1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
|
//##########################################################################
//# #
//# CLOUDCOMPARE #
//# #
//# This program is free software; you can redistribute it and/or modify #
//# it under the terms of the GNU General Public License as published by #
//# the Free Software Foundation; version 2 or later of the License. #
//# #
//# This program is distributed in the hope that it will be useful, #
//# but WITHOUT ANY WARRANTY; without even the implied warranty of #
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
//# GNU General Public License for more details. #
//# #
//# COPYRIGHT: EDF R&D / TELECOM ParisTech (ENST-TSI) #
//# #
//##########################################################################
#ifndef CC_CAMERA_SENSOR_HEADER
#define CC_CAMERA_SENSOR_HEADER
//local
#include "ccSensor.h"
#include "ccOctree.h"
//system
#include <unordered_set>
class ccPointCloud;
class ccMesh;
class ccImage;
class QDir;
//! Camera (projective) sensor
class QCC_DB_LIB_API ccCameraSensor : public ccSensor
{
public: //general
//! Intrinsic parameters of the camera sensor
struct QCC_DB_LIB_API IntrinsicParameters
{
//! Default initializer
IntrinsicParameters();
//! Helper: initializes a IntrinsicParameters structure with the default Kinect parameters
static void GetKinectDefaults(IntrinsicParameters& params);
float vertFocal_pix; /**< focal length (in pixels) - vertical dimension by default**/
float pixelSize_mm[2]; /**< sensor pixel size (in real dimension, e.g. mm) **/
float skew; /**< skew **/
float vFOV_rad; /**< vertical field of view (in Radians) **/
float zNear_mm; /**< Near plane position **/
float zFar_mm; /**< Far plane position **/
int arrayWidth; /**< Pixel array width (in pixels) **/
int arrayHeight; /**< Pixel array height (in pixels) **/
float principal_point[2]; /**< Principal point (in pixels) **/
//! Returns the horizontal focal pix
/** \warning Be sure the pixel size values are correct!
**/
inline float horizFocal_pix() const
{
assert(pixelSize_mm[1] > 0);
return (vertFocal_pix * pixelSize_mm[0]) / pixelSize_mm[1];
}
};
//! Supported distortion models
enum DistortionModel { NO_DISTORTION_MODEL = 0, /**< no distortion model **/
SIMPLE_RADIAL_DISTORTION = 1, /**< simple radial distortion model (k1, k2) **/
BROWN_DISTORTION = 2, /**< Brown's distortion model (k1, k2, k3, etc.) **/
EXTENDED_RADIAL_DISTORTION = 3 /**< extended radial distortion model (k1, k2, k3) **/
};
//! Lens distortion parameters (interface)
struct LensDistortionParameters
{
//! Shared pointer type
typedef QSharedPointer<LensDistortionParameters> Shared;
//! Virtual destructor
virtual ~LensDistortionParameters() {}
//! Returns distortion model type
virtual DistortionModel getModel() const = 0;
};
//! Simple radial distortion model
struct QCC_DB_LIB_API RadialDistortionParameters : LensDistortionParameters
{
//! Shared pointer type
typedef QSharedPointer<RadialDistortionParameters> Shared;
//! Default initializer
RadialDistortionParameters() : k1(0), k2(0) {}
//inherited from LensDistortionParameters
inline virtual DistortionModel getModel() const override { return SIMPLE_RADIAL_DISTORTION; }
//! 1st radial distortion coefficient
float k1;
//! 2nd radial distortion coefficient
float k2;
};
//! Extended radial distortion model
struct QCC_DB_LIB_API ExtendedRadialDistortionParameters : RadialDistortionParameters
{
//! Shared pointer type
typedef QSharedPointer<RadialDistortionParameters> Shared;
//! Default initializer
ExtendedRadialDistortionParameters() : RadialDistortionParameters(), k3(0) {}
//inherited from LensDistortionParameters
inline virtual DistortionModel getModel() const override { return EXTENDED_RADIAL_DISTORTION; }
//! 3rd radial distortion coefficient
float k3;
};
//! Brown's distortion model + Linear Disparity
/** To know how to use K & P parameters, please read:
"Decentering Distortion of Lenses", Duane C. Brown
To know how to use the linearDisparityParams parameter (kinect attribute), please read:
"Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications", K. Khoshelham and S.O. Elberink
**/
struct QCC_DB_LIB_API BrownDistortionParameters : LensDistortionParameters
{
//! Shared pointer type
typedef QSharedPointer<BrownDistortionParameters> Shared;
//! Default initializer
BrownDistortionParameters();
//inherited from LensDistortionParameters
inline virtual DistortionModel getModel() const override { return BROWN_DISTORTION; }
//! Helper: initializes a IntrinsicParameters structure with the default Kinect parameters
static void GetKinectDefaults(BrownDistortionParameters& params);
float principalPointOffset[2]; /**< offset of the principal point (in meters) **/
float linearDisparityParams[2]; /**< contains A and B where : 1/Z = A*d' + B (with Z=depth and d'=normalized disparity) **/
float K_BrownParams[3]; /**< radial parameters Brown's distortion model **/
float P_BrownParams[2]; /**< tangential parameters Brown's distortion model **/
};
//! Frustum information structure
/** Used to draw the frustum associated to a camera sensor.
**/
struct QCC_DB_LIB_API FrustumInformation
{
//! Default initializer
FrustumInformation();
//! Destructor
~FrustumInformation();
//! Reserves memory for the frustum corners cloud
/** Warning: reset the cloud contents!
**/
bool initFrustumCorners();
//! Creates the frustum hull mesh
/** The frustum corners must have already been setup!
\return success
**/
bool initFrustumHull();
bool isComputed;
bool drawFrustum;
bool drawSidePlanes;
ccPointCloud* frustumCorners;
ccMesh* frustumHull;
CCVector3 center; /**< center of the circumscribed sphere **/
};
//! Default constructor
ccCameraSensor();
//! Copy constructor
ccCameraSensor(const ccCameraSensor& sensor);
//! Constructor with given intrinsic parameters (and optional uncertainty parameters)
ccCameraSensor(const IntrinsicParameters& iParams);
//! Destructor
virtual ~ccCameraSensor();
//inherited from ccHObject
virtual CC_CLASS_ENUM getClassID() const override { return CC_TYPES::CAMERA_SENSOR; }
virtual bool isSerializable() const override { return true; }
virtual ccBBox getOwnBB(bool withGLFeatures = false) override;
virtual ccBBox getOwnFitBB(ccGLMatrix& trans) override;
//inherited from ccSensor
virtual bool applyViewport(ccGenericGLDisplay* win = nullptr) override;
public: //getters and setters
//! Sets focal (in pixels)
/** \warning Vertical dimension by default
**/
void setVertFocal_pix(float vertFocal_pix);
//! Returns vertical focal (in pixels)
inline float getVertFocal_pix() const { return m_intrinsicParams.vertFocal_pix; }
//! Returns horizontal focal (in pixels)
inline float getHorizFocal_pix() const { return m_intrinsicParams.horizFocal_pix(); }
//! Sets the (vertical) field of view in radians
void setVerticalFov_rad(float fov_rad);
//! Returns the (vertical) field of view in radians
inline float getVerticalFov_rad() const { return m_intrinsicParams.vFOV_rad; }
//! Returns intrinsic parameters
const IntrinsicParameters& getIntrinsicParameters() const { return m_intrinsicParams; }
//! Sets intrinsic parameters
void setIntrinsicParameters(const IntrinsicParameters& params);
//! Returns uncertainty parameters
const LensDistortionParameters::Shared& getDistortionParameters() const { return m_distortionParams; }
//! Sets uncertainty parameters
void setDistortionParameters(LensDistortionParameters::Shared params) { m_distortionParams = params; }
//! Returns the camera projection matrix
/** \param[out] matrix projection matrix (if the method returns true)
\return whether the matrix could be computed or not (probably due to wrong parameters)
**/
bool getProjectionMatrix(ccGLMatrix& matrix);
public: //frustum display
//! Returns whether the frustum should be displayed or not
inline bool frustumIsDrawn() const { return m_frustumInfos.drawFrustum; }
//! Sets whether the frustum should be displayed or not
inline void drawFrustum(bool state) { m_frustumInfos.drawFrustum = state; }
//! Returns whether the frustum planes should be displayed or not
inline bool frustumPlanesAreDrawn() const { return m_frustumInfos.drawSidePlanes; }
//! Sets whether the frustum planes should be displayed or not
inline void drawFrustumPlanes(bool state) { m_frustumInfos.drawSidePlanes = state; }
public: //coordinate systems conversion methods
//! Computes the coordinates of a 3D point in the global coordinate system knowing its coordinates in the sensor coordinate system.
/** \param localCoord local coordinates of the 3D point (input)
\param globalCoord corresponding global coordinates of the 3D point (output)
**/
bool fromLocalCoordToGlobalCoord(const CCVector3& localCoord, CCVector3& globalCoord) const;
//! Computes the coordinates of a 3D point in the sensor coordinate system knowing its coordinates in the global coordinate system.
/** \param globalCoord global coordinates of the 3D point (input)
\param localCoord corresponding local coordinates of the 3D point (output)
**/
bool fromGlobalCoordToLocalCoord(const CCVector3& globalCoord, CCVector3& localCoord) const;
//! Computes the coordinates of a 3D point in the global coordinate system knowing its coordinates in the sensor coordinate system.
/** \param localCoord local coordinates of the 3D point (input)
\param imageCoord image coordinates of the projected point on the image (output) --> !! Note that the first index is (0,0) and the last (width-1,height-1) !!
\param withLensError to take lens distortion into account
\return if operation has succeeded (typically, errors occur when the projection of the initial 3D points is not into the image boundaries, or when the 3D point is behind the camera)
**/
bool fromLocalCoordToImageCoord(const CCVector3& localCoord, CCVector2& imageCoord, bool withLensError = true) const;
//! Computes the coordinates of a 3D point in the sensor coordinate system knowing its coordinates in the global coordinate system.
/** \param imageCoord image coordinates of the pixel (input) --> !! Note that the first index is (0,0) and the last (width-1,height-1) !!
\param localCoord local coordinates of the corresponding 3D point (output)
\param depth depth of the output pixel relatively to the camera center
\param withLensCorrection if we want to correct the initial pixel coordinates with the lens correction formula
\return if operation has succeeded (typically, errors occur when the initial pixel coordinates are not into the image boundaries)
**/
bool fromImageCoordToLocalCoord(const CCVector2& imageCoord, CCVector3& localCoord, PointCoordinateType depth, bool withLensCorrection = true) const;
//! Computes the coordinates of a 3D point in the image knowing its coordinates in the global coordinate system.
/** \param globalCoord global coordinates of the 3D point
\param imageCoord to get back the image coordinates of the projected 3D point --> !! Note that the first index is (0,0) and the last (width-1,height-1) !!
\param withLensError to take lens distortion into account
\return if operation has succeeded (typically, errors occur when the projection of the initial 3D points is not into the image boundaries, or when the 3D point is behind the camera)
**/
bool fromGlobalCoordToImageCoord(const CCVector3& globalCoord, CCVector2& imageCoord, bool withLensError = true) const;
//! Computes the global coordinates of a 3D points from its 3D coordinates (pixel position in the image)
/** \param imageCoord image coordinates of the pixel (input) --> !! Note that the first index is (0,0) and the last (width-1,height-1) !!
\param globalCoord global coordinates of the corresponding 3D point (output)
\param z0 altitude of the output pixel
\param withLensCorrection if we want to correct the initial pixel coordinates with the lens correction formula
\return if operation has succeeded (typically, errors occur when the initial pixel coordinates are not into the image boundaries)
**/
bool fromImageCoordToGlobalCoord(const CCVector2& imageCoord, CCVector3& globalCoord, PointCoordinateType z0, bool withLensCorrection = true) const;
//! Apply the Brown's lens correction to the real projection (through a lens) of a 3D point in the image
/** \warning Only works with Brown's distortion model for now (see BrownDistortionParameters).
\param real real 2D coordinates of a pixel (asumming that this pixel coordinate is obtained after projection through a lens) (input) !! Note that the first index is (0,0) and the last (width-1,height-1) !!
\param ideal after applying lens correction (output) --> !! Note that the first index is (0,0) and the last (width-1,height-1) !!
**/
bool fromRealImCoordToIdealImCoord(const CCVector2& real, CCVector2& ideal) const;
//! Knowing the ideal projection of a 3D point, computes what would be the real projection (through a lens)
/** \warning The first pixel is (0,0) and the last (width-1,height-1)
\param[in] ideal 2D coordinates of the ideal projection
\param[out] real what would be the real 2D coordinates of the projection trough a lens
**/
//TODO
//bool fromIdealImCoordToRealImCoord(const CCVector2& ideal, CCVector2& real) const;
public: //orthorectification tools
//! Key point (i.e. mapping between a point in a 3D cloud and a pixel in an image)
struct KeyPoint
{
//! 2D 'x' coordinate (in pixels)
float x;
//! 2D 'y' coordinate (in pixels)
float y;
//! Index in associated point cloud
unsigned index;
//! Default constructor
KeyPoint()
: x(0)
, y(0)
, index(0)
{}
//! Constructor from a pixel and its index in associated cloud
KeyPoint(float Px, float Py, unsigned indexInCloud)
: x(Px)
, y(Py)
, index(indexInCloud)
{}
};
//! Projective ortho-rectification of an image (as cloud)
/** Requires at least 4 key points!
\param image input image
\param keypoints3D keypoints in 3D
\param keypointsImage corresponding keypoints in image
\return ortho-rectified image as a point cloud
**/
ccPointCloud* orthoRectifyAsCloud( const ccImage* image,
CCLib::GenericIndexedCloud* keypoints3D,
std::vector<KeyPoint>& keypointsImage) const;
//! Projective ortho-rectification of an image (as image)
/** Requires at least 4 key points!
\param image input image
\param keypoints3D keypoints in 3D
\param keypointsImage corresponding keypoints in image
\param pixelSize pixel size (auto if -1)
\param minCorner (optional) outputs 3D min corner (2 values)
\param maxCorner (optional) outputs 3D max corner (2 values)
\param realCorners (optional) image real 3D corners (4*2 values)
\return ortho-rectified image
**/
ccImage* orthoRectifyAsImage( const ccImage* image,
CCLib::GenericIndexedCloud* keypoints3D,
std::vector<KeyPoint>& keypointsImage,
double& pixelSize,
double* minCorner = nullptr,
double* maxCorner = nullptr,
double* realCorners = nullptr) const;
//! Direct ortho-rectification of an image (as image)
/** No keypoint is required. The user must specify however the
orthorectification 'altitude'.
\param image input image
\param altitude orthorectification altitude
\param pixelSize pixel size (auto if -1)
\param undistortImages whether images should be undistorted or not
\param minCorner (optional) outputs 3D min corner (2 values)
\param maxCorner (optional) outputs 3D max corner (2 values)
\param realCorners (optional) image real 3D corners (4*2 values)
\return ortho-rectified image
**/
ccImage* orthoRectifyAsImageDirect( const ccImage* image,
PointCoordinateType altitude,
double& pixelSize,
bool undistortImages = true,
double* minCorner = nullptr,
double* maxCorner = nullptr,
double* realCorners = nullptr) const;
//! Projective ortho-rectification of multiple images (as image files)
/** \param images set of N calibrated images (i.e. images with their associated sensor)
\param a {a0, a1, a2} triplets for all images (size: 3*N)
\param b {b0, b1, b2} triplets for all images (size: 3*N)
\param c {c0(=1), c1, c2} triplets for all images (size: 3*N)
\param maxSize output image(s) max dimension
\param outputDir output directory for resulting images (is successful)
\param[out] orthoRectifiedImages resulting images (is successful)
\param[out] relativePos relative positions (relatively to first image)
\return true if successful
**/
static bool OrthoRectifyAsImages(std::vector<ccImage*> images,
double a[], double b[], double c[],
unsigned maxSize,
QDir* outputDir = nullptr,
std::vector<ccImage*>* orthoRectifiedImages = nullptr,
std::vector<std::pair<double,double> >* relativePos = nullptr);
//! Computes ortho-rectification parameters for a given image
/** Requires at least 4 key points!
Collinearity equation:
* x'i = (a0+a1.xi+a2.yi)/(1+c1.xi+c2.yi)
* y'i = (b0+b1.xi+b2.yi)/(1+c1.xi+c2.yi)
\param image input image
\param keypoints3D keypoints in 3D
\param keypointsImage corresponding keypoints in image
\param a a0, a1 & a2 parameters
\param b b0, b1 & b2 parameters
\param c c0(=1), c1 & c2 parameters
\return success
**/
bool computeOrthoRectificationParams( const ccImage* image,
CCLib::GenericIndexedCloud* keypoints3D,
std::vector<KeyPoint>& keypointsImage,
double a[3],
double b[3],
double c[3]) const;
public: //misc
//! Computes the uncertainty of a point knowing its depth (from the sensor view point) and pixel projection coordinates
/** \warning Only works with Brown's distortion model for now (see BrownDistortionParameters).
\param pixel coordinates of the pixel where the 3D points is projected --> !! Note that the first index is (0,0) and the last (width-1,height-1) !!
\param depth depth from sensor center to 3D point (must be positive)
\param sigma uncertainty vector (along X, Y and Z)
\return operation has succeeded (typically, errors occur when the initial pixel coordinates are not into the image boundaries, or when the depth of the 3D point is negative)
**/
bool computeUncertainty(const CCVector2& pixel, const float depth, Vector3Tpl<ScalarType>& sigma) const;
//! Computes the coordinates of a 3D point in the sensor coordinate system knowing its coordinates in the global coordinate system.
/** \warning Only works with Brown's distortion model for now (see BrownDistortionParameters).
\param points the points we want to compute the uncertainty
\param accuracy to get back the uncertainty
//TODO lensDistortion if we want to take the lens distortion into consideration
\return success
**/
bool computeUncertainty(CCLib::ReferenceCloud* points, std::vector< Vector3Tpl<ScalarType> >& accuracy/*, bool lensDistortion*/);
//! Undistorts an image based on the sensor distortion parameters
/** \warning Only works with the simple radial distortion model for now (see RadialDistortionParameters).
\param image input image
\return undistorted image (or a null one if an error occurred)
**/
QImage undistort(const QImage& image) const;
//! Undistorts an image based on the sensor distortion parameters
/** \warning Only works with the simple radial distortion model for now (see RadialDistortionParameters).
\param image input image
\param inplace whether the undistortion should be applied in place or not
\return undistorted image (maybe the same as the input image if inplace is true, or even a null pointer if an error occurred)
**/
ccImage* undistort(ccImage* image, bool inplace = true) const;
//! Tests if a 3D point is in the field of view of the camera.
/** \param globalCoord global coordinates of the 3D point
//TODO withLensCorrection if we want to take the lens distortion into consideration
\return if operation has succeeded
**/
bool isGlobalCoordInFrustum(const CCVector3& globalCoord/*, bool withLensCorrection*/) const;
//! Compute the coefficients of the 6 planes frustum in the global coordinates system (normal vector are headed the frustum inside), the edges direction vectors and the frustum center
/** \param planeCoefficients coefficients of the six planes
\param edges direction vectors of the frustum edges (there are 12 edges but some of them are colinear)
\param ptsFrustum the 8 frustum corners in the global coordinates system
\param center center of the the frustum circumscribed sphere
\return success
**/
bool computeGlobalPlaneCoefficients(float planeCoefficients[6][4], CCVector3 ptsFrustum[8], CCVector3 edges[6], CCVector3& center);
public: //helpers
//! Helper: converts camera focal from pixels to mm
static float ConvertFocalPixToMM(float focal_pix, float ccdPixelSize_mm);
//! Helper: converts camera focal from mm to pixels
static float ConvertFocalMMToPix(float focal_mm, float ccdPixelSize_mm);
//! Helper: deduces camera f.o.v. (in radians) from focal (in pixels)
static float ComputeFovRadFromFocalPix(float focal_pix, int imageSize_pix);
//! Helper: deduces camera f.o.v. (in radians) from focal (in mm)
static float ComputeFovRadFromFocalMm(float focal_mm, float ccdSize_mm);
protected:
//! Used internally for display
CCVector3 computeUpperLeftPoint() const;
//! Compute the projection matrix (from intrinsic parameters)
void computeProjectionMatrix();
//! Computes the eight corners of the frustum
/** \return success
**/
bool computeFrustumCorners();
//Inherited from ccHObject
virtual bool toFile_MeOnly(QFile& out) const override;
virtual bool fromFile_MeOnly(QFile& in, short dataVersion, int flags) override;
virtual void drawMeOnly(CC_DRAW_CONTEXT& context) override;
//! Camera intrinsic parameters
IntrinsicParameters m_intrinsicParams;
//! Lens distortion parameters
LensDistortionParameters::Shared m_distortionParams;
//! Frustum information structure
/** Used to draw it properly.
**/
FrustumInformation m_frustumInfos;
//! Intrinsic parameters matrix
ccGLMatrix m_projectionMatrix;
//! Whether the intrinsic matrix is valid or not
bool m_projectionMatrixIsValid;
};
class ccOctreeFrustumIntersector
{
public:
//! Definition of the state of a cell compared to a frustum
/** OUTSIDE : the celle is completely outside the frustum (no intersection, no inclusion)
INSIDE : the cell is completely inside the frustum
INTERSECT : other cases --> the frustum is completely inside the cell OR the frustum and the cell have an intersection
**/
enum OctreeCellVisibility
{
CELL_OUTSIDE_FRUSTUM = 0,
CELL_INSIDE_FRUSTUM = 1,
CELL_INTERSECT_FRUSTUM = 2,
};
//! Default constructor
ccOctreeFrustumIntersector()
: m_associatedOctree(nullptr)
{
}
//! Prepares structure for frustum filtering
bool build(CCLib::DgmOctree* octree);
//! Returns the cell visibility
OctreeCellVisibility positionFromFrustum(CCLib::DgmOctree::CellCode truncatedCode, unsigned char level) const
{
assert(m_associatedOctree);
std::unordered_set<CCLib::DgmOctree::CellCode>::const_iterator got = m_cellsInFrustum[level].find(truncatedCode);
if (got != m_cellsInFrustum[level].end())
return CELL_INSIDE_FRUSTUM;
got = m_cellsIntersectFrustum[level].find(truncatedCode);
if (got != m_cellsIntersectFrustum[level].end())
return CELL_INTERSECT_FRUSTUM;
return CELL_OUTSIDE_FRUSTUM;
}
//! Compute intersection between the octree and a frustum and send back the indices of 3D points inside the frustum or in cells interescting it.
/** Every cells of each level of the octree will be classified as INSIDE, OUTSIDE or INTERSECTING the frustum.
Their truncated code are then stored in m_cellsInFrustum (for cells INSIDE) or m_cellsIntersectFrustum (for
cells INTERSECTING).
\param pointsToTest contains the indice and 3D position (global coordinates system) of every 3D points stored in an INTERSECTING cell
\param inCameraFrustum contains the indice of every 3D points stored in an INSIDE cell
\param planesCoefficients coefficients (a, b, c and d) of the six frustum planes (0:right, 1:bottom, 2:left, 3:top, 4:near, 5:far)
\param ptsFrustum 3D coordinates of the eight corners of the frustum (global coordinates system)
\param edges 3D coordinates (global coordinates system) of the six director vector of the frustum edges
\param center 3D coordinates of the frustum center (global coordinates system) ; this is the center of the circumscribed sphere
**/
void computeFrustumIntersectionWithOctree( std::vector< std::pair<unsigned, CCVector3> >& pointsToTest,
std::vector<unsigned>& inCameraFrustum,
const float planesCoefficients[6][4],
const CCVector3 ptsFrustum[8],
const CCVector3 edges[6],
const CCVector3& center);
//! Compute intersection between the octree and the height children cells of a parent cell.
/** \param level current level
\param parentTruncatedCode truncated code of the parent cell (at level-1)
\param parentResult contains in which class the parent cell has been classified (OUTSIDE, INTERSECTING, INSIDE)
\param planesCoefficients coefficients (a, b, c and d) of the six frustum planes (0:right, 1:bottom, 2:left, 3:top, 4:near, 5:far)
\param ptsFrustum 3D coordinates of the eight corners of the frustum (global coordinates system)
\param edges 3D coordinates (global coordinates system) of the six director vector of the frustum edges
\param center 3D coordinates of the frustum center (global coordinates system) ; this is the center of the circumscribed sphere
**/
void computeFrustumIntersectionByLevel( unsigned char level,
CCLib::DgmOctree::CellCode parentTruncatedCode,
OctreeCellVisibility parentResult,
const float planesCoefficients[6][4],
const CCVector3 ptsFrustum[8],
const CCVector3 edges[6],
const CCVector3& center);
//! Separating Axis Test
/** See "Detecting intersection of a rectangular solid and a convex polyhedron" of Ned Greene
See "OBBTree: A Hierarchical Structure for Rapid Interference Detection" of S. Gottschalk, M. C. Lin and D. Manocha
\param bbMin minimum coordinates of the cell
\param bbMax maximum coordinates of the cell
\param planesCoefficients coefficients (a, b, c and d) of the six frustum planes (0:right, 1:bottom, 2:left, 3:top, 4:near, 5:far)
\param frustumCorners 3D coordinates of the eight corners of the frustum (global coordinates system)
\param frustumEdges 3D coordinates (global coordinates system) of the six director vector of the frustum edges
\param frustumCenter 3D coordinates of the frustum center (global coordinates system) ; this is the center of the circumscribed sphere
**/
OctreeCellVisibility separatingAxisTest(const CCVector3& bbMin,
const CCVector3& bbMax,
const float planesCoefficients[6][4],
const CCVector3 frustumCorners[8],
const CCVector3 frustumEdges[6],
const CCVector3& frustumCenter);
protected:
CCLib::DgmOctree* m_associatedOctree;
// contains the truncated code of the cells built in the octree
std::unordered_set<CCLib::DgmOctree::CellCode> m_cellsBuilt[CCLib::DgmOctree::MAX_OCTREE_LEVEL+1];
// contains the truncated code of the cells INSIDE the frustum
std::unordered_set<CCLib::DgmOctree::CellCode> m_cellsInFrustum[CCLib::DgmOctree::MAX_OCTREE_LEVEL+1];
// contains the truncated code of the cells INTERSECTING the frustum
std::unordered_set<CCLib::DgmOctree::CellCode> m_cellsIntersectFrustum[CCLib::DgmOctree::MAX_OCTREE_LEVEL+1];
};
#endif //CC_CAMERA_SENSOR_HEADER
|