1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
|
//##########################################################################
//# #
//# CLOUDCOMPARE #
//# #
//# This program is free software; you can redistribute it and/or modify #
//# it under the terms of the GNU General Public License as published by #
//# the Free Software Foundation; version 2 or later of the License. #
//# #
//# This program is distributed in the hope that it will be useful, #
//# but WITHOUT ANY WARRANTY; without even the implied warranty of #
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
//# GNU General Public License for more details. #
//# #
//# COPYRIGHT: EDF R&D / TELECOM ParisTech (ENST-TSI) #
//# #
//##########################################################################
#include "ccNormalVectors.h"
//Local
#include "ccSingleton.h"
#include "ccNormalCompressor.h"
//CCLib
#include <CCGeom.h>
#include <DgmOctreeReferenceCloud.h>
#include <GenericIndexedMesh.h>
#include <GenericProgressCallback.h>
#include <Neighbourhood.h>
//System
#include <assert.h>
#include <random>
//unique instance
static ccSingleton<ccNormalVectors> s_uniqueInstance;
//Number of points for local modeling to compute normals with 2D1/2 Delaunay triangulation
static const unsigned NUMBER_OF_POINTS_FOR_NORM_WITH_TRI = 6;
//Number of points for local modeling to compute normals with least square plane
static const unsigned NUMBER_OF_POINTS_FOR_NORM_WITH_LS = 3;
//Number of points for local modeling to compute normals with quadratic 'height' function
static const unsigned NUMBER_OF_POINTS_FOR_NORM_WITH_QUADRIC = 6;
ccNormalVectors* ccNormalVectors::GetUniqueInstance()
{
if (!s_uniqueInstance.instance)
s_uniqueInstance.instance = new ccNormalVectors();
return s_uniqueInstance.instance;
}
void ccNormalVectors::ReleaseUniqueInstance()
{
s_uniqueInstance.release();
}
ccNormalVectors::ccNormalVectors()
{
init();
}
ccNormalVectors::~ccNormalVectors()
{
}
CompressedNormType ccNormalVectors::GetNormIndex(const PointCoordinateType N[])
{
unsigned index = ccNormalCompressor::Compress(N);
return static_cast<CompressedNormType>(index);
}
bool ccNormalVectors::enableNormalHSVColorsArray()
{
if (!m_theNormalHSVColors.empty())
{
return true;
}
if (m_theNormalVectors.empty())
{
//'init' should be called first!
return false;
}
try
{
m_theNormalHSVColors.resize(m_theNormalVectors.size());
}
catch (const std::bad_alloc&)
{
//not enough memory
return false;
}
for (size_t i = 0; i < m_theNormalVectors.size(); ++i)
{
m_theNormalHSVColors[i] = ccNormalVectors::ConvertNormalToRGB(m_theNormalVectors[i]);
}
return true;
}
const ccColor::Rgb& ccNormalVectors::getNormalHSVColor(unsigned index) const
{
assert(index < m_theNormalVectors.size());
return m_theNormalHSVColors[index];
}
bool ccNormalVectors::init()
{
unsigned numberOfVectors = ccNormalCompressor::NULL_NORM_CODE + 1;
try
{
m_theNormalVectors.resize(numberOfVectors);
}
catch (const std::bad_alloc&)
{
ccLog::Warning("[ccNormalVectors::init] Not enough memory!");
return false;
}
for (unsigned i = 0; i < numberOfVectors; ++i)
{
ccNormalCompressor::Decompress(i, m_theNormalVectors[i].u);
m_theNormalVectors[i].normalize();
}
return true;
}
bool ccNormalVectors::UpdateNormalOrientations( ccGenericPointCloud* theCloud,
NormsIndexesTableType& theNormsCodes,
Orientation preferredOrientation)
{
assert(theCloud);
//preferred orientation
CCVector3 orientation(0,0,0);
CCVector3 barycenter(0,0,0);
bool useBarycenter = false;
bool positiveSign = true;
switch (preferredOrientation)
{
case PLUS_X:
case MINUS_X:
case PLUS_Y:
case MINUS_Y:
case PLUS_Z:
case MINUS_Z:
{
//0-5 = +/-X,Y,Z
assert(preferredOrientation >= 0 && preferredOrientation <= 5);
orientation.u[preferredOrientation >> 1] = ((preferredOrientation & 1) == 0 ? PC_ONE : -PC_ONE); //odd number --> inverse direction
}
break;
case PLUS_BARYCENTER:
case MINUS_BARYCENTER:
{
barycenter = CCLib::GeometricalAnalysisTools::ComputeGravityCenter(theCloud);
ccLog::Print(QString("[UpdateNormalOrientations] Barycenter: (%1,%2,%3)").arg(barycenter.x).arg(barycenter.y).arg(barycenter.z));
useBarycenter = true;
positiveSign = (preferredOrientation == 6);
}
break;
case PLUS_ZERO:
case MINUS_ZERO:
{
//barycenter = CCVector3(0,0,0);
useBarycenter = true;
positiveSign = (preferredOrientation == 8);
}
break;
case PREVIOUS:
{
if (!theCloud->hasNormals())
{
ccLog::Warning("[UpdateNormalOrientations] Can't orient the new normals with the previous ones... as the cloud has no normals!");
return false;
}
}
break;
default:
assert(false);
return false;
}
//we check each normal orientation
for (unsigned i = 0; i < theNormsCodes.currentSize(); i++)
{
const CompressedNormType& code = theNormsCodes.getValue(i);
CCVector3 N = GetNormal(code);
if (preferredOrientation == PREVIOUS)
{
orientation = theCloud->getPointNormal(i);
}
else if (useBarycenter)
{
if (positiveSign)
{
orientation = *(theCloud->getPoint(i)) - barycenter;
}
else
{
orientation = barycenter - *(theCloud->getPoint(i));
}
}
//we eventually check the sign
if (N.dot(orientation) < 0)
{
//inverse normal and re-compress it
N *= -1;
theNormsCodes.setValue(i, ccNormalVectors::GetNormIndex(N.u));
}
}
return true;
}
PointCoordinateType ccNormalVectors::GuessNaiveRadius(ccGenericPointCloud* cloud)
{
if (!cloud)
{
assert(false);
return 0;
}
PointCoordinateType largetDim = cloud->getOwnBB().getMaxBoxDim();
return largetDim / std::min<unsigned>(100, std::max<unsigned>(1, cloud->size()/100 ) );
}
PointCoordinateType ccNormalVectors::GuessBestRadius( ccGenericPointCloud* cloud,
CCLib::DgmOctree* inputOctree/*=0*/,
CCLib::GenericProgressCallback* progressCb/*=0*/)
{
if (!cloud)
{
assert(false);
return 0;
}
CCLib::DgmOctree* octree = inputOctree;
if (!octree)
{
octree = new CCLib::DgmOctree(cloud);
if (octree->build() <= 0)
{
delete octree;
ccLog::Warning("[GuessBestRadius] Failed to compute the cloud octree");
return 0;
}
}
PointCoordinateType bestRadius = GuessNaiveRadius(cloud);
if (bestRadius == 0)
{
ccLog::Warning("[GuessBestRadius] The cloud has invalid dimensions");
return 0;
}
if (cloud->size() < 100)
{
//no need to do anything else for very small clouds!
return bestRadius;
}
//we are now going to sample the cloud so as to compute statistics on the density
{
static const int s_aimedPop = 16;
static const int s_aimedPopRange = 4;
static const int s_minPop = 6;
static const double s_minAboveMinRatio = 0.97;
const unsigned sampleCount = std::min<unsigned>(200, cloud->size() / 10);
double aimedPop = s_aimedPop;
PointCoordinateType radius = bestRadius;
PointCoordinateType lastRadius = radius;
double lastMeanPop = 0;
std::random_device rd; // non-deterministic generator
std::mt19937 gen(rd()); // to seed mersenne twister.
std::uniform_int_distribution<unsigned> dist(0, cloud->size() - 1);
//we may have to do this several times
for (size_t attempt = 0; attempt < 10; ++attempt)
{
int totalCount = 0;
int totalSquareCount = 0;
int minPop = 0;
int maxPop = 0;
int aboveMinPopCount = 0;
unsigned char octreeLevel = octree->findBestLevelForAGivenNeighbourhoodSizeExtraction(radius);
for (size_t i = 0; i < sampleCount; ++i)
{
unsigned randomIndex = dist(gen);
assert(randomIndex < cloud->size());
const CCVector3* P = cloud->getPoint(randomIndex);
CCLib::DgmOctree::NeighboursSet Yk;
int n = octree->getPointsInSphericalNeighbourhood(*P, radius, Yk, octreeLevel);
assert(n >= 1);
totalCount += n;
totalSquareCount += n*n;
if (i == 0)
{
minPop = maxPop = n;
}
else
{
if (n < minPop)
minPop = n;
else if (n > maxPop)
maxPop = n;
}
if (n >= s_minPop)
{
++aboveMinPopCount;
}
}
double meanPop = static_cast<double>(totalCount) / sampleCount;
double stdDevPop = sqrt(fabs(static_cast<double>(totalSquareCount) / sampleCount - meanPop*meanPop));
double aboveMinPopRatio = static_cast<double>(aboveMinPopCount) / sampleCount;
ccLog::Print(QString("[GuessBestRadius] Radius = %1 -> samples population in [%2 ; %3] (mean %4 / std. dev. %5 / %6% above mininmum)")
.arg(radius)
.arg(minPop)
.arg(maxPop)
.arg(meanPop)
.arg(stdDevPop)
.arg(aboveMinPopRatio * 100)
);
if (fabs(meanPop - aimedPop) < s_aimedPopRange)
{
//we have found a correct radius
bestRadius = radius;
if (aboveMinPopRatio < s_minAboveMinRatio)
{
//ccLog::Warning("[GuessBestRadius] The cloud density is very inhomogeneous! You may have to increase the radius to get valid normals everywhere... but the result will be smoother");
aimedPop = s_aimedPop + (2.0*stdDevPop)/* * (1.0-aboveMinPopRatio)*/;
assert(aimedPop >= s_aimedPop);
}
else
{
break;
}
}
//otherwise we have to find a better estimate for the radius
PointCoordinateType newRadius = radius;
//(warning: we consider below that the number of points is proportional to the SURFACE of the neighborhood)
assert(meanPop >= 1.0);
if (attempt == 0)
{
//this is our best (only) guess for the moment
bestRadius = radius;
newRadius = radius * sqrt(aimedPop / meanPop);
}
else
{
//keep track of our best guess nevertheless
if (fabs(meanPop - aimedPop) < fabs(bestRadius - aimedPop))
{
bestRadius = radius;
}
double slope = (radius*radius - lastRadius*lastRadius) / (meanPop - lastMeanPop);
PointCoordinateType newSquareRadius = lastRadius*lastRadius + (aimedPop - lastMeanPop) * slope;
if (newSquareRadius > 0)
{
newRadius = sqrt(newSquareRadius);
}
else
{
//can't do any better!
break;
}
}
lastRadius = radius;
lastMeanPop = meanPop;
radius = newRadius;
}
}
if (octree && !inputOctree)
{
delete octree;
octree = 0;
}
return bestRadius;
}
bool ccNormalVectors::ComputeCloudNormals( ccGenericPointCloud* theCloud,
NormsIndexesTableType& theNormsCodes,
CC_LOCAL_MODEL_TYPES localModel,
PointCoordinateType localRadius,
Orientation preferredOrientation/*=UNDEFINED*/,
CCLib::GenericProgressCallback* progressCb/*=0*/,
CCLib::DgmOctree* inputOctree/*=0*/)
{
assert(theCloud);
unsigned pointCount = theCloud->size();
if (pointCount < 3)
{
return false;
}
CCLib::DgmOctree* theOctree = inputOctree;
if (!theOctree)
{
theOctree = new CCLib::DgmOctree(theCloud);
if (theOctree->build() <= 0)
{
delete theOctree;
return false;
}
}
//reserve some memory to store the (compressed) normals
if (!theNormsCodes.isAllocated() || theNormsCodes.currentSize() < pointCount)
{
if (!theNormsCodes.resizeSafe(pointCount))
{
if (theOctree && !inputOctree)
delete theOctree;
return false;
}
}
//we instantiate 3D normal vectors
NormsTableType* theNorms = new NormsTableType;
static const CCVector3 blankN(0, 0, 0);
if (!theNorms->resizeSafe(pointCount, true, &blankN))
{
theNormsCodes.resize(0);
if (theOctree && !inputOctree)
delete theOctree;
return false;
}
//theNorms->fill(0);
void* additionalParameters[2] = { reinterpret_cast<void*>(theNorms), reinterpret_cast<void*>(&localRadius) };
unsigned processedCells = 0;
switch (localModel)
{
case LS:
{
unsigned char level = theOctree->findBestLevelForAGivenNeighbourhoodSizeExtraction(localRadius);
processedCells = theOctree->executeFunctionForAllCellsAtLevel( level,
&(ComputeNormsAtLevelWithLS),
additionalParameters,
true,
progressCb,
"Normals Computation[LS]");
}
break;
case TRI:
{
unsigned char level = theOctree->findBestLevelForAGivenPopulationPerCell(NUMBER_OF_POINTS_FOR_NORM_WITH_TRI);
processedCells = theOctree->executeFunctionForAllCellsStartingAtLevel( level,
&(ComputeNormsAtLevelWithTri),
additionalParameters,
NUMBER_OF_POINTS_FOR_NORM_WITH_TRI / 2,
NUMBER_OF_POINTS_FOR_NORM_WITH_TRI * 3,
true,
progressCb,
"Normals Computation[TRI]");
}
break;
case QUADRIC:
{
unsigned char level = theOctree->findBestLevelForAGivenNeighbourhoodSizeExtraction(localRadius);
processedCells = theOctree->executeFunctionForAllCellsAtLevel( level,
&(ComputeNormsAtLevelWithQuadric),
additionalParameters,
true,
progressCb,
"Normals Computation[QUADRIC]");
}
break;
default:
break;
}
//error or canceled by user?
if (processedCells == 0 || (progressCb && progressCb->isCancelRequested()))
{
theNormsCodes.resize(0);
return false;
}
//we 'compress' each normal
std::fill(theNormsCodes.begin(), theNormsCodes.end(), 0);
for (unsigned i = 0; i < pointCount; i++)
{
const CCVector3& N = theNorms->at(i);
CompressedNormType nCode = GetNormIndex(N);
theNormsCodes.setValue(i, nCode);
}
theNorms->release();
theNorms = 0;
//preferred orientation
if (preferredOrientation != UNDEFINED)
{
UpdateNormalOrientations(theCloud, theNormsCodes, preferredOrientation);
}
if (theOctree && !inputOctree)
{
delete theOctree;
theOctree = 0;
}
return true;
}
bool ccNormalVectors::ComputeNormalWithQuadric(CCLib::GenericIndexedCloudPersist* points, const CCVector3& P, CCVector3& N)
{
CCLib::Neighbourhood Z(points);
Tuple3ub dims;
const PointCoordinateType* h = Z.getQuadric(&dims);
if (h)
{
const CCVector3* gv = Z.getGravityCenter();
assert(gv);
const unsigned char& iX = dims.x;
const unsigned char& iY = dims.y;
const unsigned char& iZ = dims.z;
PointCoordinateType lX = P.u[iX] - gv->u[iX];
PointCoordinateType lY = P.u[iY] - gv->u[iY];
N.u[iX] = h[1] + (2 * h[3] * lX) + (h[4] * lY);
N.u[iY] = h[2] + (2 * h[5] * lY) + (h[4] * lX);
N.u[iZ] = -1;
//normalize the result
N.normalize();
return true;
}
else
{
return false;
}
}
bool ccNormalVectors::ComputeNormalWithLS(CCLib::GenericIndexedCloudPersist* pointAndNeighbors, CCVector3& N)
{
N = CCVector3(0, 0, 0);
if (!pointAndNeighbors)
{
assert(false);
return false;
}
if (pointAndNeighbors->size() < 3)
{
return false;
}
CCLib::Neighbourhood Z(pointAndNeighbors);
const CCVector3* _N = Z.getLSPlaneNormal();
if (_N)
{
N = *_N;
return true;
}
else
{
return false;
}
}
bool ccNormalVectors::ComputeNormalWithTri(CCLib::GenericIndexedCloudPersist* pointAndNeighbors, CCVector3& N)
{
N = CCVector3(0, 0, 0);
if (!pointAndNeighbors)
{
assert(false);
return false;
}
if (pointAndNeighbors->size() < 3)
{
return false;
}
CCLib::Neighbourhood Z(pointAndNeighbors);
//we mesh the neighbour points (2D1/2)
CCLib::GenericIndexedMesh* theMesh = Z.triangulateOnPlane();
if (!theMesh)
{
return false;
}
unsigned triCount = theMesh->size();
//for all triangles
theMesh->placeIteratorAtBeginning();
for (unsigned j = 0; j < triCount; ++j)
{
//we can't use getNextTriangleVertIndexes (which is faster on mesh groups but not multi-thread compatible) but anyway we'll never get mesh groups here!
const CCLib::VerticesIndexes* tsi = theMesh->getTriangleVertIndexes(j);
//we look if the central point is one of the triangle's vertices
if (tsi->i1 == 0 || tsi->i2 == 0 || tsi->i3 == 0)
{
const CCVector3 *A = pointAndNeighbors->getPoint(tsi->i1);
const CCVector3 *B = pointAndNeighbors->getPoint(tsi->i2);
const CCVector3 *C = pointAndNeighbors->getPoint(tsi->i3);
CCVector3 no = (*B - *A).cross(*C - *A);
//no.normalize();
N += no;
}
}
delete theMesh;
theMesh = 0;
//normalize the 'mean' vector
N.normalize();
return true;
}
bool ccNormalVectors::ComputeNormsAtLevelWithQuadric( const CCLib::DgmOctree::octreeCell& cell,
void** additionalParameters,
CCLib::NormalizedProgress* nProgress/*=0*/)
{
//additional parameters
NormsTableType* theNorms = static_cast<NormsTableType*>(additionalParameters[0]);
PointCoordinateType radius = *static_cast<PointCoordinateType*>(additionalParameters[1]);
CCLib::DgmOctree::NearestNeighboursSphericalSearchStruct nNSS;
nNSS.level = cell.level;
nNSS.prepare(radius, cell.parentOctree->getCellSize(nNSS.level));
cell.parentOctree->getCellPos(cell.truncatedCode, cell.level, nNSS.cellPos, true);
cell.parentOctree->computeCellCenter(nNSS.cellPos, cell.level, nNSS.cellCenter);
//we already know which points are lying in the current cell
unsigned pointCount = cell.points->size();
nNSS.pointsInNeighbourhood.resize(pointCount);
CCLib::DgmOctree::NeighboursSet::iterator it = nNSS.pointsInNeighbourhood.begin();
for (unsigned j = 0; j < pointCount; ++j, ++it)
{
it->point = cell.points->getPointPersistentPtr(j);
it->pointIndex = cell.points->getPointGlobalIndex(j);
}
nNSS.alreadyVisitedNeighbourhoodSize = 1;
for (unsigned i = 0; i < pointCount; ++i)
{
cell.points->getPoint(i, nNSS.queryPoint);
//warning: there may be more points at the end of nNSS.pointsInNeighbourhood than the actual nearest neighbors (k)!
unsigned k = cell.parentOctree->findNeighborsInASphereStartingFromCell(nNSS, radius, false);
float cur_radius = radius;
while (k < NUMBER_OF_POINTS_FOR_NORM_WITH_QUADRIC && cur_radius < 16*radius)
{
cur_radius *= 1.189207115f;
k = cell.parentOctree->findNeighborsInASphereStartingFromCell(nNSS, cur_radius, false);
}
if (k >= NUMBER_OF_POINTS_FOR_NORM_WITH_QUADRIC)
{
CCLib::DgmOctreeReferenceCloud neighbours(&nNSS.pointsInNeighbourhood, k);
CCVector3 N;
if (ComputeNormalWithQuadric(&neighbours, nNSS.queryPoint, N))
{
theNorms->setValue(cell.points->getPointGlobalIndex(i), N);
}
}
if (nProgress && !nProgress->oneStep())
return false;
}
return true;
}
bool ccNormalVectors::ComputeNormsAtLevelWithLS(const CCLib::DgmOctree::octreeCell& cell,
void** additionalParameters,
CCLib::NormalizedProgress* nProgress/*=0*/)
{
//additional parameters
NormsTableType* theNorms = static_cast<NormsTableType*>(additionalParameters[0]);
PointCoordinateType radius = *static_cast<PointCoordinateType*>(additionalParameters[1]);
CCLib::DgmOctree::NearestNeighboursSphericalSearchStruct nNSS;
nNSS.level = cell.level;
nNSS.prepare(radius, cell.parentOctree->getCellSize(nNSS.level));
cell.parentOctree->getCellPos(cell.truncatedCode, cell.level, nNSS.cellPos, true);
cell.parentOctree->computeCellCenter(nNSS.cellPos, cell.level, nNSS.cellCenter);
//we already know which points are lying in the current cell
unsigned pointCount = cell.points->size();
nNSS.pointsInNeighbourhood.resize(pointCount);
{
CCLib::DgmOctree::NeighboursSet::iterator it = nNSS.pointsInNeighbourhood.begin();
for (unsigned j = 0; j < pointCount; ++j, ++it)
{
it->point = cell.points->getPointPersistentPtr(j);
it->pointIndex = cell.points->getPointGlobalIndex(j);
}
}
nNSS.alreadyVisitedNeighbourhoodSize = 1;
for (unsigned i = 0; i < pointCount; ++i)
{
cell.points->getPoint(i, nNSS.queryPoint);
//warning: there may be more points at the end of nNSS.pointsInNeighbourhood than the actual nearest neighbors (k)!
unsigned k = cell.parentOctree->findNeighborsInASphereStartingFromCell(nNSS, radius, false);
float cur_radius = radius;
while (k < NUMBER_OF_POINTS_FOR_NORM_WITH_LS && cur_radius < 16*radius)
{
cur_radius *= 1.189207115f;
k = cell.parentOctree->findNeighborsInASphereStartingFromCell(nNSS, cur_radius, false);
}
if (k >= NUMBER_OF_POINTS_FOR_NORM_WITH_LS)
{
CCLib::DgmOctreeReferenceCloud neighbours(&nNSS.pointsInNeighbourhood, k);
CCVector3 N;
if (ComputeNormalWithLS(&neighbours, N))
{
theNorms->setValue(cell.points->getPointGlobalIndex(i), N);
}
}
if (nProgress && !nProgress->oneStep())
{
return false;
}
}
return true;
}
bool ccNormalVectors::ComputeNormsAtLevelWithTri( const CCLib::DgmOctree::octreeCell& cell,
void** additionalParameters,
CCLib::NormalizedProgress* nProgress/*=0*/)
{
//additional parameters
NormsTableType* theNorms = static_cast<NormsTableType*>(additionalParameters[0]);
CCLib::DgmOctree::NearestNeighboursSearchStruct nNSS;
nNSS.level = cell.level;
nNSS.minNumberOfNeighbors = NUMBER_OF_POINTS_FOR_NORM_WITH_TRI;
cell.parentOctree->getCellPos(cell.truncatedCode, cell.level, nNSS.cellPos, true);
cell.parentOctree->computeCellCenter(nNSS.cellPos, cell.level, nNSS.cellCenter);
//we already know which points are lying in the current cell
unsigned pointCount = cell.points->size();
nNSS.pointsInNeighbourhood.resize(pointCount);
CCLib::DgmOctree::NeighboursSet::iterator it = nNSS.pointsInNeighbourhood.begin();
{
for (unsigned j = 0; j < pointCount; ++j, ++it)
{
it->point = cell.points->getPointPersistentPtr(j);
it->pointIndex = cell.points->getPointGlobalIndex(j);
}
}
nNSS.alreadyVisitedNeighbourhoodSize = 1;
for (unsigned i = 0; i < pointCount; ++i)
{
cell.points->getPoint(i, nNSS.queryPoint);
unsigned k = cell.parentOctree->findNearestNeighborsStartingFromCell(nNSS);
if (k > NUMBER_OF_POINTS_FOR_NORM_WITH_TRI)
{
if (k > NUMBER_OF_POINTS_FOR_NORM_WITH_TRI * 3)
k = NUMBER_OF_POINTS_FOR_NORM_WITH_TRI * 3;
CCLib::DgmOctreeReferenceCloud neighbours(&nNSS.pointsInNeighbourhood, k);
CCVector3 N;
if (ComputeNormalWithTri(&neighbours, N))
{
theNorms->setValue(cell.points->getPointGlobalIndex(i), N);
}
}
if (nProgress && !nProgress->oneStep())
return false;
}
return true;
}
QString ccNormalVectors::ConvertStrikeAndDipToString(double& strike_deg, double& dip_deg)
{
int iStrike = static_cast<int>(strike_deg);
int iDip = static_cast<int>(dip_deg);
return QString("N%1°E - %2°").arg(iStrike, 3, 10, QChar('0')).arg(iDip, 3, 10, QChar('0'));
}
QString ccNormalVectors::ConvertDipAndDipDirToString(PointCoordinateType dip_deg, PointCoordinateType dipDir_deg)
{
int iDipDir = static_cast<int>(dipDir_deg);
int iDip = static_cast<int>(dip_deg);
return QString("Dip: %1 deg. - Dip direction: %2 deg.").arg(iDip, 3, 10, QChar('0')).arg(iDipDir, 3, 10, QChar('0'));
}
void ccNormalVectors::ConvertNormalToStrikeAndDip(const CCVector3& N, PointCoordinateType& strike_deg, PointCoordinateType& dip_deg)
{
// Adapted from Andy Michael's 'stridip.c':
// Finds strike and dip of plane given normal vector having components n, e, and u
// output is in degrees north of east and then
// uses a right hand rule for the dip of the plane
if (N.norm2() > std::numeric_limits<PointCoordinateType>::epsilon())
{
strike_deg = 180.0 - atan2(N.y, N.x)*CC_RAD_TO_DEG; //atan2 output is between -180 and 180! So strike is always positive here
PointCoordinateType x = sqrt(N.x*N.x + N.y*N.y); //x is the horizontal magnitude
dip_deg = atan2(x, N.z)*CC_RAD_TO_DEG;
}
else
{
strike_deg = dip_deg = std::numeric_limits<PointCoordinateType>::quiet_NaN();
}
}
void ccNormalVectors::ConvertNormalToDipAndDipDir(const CCVector3& N, PointCoordinateType& dip_deg, PointCoordinateType& dipDir_deg)
{
//http://en.wikipedia.org/wiki/Structural_geology#Geometries
if (N.norm2d() > std::numeric_limits<PointCoordinateType>::epsilon())
{
// The dip direction must be the same for parallel facets, regardless
// of whether their normals point upwards or downwards.
//
// The formula using atan2() with the swapped N.x and N.y already
// gives the correct results for facets with the normal pointing
// upwards, so just use the sign of N.z to invert the normals if they
// point downwards.
double Nsign = N.z < 0 ? -1.0 : 1.0; //DGM: copysign is not available on VS2012
//"Dip direction is measured in 360 degrees, generally clockwise from North"
double dipDir_rad = atan2(Nsign * N.x, Nsign * N.y); //result in [-pi,+pi]
if (dipDir_rad < 0)
{
dipDir_rad += 2 * M_PI;
}
// Dip angle
//
// acos() returns values in [0, pi] but using fabs() all the normals
// are considered pointing upwards, so the actual result will be in
// [0, pi/2] as required by the definition of dip.
// We skip the division by r because the normal is a unit vector.
double dip_rad = acos(fabs(N.z));
dipDir_deg = static_cast<PointCoordinateType>(dipDir_rad * CC_RAD_TO_DEG);
dip_deg = static_cast<PointCoordinateType>(dip_rad * CC_RAD_TO_DEG);
}
else
{
dipDir_deg = dip_deg = std::numeric_limits<PointCoordinateType>::quiet_NaN();
}
}
CCVector3 ccNormalVectors::ConvertDipAndDipDirToNormal(PointCoordinateType dip_deg, PointCoordinateType dipDir_deg, bool upward/*=true*/)
{
//specific case
if (std::isnan(dip_deg) || std::isnan(dipDir_deg))
{
return CCVector3(0, 0, 0);
}
double Nz = cos(dip_deg * CC_DEG_TO_RAD);
double Nxy = sqrt(1.0 - Nz * Nz);
double dipDir_rad = dipDir_deg * CC_DEG_TO_RAD;
CCVector3 N( static_cast<PointCoordinateType>(Nxy * sin(dipDir_rad)),
static_cast<PointCoordinateType>(Nxy * cos(dipDir_rad)),
static_cast<PointCoordinateType>(Nz) );
#ifdef _DEBUG
//internal consistency test
PointCoordinateType dip2, dipDir2;
ConvertNormalToDipAndDipDir(N, dip2, dipDir2);
assert(fabs(dip2 - dip_deg) < 1.0e-3 && (dip2 == 0 || fabs(dipDir2 - dipDir_deg) < 1.0e-3));
#endif
if (!upward)
{
N = -N;
}
return N;
}
void ccNormalVectors::ConvertNormalToHSV(const CCVector3& N, float& H, float& S, float& V)
{
PointCoordinateType dip = 0, dipDir = 0;
ConvertNormalToDipAndDipDir(N, dip, dipDir);
H = static_cast<float>(dipDir);
if (H == 360.0f) //H is in [0;360[
H = 0;
S = static_cast<float>(dip / 90); //S is in [0;1]
V = 1.0f;
}
ccColor::Rgb ccNormalVectors::ConvertNormalToRGB(const CCVector3& N)
{
ccColor::Rgbf col((N.x + 1) / 2, (N.y + 1) / 2, (N.z + 1) / 2);
return ccColor::Rgb( static_cast<ColorCompType>(col.r * ccColor::MAX),
static_cast<ColorCompType>(col.g * ccColor::MAX),
static_cast<ColorCompType>(col.b * ccColor::MAX));
}
|