We cannot conclude anything from if (a).
    verifyBranchedInHas(n1, a, null);
    verifyBranchedInHas(n1, b, null);
    verifyBranchedInHas(n1, c, null);

    // Nothing is known on the true branch.
    verifyBranchedInHas(n2, a, null);
    verifyBranchedInHas(n2, b, null);
    verifyBranchedInHas(n2, c, null);

    // Verify that we have a = 0 on the false branch.
    verifyBranchedInHas(n3, a, 0);
    verifyBranchedInHas(n3, b, null);
    verifyBranchedInHas(n3, c, null);

    // After the merge we should still have a = 0.
    verifyBranchedInHas(n4, a, 0);
  }

  public void testMaxIterationsExceededException() {
    final int MAX_STEP = 10;
    Variable a = new Variable("a");
    Instruction inst1 = new ArithmeticInstruction(a, a, Operation.ADD, a);
    ControlFlowGraph<Instruction> cfg =
      new ControlFlowGraph<Instruction>(inst1, true, true) {
      @Override
      public Comparator<DiGraphNode<Instruction, Branch>>
          getOptionalNodeComparator(boolean isForward) {
        return new Comparator<DiGraphNode<Instruction, Branch>>() {
          @Override
          public int compare(DiGraphNode<Instruction, Branch> o1,
              DiGraphNode<Instruction, Branch> o2) {
            return o1.getValue().order - o2.getValue().order;
          }
        };
      }
    };
    cfg.createNode(inst1);

    // We have MAX_STEP + 1 nodes, it is impossible to finish the analysis with
    // MAX_STEP number of steps.
    for (int i = 0; i < MAX_STEP + 1; i++) {
      Instruction inst2 = new ArithmeticInstruction(a, a, Operation.ADD, a);
      cfg.createNode(inst2);
      inst2.order = i + 1;
      cfg.connect(inst1, ControlFlowGraph.Branch.UNCOND, inst2);
      inst1 = inst2;
    }
    DummyConstPropagation constProp = new DummyConstPropagation(cfg);
    try {
      constProp.analyze(MAX_STEP);
      fail("Expected MaxIterationsExceededException to be thrown.");
    } catch (MaxIterationsExceededException e) {
      assertEquals(e.getMessage(), "Analysis did not terminate after "
          + MAX_STEP + " iterations");
    }
  }

  static void verifyInHas(GraphNode<Instruction, Branch> node, Variable var,
      Integer constant) {
    FlowState<ConstPropLatticeElement> fState = node.getAnnotation();
    assertEquals(constant, fState.getIn().constMap.get(var));
  }

  static void verifyOutHas(GraphNode<Instruction, Branch> node, Variable var,
      Integer constant) {
    FlowState<ConstPropLatticeElement> fState = node.getAnnotation();
    assertEquals(constant, fState.getOut().constMap.get(var));
  }

  static void verifyBranchedInHas(GraphNode<Instruction, Branch> node,
      Variable var, Integer constant) {
    BranchedFlowState<ConstPropLatticeElement> fState = node.getAnnotation();
    assertEquals(constant, fState.getIn().constMap.get(var));
  }
}