File: ccFastMarchingForNormsDirection.cpp

package info (click to toggle)
cloudcompare 2.10.1-2
  • links: PTS
  • area: main
  • in suites: buster
  • size: 55,916 kB
  • sloc: cpp: 219,837; ansic: 29,944; makefile: 67; sh: 45
file content (535 lines) | stat: -rw-r--r-- 15,178 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
//##########################################################################
//#                                                                        #
//#                              CLOUDCOMPARE                              #
//#                                                                        #
//#  This program is free software; you can redistribute it and/or modify  #
//#  it under the terms of the GNU General Public License as published by  #
//#  the Free Software Foundation; version 2 or later of the License.      #
//#                                                                        #
//#  This program is distributed in the hope that it will be useful,       #
//#  but WITHOUT ANY WARRANTY; without even the implied warranty of        #
//#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the          #
//#  GNU General Public License for more details.                          #
//#                                                                        #
//#          COPYRIGHT: EDF R&D / TELECOM ParisTech (ENST-TSI)             #
//#                                                                        #
//##########################################################################

#include "ccFastMarchingForNormsDirection.h"

//Local
#include "ccGenericPointCloud.h"
#include "ccLog.h"
#include "ccNormalVectors.h"
#include "ccOctree.h"
#include "ccPointCloud.h"
#include "ccProgressDialog.h"
#ifdef QT_DEBUG
#include "ccScalarField.h"
#endif

//system
#include <cassert>

ccFastMarchingForNormsDirection::ccFastMarchingForNormsDirection()
	: CCLib::FastMarching()
{
}

static CCVector3 ComputeRobustAverageNorm(	CCLib::ReferenceCloud* subset,
											ccGenericPointCloud* sourceCloud)
{
	if (!subset || subset->size() == 0 || !sourceCloud)
		return CCVector3(0,0,1);

	assert(sourceCloud->hasNormals());
	assert(subset->getAssociatedCloud() == static_cast<CCLib::GenericIndexedCloud*>(sourceCloud));

	//we simply take the first normal as reference (DGM: seems to work better than the LS plane!)
	const CCVector3& N = sourceCloud->getPointNormal(subset->getPointGlobalIndex(0));

	//now we can compute the mean normal, using the first normal as reference for the sign
	CCVector3 Nout(0,0,0);
	unsigned n = subset->size();
	for (unsigned i=0; i<n; ++i)
	{
		const CCVector3& Ni = sourceCloud->getPointNormal(subset->getPointGlobalIndex(i));
		//compute the scalar product between the ith point normal and the robust one
		PointCoordinateType ps = Ni.dot(N);
		if (ps < 0)
			Nout -= Ni;
		else
			Nout += Ni;
	}

	Nout.normalize();

	return Nout;
}

int ccFastMarchingForNormsDirection::init(	ccGenericPointCloud* cloud,
											NormsIndexesTableType* theNorms,
											ccOctree* theOctree,
											unsigned char level)
{
	int result = initGridWithOctree(theOctree, level);
	if (result < 0)
		return result;

	//fill the grid with the octree
	CCLib::DgmOctree::cellCodesContainer cellCodes;
	theOctree->getCellCodes(level,cellCodes,true);

	CCLib::ReferenceCloud Yk(theOctree->associatedCloud());

	while (!cellCodes.empty())
	{
		if (!theOctree->getPointsInCell(cellCodes.back(),level,&Yk,true))
		{
			//not enough memory
			return -1;
		}
		
		//convert the octree cell code to grid position
		Tuple3i cellPos;
		theOctree->getCellPos(cellCodes.back(),level,cellPos,true);

		//convert it to FM cell pos index
		unsigned gridPos = pos2index(cellPos);

		//create corresponding cell
		DirectionCell* aCell = new DirectionCell;
		{
			//aCell->signConfidence = 1;
			aCell->cellCode = cellCodes.back();
			aCell->N = ComputeRobustAverageNorm(&Yk,cloud);
			aCell->C = *CCLib::Neighbourhood(&Yk).getGravityCenter();
		}

		m_theGrid[gridPos] = aCell;

		cellCodes.pop_back();
	}

	m_initialized = true;

	return 0;
}

float ccFastMarchingForNormsDirection::computePropagationConfidence(DirectionCell* originCell, DirectionCell* destCell) const
{
	//1) it depends on the angle between the current cell's orientation
	//	and its neighbor's orientation (symmetric)
	//2) it depends on whether the neighbor's relative position is
	//	compatible with the current cell orientation (symmetric)
	CCVector3 AB = destCell->C - originCell->C;
	AB.normalize();

	float psOri = fabs(static_cast<float>(AB.dot(originCell->N))); //ideal: 90 degrees
	float psDest = fabs(static_cast<float>(AB.dot(destCell->N))); //ideal: 90 degrees
	float oriConfidence = (psOri + psDest)/2; //between 0 and 1 (ideal: 0)
	
	return 1.0f - oriConfidence;
}

void ccFastMarchingForNormsDirection::resolveCellOrientation(unsigned index)
{
	DirectionCell* theCell = static_cast<DirectionCell*>(m_theGrid[index]);
	CCVector3& N = theCell->N;

	//we resolve the normal direction by looking at the (already processed) neighbors
	bool inverseNormal = false;
	float bestConf = 0;
//#define USE_BEST_NEIGHBOR_ONLY
#ifndef USE_BEST_NEIGHBOR_ONLY
	unsigned nPos = 0;
	float confPos = 0;
	unsigned nNeg = 0;
	float confNeg = 0;
#endif
	for (unsigned i=0; i<m_numberOfNeighbours; ++i)
	{
		DirectionCell* nCell = static_cast<DirectionCell*>(m_theGrid[static_cast<int>(index) + m_neighboursIndexShift[i]]);
		if (nCell && nCell->state == DirectionCell::ACTIVE_CELL)
		{
			//compute the confidence for each neighbor
			float confidence = computePropagationConfidence(nCell,theCell);
#ifdef USE_BEST_NEIGHBOR_ONLY
			if (confidence > bestConf)
			{
				bestConf = confidence;
				float ps = static_cast<float>(nCell->N.dot(N));
				inverseNormal = (ps < 0);
			}
#else
			//voting
			float ps = static_cast<float>(nCell->N.dot(N));
			if (ps < 0)
			{
				nNeg++;
				confNeg += confidence;
			}
			else
			{
				nPos++;
				confPos += confidence;
			}
#endif
		}
	}
	
#ifndef USE_BEST_NEIGHBOR_ONLY
	inverseNormal = (nNeg == nPos ? confNeg > confPos : nNeg > nPos);
	bestConf = inverseNormal ? confNeg : confPos; //DGM: absolute confidence seems to work better...
	//bestConf = inverseNormal ? confNeg/static_cast<float>(nNeg) : confPos/static_cast<float>(nPos);
#endif
	if (inverseNormal)
	{
		N *= -1;
	}
	theCell->signConfidence = bestConf;
	assert(theCell->signConfidence > 0);
}

#ifdef QT_DEBUG
//for debug purposes only
static unsigned s_cellIndex = 0;
#endif
int ccFastMarchingForNormsDirection::step()
{
	if (!m_initialized)
		return -1;

	//get 'earliest' cell
	unsigned minTCellIndex = getNearestTrialCell();
	if (minTCellIndex == 0)
		return 0;

	CCLib::FastMarching::Cell* minTCell = m_theGrid[minTCellIndex];
	assert(minTCell && minTCell->state != DirectionCell::ACTIVE_CELL);

	if (minTCell->T < Cell::T_INF())
	{
#ifdef QT_DEBUG
		if (s_cellIndex == 0)
		{
			//process seed cells first!
			for (size_t i=0; i<m_activeCells.size(); ++i)
				static_cast<DirectionCell*>(m_theGrid[m_activeCells[i]])->scalar = static_cast<float>(0);
			s_cellIndex++;
		}
		static_cast<DirectionCell*>(minTCell)->scalar = static_cast<float>(s_cellIndex++);
#endif

		//resolve the cell orientation
		resolveCellOrientation(minTCellIndex);
		//we add this cell to the "ACTIVE" set
		addActiveCell(minTCellIndex);

		//add its neighbors to the TRIAL set
		for (unsigned i=0;i<m_numberOfNeighbours;++i)
		{
			//get neighbor cell
			unsigned nIndex = minTCellIndex + m_neighboursIndexShift[i];
			CCLib::FastMarching::Cell* nCell = m_theGrid[nIndex];
			if (nCell)
			{
				//if it' not yet a TRIAL cell
				if (nCell->state == DirectionCell::FAR_CELL)
				{
					nCell->T = computeT(nIndex);
					addTrialCell(nIndex);
				}
				//otherwise we must update it's arrival time
				else if (nCell->state == DirectionCell::TRIAL_CELL)
				{
					const float& t_old = nCell->T;
					float t_new = computeT(nIndex);

					if (t_new < t_old)
						nCell->T = t_new;
				}
			}
		}
	}
	else
	{
		addIgnoredCell(minTCellIndex);
	}

	return 1;
}

float ccFastMarchingForNormsDirection::computeTCoefApprox(CCLib::FastMarching::Cell* originCell, CCLib::FastMarching::Cell* destCell) const
{
	DirectionCell* oCell = static_cast<DirectionCell*>(originCell);
	DirectionCell* dCell = static_cast<DirectionCell*>(destCell);
	float orientationConfidence = computePropagationConfidence(oCell,dCell); //between 0 and 1 (ideal: 1)

	return (1.0f-orientationConfidence) * oCell->signConfidence;
}

int ccFastMarchingForNormsDirection::propagate()
{
	//init "TRIAL" set with seed's neighbors
	initTrialCells();

	int result = 1;
	while (result > 0)
	{
		result = step();
	}

	return result;
}

unsigned ccFastMarchingForNormsDirection::updateResolvedTable(	ccGenericPointCloud* cloud,
																std::vector<unsigned char>& resolved,
																NormsIndexesTableType* theNorms)
{
	if (!m_initialized || !m_octree || m_gridLevel > CCLib::DgmOctree::MAX_OCTREE_LEVEL)
		return 0;

	CCLib::ReferenceCloud Yk(m_octree->associatedCloud());

	unsigned count = 0;
	for (unsigned int cell : m_activeCells)
	{
		DirectionCell* aCell = static_cast<DirectionCell*>(m_theGrid[cell]);
		if (!m_octree->getPointsInCell(aCell->cellCode, m_gridLevel, &Yk, true))
		{
			//not enough memory
			return 0;
		}

		for (unsigned k = 0; k < Yk.size(); ++k)
		{
			unsigned index = Yk.getPointGlobalIndex(k);
			resolved[index] = 1;

			const CompressedNormType& norm = theNorms->getValue(index);
			const CCVector3& N = ccNormalVectors::GetNormal(norm);

			//inverse point normal if necessary
			if (N.dot(aCell->N) < 0)
			{
				theNorms->setValue(index, ccNormalVectors::GetNormIndex(-N));
			}

#ifdef QT_DEBUG
			cloud->setPointScalarValue(index, aCell->T);
			//cloud->setPointScalarValue(index,aCell->signConfidence);
			//cloud->setPointScalarValue(index,aCell->scalar);
#endif

			++count;
		}
	}

	return count;
}

void ccFastMarchingForNormsDirection::initTrialCells()
{
	//we expect at most one 'ACTIVE' cell (i.e. the current seed)
	size_t seedCount = m_activeCells.size();
	assert(seedCount <= 1);

	if (seedCount == 1)
	{
		unsigned index = m_activeCells.front();
		DirectionCell* seedCell = static_cast<DirectionCell*>(m_theGrid[index]);

		assert(seedCell != nullptr);
		assert(seedCell->T == 0);
		assert(seedCell->signConfidence == 1);

		//add all its neighbour cells to the TRIAL set
		for (unsigned i = 0; i < m_numberOfNeighbours; ++i)
		{
			unsigned nIndex = index + m_neighboursIndexShift[i];
			DirectionCell* nCell = static_cast<DirectionCell*>(m_theGrid[nIndex]);
			//if the neighbor exists (it shouldn't be in the TRIAL or ACTIVE sets)
			if (nCell/* && nCell->state == DirectionCell::FAR_CELL*/)
			{
				assert(nCell->state == DirectionCell::FAR_CELL);
				addTrialCell(nIndex);

				//compute its approximate arrival time
				nCell->T = seedCell->T + m_neighboursDistance[i] * computeTCoefApprox(seedCell, nCell);
			}
		}
	}
}

int ccFastMarchingForNormsDirection::OrientNormals(	ccPointCloud* cloud,
													unsigned char octreeLevel,
													ccProgressDialog* progressCb)
{
	if (!cloud || !cloud->normals())
	{
		const QString	name( (cloud == nullptr) ? QStringLiteral("[unnamed]") : cloud->getName() );
		
		ccLog::Warning(QString("[orientNormalsWithFM] Cloud '%1' is invalid (or cloud has no normals)").arg( name ));
		assert(false);
		return 0;
	}
	NormsIndexesTableType* theNorms = cloud->normals();

	unsigned numberOfPoints = cloud->size();
	if (numberOfPoints == 0)
		return -1;

	//we need the octree
	if (!cloud->getOctree())
	{
		if (!cloud->computeOctree(progressCb))
		{
			ccLog::Warning(QString("[orientNormalsWithFM] Could not compute octree on cloud '%1'").arg(cloud->getName()));
			return 0;
		}
	}
	ccOctree::Shared octree = cloud->getOctree();
	assert(octree);

	//temporary SF
#ifndef QT_DEBUG
	bool sfWasDisplayed = cloud->sfShown();
#endif
	int oldSfIdx = cloud->getCurrentDisplayedScalarFieldIndex();
	int sfIdx = cloud->getScalarFieldIndexByName("FM_Propagation");
	if (sfIdx < 0)
		sfIdx = cloud->addScalarField("FM_Propagation");
	if (sfIdx >= 0)
	{
		cloud->setCurrentScalarField(sfIdx);
	}
	else
	{
		ccLog::Warning("[orientNormalsWithFM] Couldn't create temporary scalar field! Not enough memory?");
		return -3;
	}

	if (!cloud->enableScalarField())
	{
		ccLog::Warning("[orientNormalsWithFM] Couldn't enable temporary scalar field! Not enough memory?");
		cloud->deleteScalarField(sfIdx);
		cloud->setCurrentScalarField(oldSfIdx);
		return -4;
	}

	//flags indicating if each point has been processed or not
	std::vector<unsigned char> resolved;
	try
	{
		resolved.resize(numberOfPoints, 0);
	}
	catch (const std::bad_alloc&)
	{
		ccLog::Warning("[orientNormalsWithFM] Not enough memory!");
		cloud->deleteScalarField(sfIdx);
		cloud->setCurrentScalarField(oldSfIdx);
		return -5;
	}

	//Fast Marching propagation
	ccFastMarchingForNormsDirection fm;

	int result = fm.init(cloud, theNorms, octree.data(), octreeLevel);
	if (result < 0)
	{
		ccLog::Error("[orientNormalsWithFM] Something went wrong during initialization...");
		cloud->deleteScalarField(sfIdx);
		cloud->setCurrentScalarField(oldSfIdx);
		return -6;
	}

	//progress notification
	if (progressCb)
	{
		if (progressCb->textCanBeEdited())
		{
			progressCb->setMethodTitle("Norms direction");
			progressCb->setInfo(qPrintable(QString("Octree level: %1\nPoints: %2").arg(octreeLevel).arg(numberOfPoints)));
		}
		progressCb->update(0);
		progressCb->start();
	}

	const int octreeWidth = (1<<octreeLevel)-1;

	//enable 26-connectivity
	//fm.setExtendedConnectivity(true);

	//while non-processed points remain...
	unsigned resolvedPoints = 0;
	int lastProcessedPoint = -1;
	bool success = true;
	while (success)
	{
		//find the next non-processed point
		do
		{
			++lastProcessedPoint;
		}
		while (lastProcessedPoint < static_cast<int>(numberOfPoints) && resolved[lastProcessedPoint] != 0);

		//all points have been processed? Then we can stop.
		if (lastProcessedPoint == static_cast<int>(numberOfPoints))
			break;

		//we start the propagation from this point
		//its corresponding cell in fact ;)
		const CCVector3 *thePoint = cloud->getPoint(lastProcessedPoint);
		Tuple3i cellPos;
		octree->getTheCellPosWhichIncludesThePoint(thePoint, cellPos, octreeLevel);

		//clipping (in case the octree is not 'complete')
		cellPos.x = std::min(octreeWidth, cellPos.x);
		cellPos.y = std::min(octreeWidth, cellPos.y);
		cellPos.z = std::min(octreeWidth, cellPos.z);

		//set corresponding FM cell as 'seed'
		fm.setSeedCell(cellPos);

		//launch propagation
		int propagationResult = fm.propagate();

		//if it's a success
		if (propagationResult >= 0)
		{
			//compute the number of points processed during this pass
			unsigned count = fm.updateResolvedTable(cloud, resolved, theNorms);

			if (count != 0)
			{
				resolvedPoints += count;
				if (progressCb)
					progressCb->update(resolvedPoints / (numberOfPoints * 100.0f));
			}

			fm.cleanLastPropagation();
		}
		else
		{
			ccLog::Error("An error occurred during front propagation! Process cancelled...");
			success = false;
		}
	}

	if (progressCb)
		progressCb->stop();

	cloud->showNormals(true);
#ifdef QT_DEBUG
	cloud->setCurrentDisplayedScalarField(sfIdx);
	cloud->getCurrentDisplayedScalarField()->computeMinAndMax();
	cloud->showSF(true);
#else
	cloud->deleteScalarField(sfIdx);
	cloud->setCurrentScalarField(oldSfIdx);
	cloud->showSF(sfWasDisplayed);
#endif

	return (success ? 1 : 0);
}