File: ccPointCloudInterpolator.cpp

package info (click to toggle)
cloudcompare 2.10.1-2
  • links: PTS
  • area: main
  • in suites: buster
  • size: 55,916 kB
  • sloc: cpp: 219,837; ansic: 29,944; makefile: 67; sh: 45
file content (352 lines) | stat: -rw-r--r-- 10,956 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
//##########################################################################
//#                                                                        #
//#                              CLOUDCOMPARE                              #
//#                                                                        #
//#  This program is free software; you can redistribute it and/or modify  #
//#  it under the terms of the GNU General Public License as published by  #
//#  the Free Software Foundation; version 2 or later of the License.      #
//#                                                                        #
//#  This program is distributed in the hope that it will be useful,       #
//#  but WITHOUT ANY WARRANTY; without even the implied warranty of        #
//#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the          #
//#  GNU General Public License for more details.                          #
//#                                                                        #
//#                  COPYRIGHT: Daniel Girardeau-Montaut                   #
//#                                                                        #
//##########################################################################

#include "ccPointCloudInterpolator.h"

//qCC_db
#include "ccPointCloud.h"

//CCLib
#include <DgmOctree.h>
#include <DistanceComputationTools.h>
#include <GenericProgressCallback.h>
#include <ccScalarField.h>

struct SFPair
{
	SFPair(const CCLib::ScalarField* sfIn = 0, CCLib::ScalarField* sfOut = 0) : in(sfIn), out(sfOut) {}
	const CCLib::ScalarField* in;
	CCLib::ScalarField* out;
};

bool cellSFInterpolator(const CCLib::DgmOctree::octreeCell& cell,
						void** additionalParameters,
						CCLib::NormalizedProgress* nProgress/*=0*/)
{
	//additional parameters
//	const ccPointCloud* srcCloud = reinterpret_cast<ccPointCloud*>(additionalParameters[0]);
	const CCLib::DgmOctree* srcOctree = reinterpret_cast<CCLib::DgmOctree*>(additionalParameters[1]);
	std::vector<SFPair>* scalarFields = reinterpret_cast<std::vector< SFPair >*>(additionalParameters[2]);
	const ccPointCloudInterpolator::Parameters* params = reinterpret_cast<const ccPointCloudInterpolator::Parameters*>(additionalParameters[3]);
	
	bool normalDistWeighting = false;
	double interpSigma2x2 = 0;
	if (params->algo == ccPointCloudInterpolator::Parameters::NORMAL_DIST)
	{
		interpSigma2x2 = 2 * params->sigma * params->sigma;
		normalDistWeighting = (interpSigma2x2 > 0);
	}

	//structure for nearest neighbors search
	bool useKNN = (params->method == ccPointCloudInterpolator::Parameters::K_NEAREST_NEIGHBORS);
	CCLib::DgmOctree::NearestNeighboursSphericalSearchStruct nNSS;
	{
		nNSS.level = cell.level;
		if (useKNN)
		{
			nNSS.minNumberOfNeighbors = params->knn;
		}
		else
		{
			nNSS.prepare(static_cast<PointCoordinateType>(params->radius), cell.parentOctree->getCellSize(cell.level));
		}
		cell.parentOctree->getCellPos(cell.truncatedCode, cell.level, nNSS.cellPos, true);
		cell.parentOctree->computeCellCenter(nNSS.cellPos, cell.level, nNSS.cellCenter);
	}

	std::vector<double> sumValues;
	size_t sfCount = scalarFields->size();
	assert(sfCount != 0);
	sumValues.resize(sfCount);

	//for each point of the current cell (destination octree) we look for its nearest neighbours in the source cloud
	unsigned pointCount = cell.points->size();
	for (unsigned i = 0; i < pointCount; i++)
	{
		unsigned outPointIndex = cell.points->getPointGlobalIndex(i);
		cell.points->getPoint(i, nNSS.queryPoint);

		//look for neighbors (either inside a sphere or the k nearest ones)
		//warning: there may be more points at the end of nNSS.pointsInNeighbourhood than the actual nearest neighbors (neighborCount)!
		unsigned neighborCount = 0;

		if (useKNN)
		{
			neighborCount = srcOctree->findNearestNeighborsStartingFromCell(nNSS);
			neighborCount = std::min(neighborCount, params->knn);
		}
		else
		{
			neighborCount = srcOctree->findNeighborsInASphereStartingFromCell(nNSS, params->radius, false);
		}

		if (neighborCount)
		{
			if (params->algo == ccPointCloudInterpolator::Parameters::MEDIAN)
			{
				//median
				std::vector<ScalarType> values;
				values.resize(neighborCount);
				unsigned medianIndex = std::max(neighborCount / 2, 1u) - 1;

				for (unsigned j = 0; j < sfCount; ++j)
				{
					const CCLib::ScalarField* sf = scalarFields->at(j).in;
					for (unsigned k = 0; k < neighborCount; ++k)
					{
						CCLib::DgmOctree::PointDescriptor& P = nNSS.pointsInNeighbourhood[k];
						values[k] = sf->getValue(P.pointIndex);
					}
					std::sort(values.begin(), values.end());
					
					ScalarType median = values[medianIndex];
					scalarFields->at(j).out->setValue(outPointIndex, median);
				}
			}
			else //average or weighted average
			{
				double sumW = 0;
				std::fill(sumValues.begin(), sumValues.end(), 0);
				for (unsigned k = 0; k < neighborCount; ++k)
				{
					CCLib::DgmOctree::PointDescriptor& P = nNSS.pointsInNeighbourhood[k];
					double w = 1.0;
					if (normalDistWeighting)
					{
						w = exp(-P.squareDistd / interpSigma2x2);
					}
					sumW += w;
					for (unsigned j = 0; j < sfCount; ++j)
					{
						sumValues[j] += w * scalarFields->at(j).in->getValue(P.pointIndex);
					}
				}

				if (sumW > 0)
				{
					for (unsigned j = 0; j < sfCount; ++j)
					{
						ScalarType s = static_cast<ScalarType>(sumValues[j] / sumW);
						scalarFields->at(j).out->setValue(outPointIndex, s);
					}
				}
				else
				{
					//we assume the scalar fields have all been initialized to NAN_VALUE
				}
			}
		}
		else
		{
			//we assume the scalar fields have all been initialized to NAN_VALUE
		}

		if (nProgress && !nProgress->oneStep())
		{
			return false;
		}
	}

	return true;
}

bool ccPointCloudInterpolator::InterpolateScalarFieldsFrom(	ccPointCloud* destCloud,
															ccPointCloud* srcCloud,
															const std::vector<int>& inSFIndexes,
															const Parameters& params,
															CCLib::GenericProgressCallback* progressCb/*=0*/,
															unsigned char octreeLevel/*=0*/)
{
	if (!destCloud || !srcCloud || srcCloud->size() == 0 || srcCloud->getNumberOfScalarFields() == 0)
	{
		ccLog::Warning("[InterpolateScalarFieldsFrom] Invalid/empty input cloud(s)!");
		return false;
	}

	//check that both bounding boxes intersect!
	ccBBox box = destCloud->getOwnBB();
	ccBBox otherBox = srcCloud->getOwnBB();

	CCVector3 dimSum = box.getDiagVec() + otherBox.getDiagVec();
	CCVector3 dist = box.getCenter() - otherBox.getCenter();
	if (	fabs(dist.x) > dimSum.x / 2
		||	fabs(dist.y) > dimSum.y / 2
		||	fabs(dist.z) > dimSum.z / 2)
	{
		ccLog::Warning("[InterpolateScalarFieldsFrom] Clouds are too far from each other! Can't proceed.");
		return false;
	}

	//now copy the scalar fields
	bool overwrite = false;
	std::vector< SFPair > scalarFields;
	try
	{
		scalarFields.reserve(inSFIndexes.size());
	}
	catch (const std::bad_alloc&)
	{
		ccLog::Error("Not enough memory");
		return false;
	}
	for (size_t i = 0; i < inSFIndexes.size(); ++i)
	{
		int inSFIndex = inSFIndexes[i];
		if (inSFIndex < 0 || inSFIndex >= static_cast<int>(srcCloud->getNumberOfScalarFields()))
		{
			//invalid index
			ccLog::Warning(QString("[InterpolateScalarFieldsFrom] Source cloud has no scalar field with index #%1").arg(inSFIndex));
			assert(false);
			return false;
		}

		const char* sfName = srcCloud->getScalarFieldName(inSFIndex);
		int outSFIndex = destCloud->getScalarFieldIndexByName(sfName);
		if (outSFIndex < 0)
		{
			outSFIndex = destCloud->addScalarField(sfName);
			if (outSFIndex < 0)
			{
				ccLog::Error("Not enough memory!");
				return false;
			}
		}
		else
		{
			overwrite = true;
		}

		CCLib::ScalarField* inSF = srcCloud->getScalarField(inSFIndex);
		CCLib::ScalarField* outSF = destCloud->getScalarField(outSFIndex);
		scalarFields.push_back(SFPair(inSF, outSF));

		outSF->fill(NAN_VALUE);
	}

	if (params.method == Parameters::NEAREST_NEIGHBOR)
	{
		//compute the closest-point set of 'this cloud' relatively to 'input cloud'
		//(to get a mapping between the resulting vertices and the input points)
		QSharedPointer<CCLib::ReferenceCloud> CPSet = destCloud->computeCPSet(*srcCloud, progressCb, octreeLevel);
		if (!CPSet)
		{
			return false;
		}

		unsigned CPSetSize = CPSet->size();
		assert(CPSetSize == destCloud->size());

		//now copy the scalar fields
		for (SFPair& sfPair : scalarFields)
		{
			for (unsigned i = 0; i < CPSetSize; ++i)
			{
				unsigned pointIndex = CPSet->getPointGlobalIndex(i);
				sfPair.out->setValue(i, sfPair.in->getValue(pointIndex));
			}
		}
	}
	else
	{
		if ((params.method == Parameters::K_NEAREST_NEIGHBORS && params.knn == 0) ||
			(params.method == Parameters::RADIUS && params.radius <= 0))
		{
			//invalid input
			ccLog::Warning("[InterpolateScalarFieldsFrom] Invalid input");
			assert(false);
			return false;
		}

		assert(srcCloud && destCloud);

		//we spatially 'synchronize' the octrees
		CCLib::DgmOctree *_srcOctree = 0, *_destOctree = 0;
		CCLib::DistanceComputationTools::SOReturnCode soCode = CCLib::DistanceComputationTools::synchronizeOctrees(
			srcCloud,
			destCloud,
			_srcOctree,
			_destOctree,
			/*maxSearchDist*/0,
			progressCb);
		
		QScopedPointer<CCLib::DgmOctree> srcOctree(_srcOctree), destOctree(_destOctree);

		if (soCode != CCLib::DistanceComputationTools::SYNCHRONIZED)
		{
			//not enough memory (or invalid input)
			ccLog::Warning("[InterpolateScalarFieldsFrom] Failed to build the octrees");
			return false;
		}

		if (octreeLevel == 0)
		{
			if (params.method == ccPointCloudInterpolator::Parameters::K_NEAREST_NEIGHBORS)
			{
				octreeLevel = srcOctree->findBestLevelForAGivenPopulationPerCell(params.knn);
			}
			else
			{
				octreeLevel = srcOctree->findBestLevelForAGivenNeighbourhoodSizeExtraction(params.radius);
			}
		}

		try
		{
			//additional parameters
			void* additionalParameters[] = {	reinterpret_cast<void*>(srcCloud),
												reinterpret_cast<void*>(srcOctree.data()),
												reinterpret_cast<void*>(&scalarFields),
												(void*)(&params)
			};

			if (destOctree->executeFunctionForAllCellsAtLevel(	octreeLevel,
																cellSFInterpolator,
																additionalParameters,
																true,
																progressCb,
																"Scalar field interpolation",
																0) == 0)
			{
				//something went wrong
				ccLog::Warning("[InterpolateScalarFieldsFrom] Failed to perform the interpolation");
				return false;
			}
		}
		catch (const std::bad_alloc&)
		{
			//not enough memory
			ccLog::Warning("[InterpolateScalarFieldsFrom] Not enough memory");
			return false;
		}
	}

	//now copy the scalar fields
	for (SFPair& sfPair : scalarFields)
	{
		sfPair.out->computeMinAndMax();
	}

	if (overwrite)
	{
		ccLog::Warning("[InterpolateScalarFieldsFrom] Some scalar fields with the same names have been overwritten");
	}

	//We must update the VBOs
	destCloud->colorsHaveChanged();
	
	return true;
}