File: ccPointCloudLOD.cpp

package info (click to toggle)
cloudcompare 2.10.1-2
  • links: PTS
  • area: main
  • in suites: buster
  • size: 55,916 kB
  • sloc: cpp: 219,837; ansic: 29,944; makefile: 67; sh: 45
file content (968 lines) | stat: -rw-r--r-- 25,543 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
//##########################################################################
//#                                                                        #
//#                              CLOUDCOMPARE                              #
//#                                                                        #
//#  This program is free software; you can redistribute it and/or modify  #
//#  it under the terms of the GNU General Public License as published by  #
//#  the Free Software Foundation; version 2 or later of the License.      #
//#                                                                        #
//#  This program is distributed in the hope that it will be useful,       #
//#  but WITHOUT ANY WARRANTY; without even the implied warranty of        #
//#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the          #
//#  GNU General Public License for more details.                          #
//#                                                                        #
//#                    COPYRIGHT: CloudCompare project                     #
//#                                                                        #
//##########################################################################

#include "ccPointCloudLOD.h"

//Local
#include "ccPointCloud.h"

//Qt
#include <QThread>
#include <QElapsedTimer>

//! Thread for background computation
class ccPointCloudLODThread : public QThread
{
	Q_OBJECT
	
public:
	
	//! Default constructor
	ccPointCloudLODThread(ccPointCloud& cloud, ccPointCloudLOD& lod, uint32_t maxCountPerCell)
		: QThread()
		, m_cloud(cloud)
		, m_lod(lod)
		, m_octree(0)
		, m_maxCountPerCell(maxCountPerCell)
		, m_maxLevel(0)
	{
	}
	
	//!Destructor
	virtual ~ccPointCloudLODThread()
	{
		terminate();
	}
	
protected:

	//! Fills a node (and returns its relative position) + recursive
	uint8_t fillNode(ccPointCloudLOD::Node& node) const
	{
		const ccOctree::cellsContainer& cellCodes = m_octree->pointsAndTheirCellCodes();
		const unsigned char bitDec = CCLib::DgmOctree::GET_BIT_SHIFT(node.level);
		const CCLib::DgmOctree::CellCode currentTruncatedCellCode = (cellCodes[node.firstCodeIndex].theCode >> bitDec);

		//first count the number of points and compute their center
		{
			node.pointCount = 0;
#ifdef COMPUTE_REAL_RADIUS
			CCVector3d sumP(0, 0, 0);
#else //otherwise we use the bounding box
			ccBBox bbox;
#endif
			for (uint32_t codeIndex = node.firstCodeIndex; codeIndex < cellCodes.size() && (cellCodes[codeIndex].theCode >> bitDec) == currentTruncatedCellCode; ++codeIndex)
			{
				++node.pointCount;
				const CCVector3* P = m_cloud.getPoint(cellCodes[codeIndex].theIndex);
#ifdef COMPUTE_REAL_RADIUS
				sumP += CCVector3d::fromArray(P->u);
#else
				bbox.add(*P);
#endif
			}

			//compute the radius
#ifdef COMPUTE_REAL_RADIUS
			if (node.pointCount > 1)
			{
				sumP /= node.pointCount;
				double maxSquareRadius = 0;
				for (uint32_t i = 0; i < node.pointCount; ++i)
				{
					const CCVector3* P = m_cloud.getPoint(cellCodes[node.firstCodeIndex + i].theIndex);
					double squareRadius = (CCVector3d::fromArray(P->u) - sumP).norm2();
					if (squareRadius > maxSquareRadius)
					{
						maxSquareRadius = squareRadius;
					}
				}
				node.radius = static_cast<float>(sqrt(maxSquareRadius));
			}
			//update the center
			node.center = CCVector3f::fromArray(sumP.u);
#else
			if (node.pointCount > 1)
			{
				node.radius = static_cast<float>(bbox.getDiagNormd());
			}
			node.center = CCVector3f::fromArray(bbox.getCenter().u);
#endif
		}

		//do we need to subdivide this cell?
		if (node.pointCount > m_maxCountPerCell && node.level+1 <= m_maxLevel)
		{
			for (uint32_t i = 0; i < node.pointCount; )
			{
				int32_t childNodeIndex = m_lod.newCell(node.level + 1);
				ccPointCloudLOD::Node& childNode = m_lod.node(childNodeIndex, node.level + 1);
				childNode.firstCodeIndex = node.firstCodeIndex + i;

				uint8_t childIndex = fillNode(childNode);
				node.childIndexes[childIndex] = childNodeIndex;
				node.childCount++;
				i += childNode.pointCount;
			}
		}

		//return the node relative position
		return static_cast<uint8_t>(currentTruncatedCellCode & 7);
	}

	//! Fills a node (and returns its relative position)
	uint8_t fillNode_flat(ccPointCloudLOD::Node& node) const
	{
		const ccOctree::cellsContainer& cellCodes = m_octree->pointsAndTheirCellCodes();
		const unsigned char bitDec = CCLib::DgmOctree::GET_BIT_SHIFT(node.level);
		const CCLib::DgmOctree::CellCode currentTruncatedCellCode = (cellCodes[node.firstCodeIndex].theCode >> bitDec);

		//first count the number of points and compute their center
		{
			node.pointCount = 0;
			CCVector3d sumP(0, 0, 0);
			for (uint32_t codeIndex = node.firstCodeIndex; codeIndex < cellCodes.size() && (cellCodes[codeIndex].theCode >> bitDec) == currentTruncatedCellCode; ++codeIndex)
			{
				++node.pointCount;
				const CCVector3* P = m_cloud.getPoint(cellCodes[codeIndex].theIndex);
				sumP += CCVector3d::fromArray(P->u);
			}

			//compute the radius
			if (node.pointCount > 1)
			{
				sumP /= node.pointCount;
				double maxSquareRadius = 0;
				for (uint32_t i = 0; i < node.pointCount; ++i)
				{
					const CCVector3* P = m_cloud.getPoint(cellCodes[node.firstCodeIndex + i].theIndex);
					double squareRadius = (CCVector3d::fromArray(P->u) - sumP).norm2();
					if (squareRadius > maxSquareRadius)
					{
						maxSquareRadius = squareRadius;
					}
				}
				node.radius = static_cast<float>(sqrt(maxSquareRadius));
			}

			//update the center
			node.center = CCVector3f::fromArray(sumP.u);
		}

		//return the node relative position
		return static_cast<uint8_t>(currentTruncatedCellCode & 7);
	}

	//reimplemented from QThread
	virtual void run()
	{
		//reset structure
		m_lod.clearData();
		m_lod.setState(ccPointCloudLOD::UNDER_CONSTRUCTION);

		unsigned pointCount = m_cloud.size();
		if (pointCount == 0)
		{
			m_lod.setState(ccPointCloudLOD::BROKEN);
			return;
		}

		ccLog::Print(QString("[LoD] Preparing LoD acceleration structure for cloud '%1' [%2 points]...").arg(m_cloud.getName()).arg(pointCount));
		QElapsedTimer timer;
		timer.start();

		//first we need an octree
		m_octree = m_cloud.getOctree();
		if (!m_octree)
		{
			m_octree = ccOctree::Shared(new ccOctree(&m_cloud));
			if (m_octree->build(0/*progressCallback*/) <= 0)
			{
				//not enough memory
				ccLog::Warning(QString("[LoD] Failed to compute octree on cloud '%1' (not enough memory)").arg(m_cloud.getName()));
				m_lod.setState(ccPointCloudLOD::BROKEN);
				return;
			}

			if (!m_cloud.getOctree()) //be sure that it hasn't been built in the meantime!
			{
				m_cloud.setOctree(m_octree);
			}
		}

		//init LoD structure
		if (!m_lod.initInternal(m_octree))
		{
			//not enough memory
			ccLog::Warning(QString("[LoD] Failed to compute LOD structure on cloud '%1' (not enough memory)").arg(m_cloud.getName()));
			m_lod.setState(ccPointCloudLOD::BROKEN);
			return;
		}

		//make sure we deprecate the LOD structure when this octree is modified!
		QObject::connect(m_octree.data(), &ccOctree::updated, this, [&](){ m_cloud.clearLOD(); });

		m_maxLevel = static_cast<uint8_t>(std::max<size_t>(1, m_lod.m_levels.size())) - 1;
		assert(m_maxLevel <= CCLib::DgmOctree::MAX_OCTREE_LEVEL);

#if 0 //recursive path
		//recursive
		fillNode(m_lod.root());

		m_lod.shrink_to_fit();
		//m_lod.updateMaxRadii();
		//m_lod.setMaxLevel(m_maxLevel);

		for (size_t i = 1; i < m_lod.m_levels.size(); ++i)
		{
			ccLog::Print(QString("[LoD] Level %1: %2 cells").arg(i).arg(m_lod.m_levels[i].data.size()));
		}

#else //layer by layer

		//init with root node
		fillNode_flat(m_lod.root());

		//first we allow the division of nodes as deep as possible but with a minimum number of points per cell
		for (uint8_t currentLevel = 0; currentLevel < m_maxLevel; ++currentLevel)
		{
			ccPointCloudLOD::Level& level = m_lod.m_levels[currentLevel];
			if (level.data.empty())
			{
				break;
			}

			//update maxRadius for the previous level
			//{
			//	float maxRadius = 0;
			//	for (ccPointCloudLOD::Node& n : level.data)
			//	{
			//		if (n.radius > maxRadius)
			//		{
			//			maxRadius = n.radius;
			//		}
			//	}
			//	level.maxRadius = maxRadius;
			//}

			//the previous level is now ready!
			ccLog::Print(QString("[LoD] Level %1: %2 cells").arg(currentLevel).arg(level.data.size()));

			//now we can create the next level
			if (currentLevel + 1 < m_maxLevel)
			{
				for (ccPointCloudLOD::Node& node : level.data)
				{
					//do we need to subdivide this cell?
					if (node.pointCount > m_maxCountPerCell)
					{
						for (uint32_t i = 0; i < node.pointCount;)
						{
							int32_t childNodeIndex = m_lod.newCell(node.level + 1);
							ccPointCloudLOD::Node& childNode = m_lod.node(childNodeIndex, node.level + 1);
							childNode.firstCodeIndex = node.firstCodeIndex + i;

							uint8_t childIndex = fillNode_flat(childNode);
							node.childIndexes[childIndex] = childNodeIndex;
							node.childCount++;
							i += childNode.pointCount;
						}
					}
				}
			}
		}

		m_lod.shrink_to_fit();
		m_maxLevel = static_cast<uint8_t>(std::max<size_t>(1, m_lod.m_levels.size())) - 1;

		//refinement step
		if (true)
		{
			//we look at the 'main' depth level (with the most point)
			uint8_t biggestLevel = 0;
			for (uint8_t i = 1; i <= m_maxLevel; ++i)
			{
				if (m_lod.m_levels[i].data.size() > m_lod.m_levels[biggestLevel].data.size())
				{
					biggestLevel = i;
				}
			}

			//now compute the mean radius for this level
			//double meanRadius = 0;
			//{
			//	const ccPointCloudLOD::Level& level = m_lod.m_levels[biggestLevel];
			//	size_t cellCount = level.data.size();
			//	for (size_t i = 0; i < cellCount; ++i)
			//	{
			//		meanRadius += level.data[i].radius;
			//	}

			//	meanRadius /= cellCount;
			//}

			//and divide again the cells (with a lower limit on the number of points)
			biggestLevel = std::min<uint8_t>(biggestLevel, 10);
			for (uint8_t currentLevel = 0; currentLevel < biggestLevel; ++currentLevel)
			{
				ccPointCloudLOD::Level& level = m_lod.m_levels[currentLevel];
				assert(!level.data.empty());

				size_t cellCountBefore = m_lod.m_levels[currentLevel+1].data.size();
				for (ccPointCloudLOD::Node& node : level.data)
				{
					//do we need to subdivide this cell?
					if (node.childCount == 0 && node.pointCount > 16)
					{
						for (uint32_t i = 0; i < node.pointCount;)
						{
							int32_t childNodeIndex = m_lod.newCell(node.level + 1);
							ccPointCloudLOD::Node& childNode = m_lod.node(childNodeIndex, node.level + 1);
							childNode.firstCodeIndex = node.firstCodeIndex + i;

							uint8_t childIndex = fillNode_flat(childNode);
							node.childIndexes[childIndex] = childNodeIndex;
							node.childCount++;
							i += childNode.pointCount;
						}
					}
				}

				size_t cellCountAfter = m_lod.m_levels[currentLevel+1].data.size();
				ccLog::Print(QString("[LoD][pass 2] Level %1: %2 cells (+%3)").arg(currentLevel+1).arg(cellCountAfter).arg(cellCountAfter - cellCountBefore));
			}

			m_lod.shrink_to_fit();
			m_maxLevel = static_cast<uint8_t>(std::max<size_t>(1, m_lod.m_levels.size()))-1;
		}
#endif

		m_lod.setState(ccPointCloudLOD::INITIALIZED);

		ccLog::Print(QString("[LoD] Acceleration structure ready for cloud '%1' (max level: %2 / mem. = %3 Mb / duration: %4 s.)")
			.arg(m_cloud.getName())
			.arg(m_maxLevel)
			.arg(m_lod.memory() / static_cast<double>(1 << 20), 0, 'f', 2)
			.arg(timer.elapsed() / 1000.0, 0, 'f', 1));
	}

	ccPointCloud& m_cloud;
	ccPointCloudLOD& m_lod;
	ccOctree::Shared m_octree;
	uint32_t m_maxCountPerCell;
	uint8_t m_maxLevel;
};

ccPointCloudLOD::ccPointCloudLOD()
	: m_indexMap(0)
	, m_lastIndexMap(0)
	, m_octree(0)
	, m_thread(0)
	, m_state(NOT_INITIALIZED)
{
	clearData(); //initializes the root node
}

ccPointCloudLOD::~ccPointCloudLOD()
{
	clear();
}

size_t ccPointCloudLOD::memory() const
{
	size_t thisSize = sizeof(ccPointCloudLOD);
	
	size_t totalNodeCount = 0;
	for (size_t i = 0; i < m_levels.size(); ++i)
	{
		totalNodeCount += m_levels[i].data.size();
	}
	size_t nodeSize = sizeof(Node);
	size_t nodesSize = totalNodeCount * nodeSize;

	return nodesSize + thisSize;
}

bool ccPointCloudLOD::init(ccPointCloud* cloud)
{
	if (!cloud)
	{
		assert(false);
		return false;
	}
	
	if (isBroken())
	{
		return false;
	}

	if (!m_thread)
	{
		m_thread = new ccPointCloudLODThread(*cloud, *this, 256);
	}
	else if (m_thread->isRunning())
	{
		//already running?
		assert(false);
		return true;
	}

	m_thread->start();
	return true;
}

void ccPointCloudLOD::clearData()
{
	//1 empty (root) node
	m_levels.resize(1);
	m_levels.front().data.resize(1);
	m_levels.front().data.front() = Node();
}

bool ccPointCloudLOD::initInternal(ccOctree::Shared octree)
{
	if (!octree)
	{
		return false;
	}
	
	//clear the structure (just in case)
	clearData();

	QMutexLocker locker(&m_mutex);

	try
	{
		assert(CCLib::DgmOctree::MAX_OCTREE_LEVEL <= 255);
		m_levels.resize(CCLib::DgmOctree::MAX_OCTREE_LEVEL + 1);
	}
	catch (const std::bad_alloc&)
	{
		//not enough memory
		return false;
	}
	
	m_octree = octree;

	return true;
}

int32_t ccPointCloudLOD::newCell(unsigned char level)
{
	assert(level != 0);
	assert(level < m_levels.size());
	Level& l = m_levels[level];

	//assert(l.data.size() < l.data.capacity());
	l.data.emplace_back(level);

	return static_cast<int32_t>(l.data.size()) - 1;
}

//void ccPointCloudLOD::updateMaxRadii()
//{
//	QMutexLocker locker(&m_mutex);
//
//	for (size_t i = 0; i < m_levels.size(); ++i)
//	{
//		if (!m_levels[i].data.empty())
//		{
//			float maxRadius = 0;
//			for (Node& n : m_levels[i].data)
//			{
//				if (n.radius > maxRadius)
//				{
//					maxRadius = n.radius;
//				}
//			}
//			m_levels[i].maxRadius = m_levels[i].data.front().radius;
//		}
//	}
//}

void ccPointCloudLOD::shrink_to_fit()
{
	QMutexLocker locker(&m_mutex);

	for (size_t i = 1; i < m_levels.size(); ++i) //DGM: always keep the root node!
	{
		if (!m_levels[i].data.empty())
		{
			m_levels[i].data.shrink_to_fit();
		}
		else
		{
			//first empty level: we can reduce the number of levels and stop here!
			m_levels.resize(i);
			break;
		}
	}
	m_levels.shrink_to_fit();
}

void ccPointCloudLOD::clear()
{
	if (m_thread && m_thread->isRunning())
	{
		m_thread->terminate();
		m_thread->wait();
	}
	
	m_mutex.lock();

	if (m_thread)
	{
		delete m_thread;
		m_thread = 0;
	}

	m_levels.clear();
	m_state = NOT_INITIALIZED;

	m_mutex.unlock();
}

void ccPointCloudLOD::resetVisibility()
{
	if (m_state != INITIALIZED)
	{
		return;
	}

	m_currentState = RenderParams();

	for (size_t l = 0; l < m_levels.size(); ++l)
	{
		for (Node& n : m_levels[l].data)
		{
			n.displayedPointCount = 0;
			n.intersection = Frustum::INSIDE;
		}
	}
}

class PointCloudLODVisibilityFlagger
{
public:
	
	PointCloudLODVisibilityFlagger(	ccPointCloudLOD& lod,
									const Frustum& frustum,
									unsigned char maxLevel)
		: m_lod(lod)
		, m_frustum(frustum)
		, m_maxLevel(maxLevel)
		, m_hasClipPlanes(false)
	{}

	void setClipPlanes(const ccClipPlaneSet& clipPlanes)
	{
		try
		{
			m_clipPlanes = clipPlanes;
		}
		catch (const std::bad_alloc&)
		{
			//not enough memory
			m_hasClipPlanes = false;
		}
		m_hasClipPlanes = !m_clipPlanes.empty();
	}

	void propagateFlag(ccPointCloudLOD::Node& node, uint8_t flag)
	{
		node.intersection = flag;

		if (node.childCount)
		{
			for (int i = 0; i < 8; ++i)
			{
				if (node.childIndexes[i] >= 0)
				{
					propagateFlag(m_lod.node(node.childIndexes[i], node.level + 1), flag);
				}
			}
		}
	}

	uint32_t flag(ccPointCloudLOD::Node& node)
	{
		node.intersection = m_frustum.sphereInFrustum(node.center, node.radius);
		if (m_hasClipPlanes && node.intersection != Frustum::OUTSIDE)
		{
			for (size_t i = 0; i < m_clipPlanes.size(); ++i)
			{
				//distance from center to clip plane
				//we assume the plane normal (= 3 first coefficients) is normalized!
				const Tuple4Tpl<double>& eq = m_clipPlanes[i].equation;
				double dist = eq.x * node.center.x + eq.y * node.center.y + eq.z * node.center.z + eq.w /* / CCVector3d::vnorm(eq.u) */;

				if (dist < node.radius)
				{
					if (dist <= -node.radius)
					{
						node.intersection = Frustum::OUTSIDE;
						break;
					}
					else
					{
						node.intersection = Frustum::INTERSECT;
					}
				}
			}
		}

		uint32_t visibleCount = 0;
		switch (node.intersection)
		{
		case Frustum::INSIDE:
			visibleCount = node.pointCount;
			//no need to propagate the visibility to the children as the default value should already be 'INSIDE'
			break;

		case Frustum::INTERSECT:
			//we have to test the children
			{
				if (node.level < m_maxLevel && node.childCount)
				{
					for (int i = 0; i < 8; ++i)
					{
						if (node.childIndexes[i] >= 0)
						{
							ccPointCloudLOD::Node& childNode = m_lod.node(node.childIndexes[i], node.level + 1);
							visibleCount += flag(childNode);
						}
					}

					if (visibleCount == 0)
					{
						//as no point is visible we can flag this node as being outside/invisible
						node.intersection = Frustum::OUTSIDE;
					}
				}
				else
				{
					//we have to consider that all points are visible
					visibleCount = node.pointCount;
				}
			}
			break;

		case Frustum::OUTSIDE:
			//be sure that all children nodes are flagged as outside!
			propagateFlag(node, Frustum::OUTSIDE);
			break;
		}

		return visibleCount;
	}

	ccPointCloudLOD& m_lod;
	const Frustum& m_frustum;
	unsigned char m_maxLevel;
	ccClipPlaneSet m_clipPlanes;
	bool m_hasClipPlanes;
};

uint32_t ccPointCloudLOD::flagVisibility(const Frustum& frustum, ccClipPlaneSet* clipPlanes/*=0*/)
{
	if (m_state != INITIALIZED)
	{
		assert(false);
		m_currentState = RenderParams();
		return 0;
	}

	resetVisibility();

	PointCloudLODVisibilityFlagger lodVisibility(*this, frustum, static_cast<unsigned char>(m_levels.size()));
	if (clipPlanes)
	{
		lodVisibility.setClipPlanes(*clipPlanes);
	}

	m_currentState.visiblePoints = lodVisibility.flag(root());

	return m_currentState.visiblePoints;
}

uint32_t ccPointCloudLOD::addNPointsToIndexMap(Node& node, uint32_t count)
{
	if (m_indexMap.capacity() == 0)
	{
		assert(false);
		return 0;
	}
	
	uint32_t displayedCount = 0;

	if (node.childCount)
	{
		uint32_t thisNodeRemainingCount = (node.pointCount - node.displayedPointCount);
		assert(count <= thisNodeRemainingCount);
		bool displayAll = (count >= thisNodeRemainingCount);
		
		for (int i = 0; i < 8; ++i)
		{
			if (node.childIndexes[i] >= 0)
			{
				ccPointCloudLOD::Node& childNode = this->node(node.childIndexes[i], node.level + 1);
				if (childNode.intersection == Frustum::OUTSIDE)
					continue;
				if (childNode.pointCount == childNode.displayedPointCount)
					continue;
				uint32_t childNodeRemainingCount = (childNode.pointCount - childNode.displayedPointCount);

				uint32_t childMaxCount = 0;
				if (displayAll)
				{
					childMaxCount = childNodeRemainingCount;
				}
				else
				{
					double ratio = static_cast<double>(childNodeRemainingCount) / thisNodeRemainingCount;
					childMaxCount = static_cast<uint32_t>(ceil(ratio * count));
					if (displayedCount + childMaxCount > count)
					{
						assert(count >= displayedCount);
						childMaxCount = count - displayedCount;
						i = 8; //we can stop right now
					}
				}
				
				uint32_t childDisplayedCount = addNPointsToIndexMap(childNode, childMaxCount);
				//assert(childDisplayedCount == childMaxCount || !displayAll || childNode.intersection != Frustum::INSIDE);
				assert(childDisplayedCount <= childMaxCount);

				displayedCount += childDisplayedCount;
				assert(displayedCount <= count);
			}
		}
	}
	else
	{
		//we can display all the points
		//uint32_t iStart = node.displayedPointCount;
		uint32_t iStop = std::min(node.displayedPointCount + count, node.pointCount);

		displayedCount = iStop - node.displayedPointCount;
		assert(m_indexMap.size() + displayedCount <= m_indexMap.capacity());

		const ccOctree::cellsContainer& cellCodes = m_octree->pointsAndTheirCellCodes();
		for (uint32_t i = node.displayedPointCount; i < iStop; ++i)
		{
			unsigned pointIndex = cellCodes[node.firstCodeIndex + i].theIndex;
			m_indexMap.push_back(pointIndex);
		}
	}

	node.displayedPointCount += displayedCount;

	return displayedCount;
}

LODIndexSet& ccPointCloudLOD::getIndexMap(unsigned char level, unsigned& maxCount, unsigned& remainingPointsAtThisLevel)
{
	remainingPointsAtThisLevel = 0;
	m_lastIndexMap.clear();

	if (!m_octree || level >= m_levels.size())
	{
		assert(false);
		maxCount = 0;
		return m_lastIndexMap; //empty
	}

	if (m_state != INITIALIZED)
	{
		maxCount = 0;
		return m_lastIndexMap; //empty
	}

	if (m_currentState.displayedPoints >= m_currentState.visiblePoints)
	{
		//assert(false);
		maxCount = 0;
		return m_lastIndexMap; //empty
	}

	m_indexMap.clear();
	try
	{
		m_indexMap.reserve(maxCount);
	}
	catch (const std::bad_alloc&)
	{
		//not enough memory
		return m_lastIndexMap; //empty
	}

	Level& l = m_levels[level];
	uint32_t thisPassDisplayCount = 0;

	bool earlyStop = false;
	size_t earlyStopIndex = 0;

	//special case: we have to finish/continue at the same level than the previous run
	if (m_currentState.unfinishedLevel == level)
	{
		bool displayAll = (m_currentState.unfinishedPoints <= maxCount);

		//display all leaf cells of the current level
		for (size_t i = 0; i < l.data.size(); ++i)
		{
			Node& node = l.data[i];

			if (node.childCount) //skip non leaf cells
				continue;
			assert(node.intersection != UNDEFINED);
			if (node.intersection == Frustum::OUTSIDE)
				continue;
			if (node.pointCount == node.displayedPointCount)
				continue;

			uint32_t nodeMaxCount = 0;
			uint32_t nodeRemainingCount = (node.pointCount - node.displayedPointCount);
			if (displayAll)
			{
				nodeMaxCount = nodeRemainingCount;
			}
			else
			{
				double ratio = static_cast<double>(nodeRemainingCount) / m_currentState.unfinishedPoints;
				nodeMaxCount = static_cast<uint32_t>(ceil(ratio * maxCount));
				//safety check
				if (m_indexMap.size() + nodeMaxCount >= maxCount)
				{
					assert(maxCount >= m_indexMap.size());
					nodeMaxCount = maxCount - static_cast<uint32_t>(m_indexMap.size());

					earlyStop = true;
					earlyStopIndex = i;

					i = l.data.size(); //we can stop after this node!
				}
			}

			uint32_t nodeDisplayCount = addNPointsToIndexMap(node, nodeMaxCount);
			assert(nodeDisplayCount <= nodeMaxCount);
			
			thisPassDisplayCount += nodeDisplayCount;
			assert(thisPassDisplayCount == m_indexMap.size());
			remainingPointsAtThisLevel += (node.pointCount - node.displayedPointCount);
		}
	}
	
	uint32_t totalRemainingCount = m_currentState.visiblePoints - m_currentState.displayedPoints;
	//remove the already displayed points (= unfinished from previous run)
	assert(totalRemainingCount >= thisPassDisplayCount);
	totalRemainingCount -= thisPassDisplayCount;
	
	//do we still have data to display AND can we display it?
	if (totalRemainingCount != 0 && thisPassDisplayCount < maxCount)
	{
		//we shouldn't have any unfinished work at this point!
		assert(!earlyStop && remainingPointsAtThisLevel == 0);

		uint32_t mapFreeSize = maxCount - thisPassDisplayCount;

		bool displayAll = (mapFreeSize > totalRemainingCount);

		//for all cells of the input level
		for (size_t i = 0; i < l.data.size(); ++i)
		{
			Node& node = l.data[i];

			assert(node.intersection != UNDEFINED);
			if (node.intersection == Frustum::OUTSIDE)
				continue;
			if (node.pointCount == node.displayedPointCount)
				continue;

			uint32_t nodeMaxCount = 0;
			uint32_t nodeRemainingCount = (node.pointCount - node.displayedPointCount);
			if (displayAll)
			{
				nodeMaxCount = nodeRemainingCount;
			}
			else if (node.childCount)
			{
				double ratio = static_cast<double>(nodeRemainingCount) / totalRemainingCount;
				nodeMaxCount = static_cast<uint32_t>(ceil(ratio * mapFreeSize));
				//safety check
				if (m_indexMap.size() + nodeMaxCount >= maxCount)
				{
					assert(maxCount >= m_indexMap.size());
					nodeMaxCount = maxCount - static_cast<uint32_t>(m_indexMap.size());

					earlyStop = true;
					earlyStopIndex = i;

					i = l.data.size(); //we can stop after this node!
				}
			}

			uint32_t nodeDisplayCount = addNPointsToIndexMap(node, nodeMaxCount);
			assert(nodeDisplayCount <= nodeMaxCount);

			thisPassDisplayCount += nodeDisplayCount;
			assert(thisPassDisplayCount == m_indexMap.size());

			if (node.childCount == 0)
			{
				remainingPointsAtThisLevel += (node.pointCount - node.displayedPointCount);
			}
		}
	}

	maxCount = static_cast<unsigned>(m_indexMap.size());
	m_currentState.displayedPoints += static_cast<uint32_t>(m_indexMap.size());

	if (earlyStop)
	{
		//be sure to properly finish to count the number of 'unfinished' points!
		for (size_t i = earlyStopIndex+1; i < l.data.size(); ++i)
		{
			Node& node = l.data[i];

			if (node.childCount) //skip non leaf nodes
				continue;
			assert(node.intersection != UNDEFINED);
			if (node.intersection == Frustum::OUTSIDE)
				continue;
			if (node.pointCount == node.displayedPointCount)
				continue;
			uint32_t nodeRemainingCount = (node.pointCount - node.displayedPointCount);
			remainingPointsAtThisLevel += nodeRemainingCount;
		}
	}

	if (remainingPointsAtThisLevel)
	{
		m_currentState.unfinishedLevel = static_cast<int>(level);
		m_currentState.unfinishedPoints = remainingPointsAtThisLevel;
	}
	else
	{
		m_currentState.unfinishedLevel = -1;
		m_currentState.unfinishedPoints = 0;
	}
	
	m_lastIndexMap = m_indexMap;
	return m_indexMap;
}

#include "ccPointCloudLOD.moc"