1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
//##########################################################################
//# #
//# CLOUDCOMPARE #
//# #
//# This program is free software; you can redistribute it and/or modify #
//# it under the terms of the GNU General Public License as published by #
//# the Free Software Foundation; version 2 or later of the License. #
//# #
//# This program is distributed in the hope that it will be useful, #
//# but WITHOUT ANY WARRANTY; without even the implied warranty of #
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
//# GNU General Public License for more details. #
//# #
//# COPYRIGHT: EDF R&D / TELECOM ParisTech (ENST-TSI) #
//# #
//##########################################################################
#ifndef CC_SENSOR_HEADER
#define CC_SENSOR_HEADER
//Local
#include "ccIndexedTransformationBuffer.h"
//! Sensor types
enum CC_SENSOR_TYPE { UNKNOWN_SENSOR,
GROUND_BASED_LIDAR,
};
//! Generic sensor interface
/** New sensor framework now relies on separate positions (stored
in a buffer) as generated by a GPS/IMU. This way, sensor objects
only contains intrinsic parameters. They are also associated
to a 'rigid transformation' (e.g. a rigid mechanical link between
the sensor 'optical' center and the GPS/IMU center position).
**/
class QCC_DB_LIB_API ccSensor : public ccHObject
{
public:
//! Default constructor
ccSensor(QString name);
//! Copy constructor
ccSensor(const ccSensor &sensor);
//inherited from ccHObject
virtual CC_CLASS_ENUM getClassID() const override { return CC_TYPES::SENSOR; }
virtual bool isSerializable() const override { return true; }
//! Returns the sensor type
/** Should be re-implemented by sub-classes
\return the sensor type
**/
virtual CC_SENSOR_TYPE getType() const { return UNKNOWN_SENSOR; }
//! Returns the "visibility type" of a point
/** Precise definition of point's visibility can be found in Daniel Girardeau-Montaut's
PhD manuscript (Chapter 2, section 2-3-3). In fact it can be anything, assuming that
a point that is not POINT_VISIBLE won't be compared during a point-to-cloud distance
computation process.
\deprecated This method is deprecated and should be ignored.
\param P a 3D point
\return the visibility of the point
**/
virtual inline unsigned char checkVisibility(const CCVector3& P) const { return POINT_VISIBLE; }
//! Returns associated positions
ccIndexedTransformationBuffer* getPositions() { return m_posBuffer; }
//! Sets associated positions
void setPositions(ccIndexedTransformationBuffer* positions) { m_posBuffer = positions; }
//! Adds a new position (shortcut)
/** \warning: may be slow as this method may sort the positions
after each call (if the new index is lower than the last one pushed)
**/
bool addPosition(ccGLMatrix& trans, double index);
//! Returns the absolute transformation between the world and the "optical" center (shortcut)
/** Absolute transformation corresponds to the rigid transformation
multiplied by the associated transformation interpolated at the given index.
**/
bool getAbsoluteTransformation(ccIndexedTransformation& trans, double index) const;
//! Gets currently active absolute transformation
bool getActiveAbsoluteTransformation(ccIndexedTransformation& trans) const;
//! Gets currently active absolute position
bool getActiveAbsoluteCenter(CCVector3& vec) const;
//! Gets currently active rotation matrix (without translation)
bool getActiveAbsoluteRotation(ccGLMatrix& rotation) const;
//! Sets the rigid transformation between this sensor and its associated positions
/** Rigid transformation goes from the sensor position(s) to the sensor "optical" center.
**/
virtual void setRigidTransformation(const ccGLMatrix& mat) { m_rigidTransformation = mat; }
//! Returns the rigid transformation between this sensor and its associated positions
virtual ccGLMatrix& getRigidTransformation() { return m_rigidTransformation; }
//! Returns the rigid transformation between this sensor and its associated positions (const version)
virtual const ccGLMatrix& getRigidTransformation() const { return m_rigidTransformation; }
//! Gets index boundaries (shortcut)
void getIndexBounds(double& minIndex, double& maxIndex) const;
//! Sets currently active index (displayed position, etc.)
double getActiveIndex() const { return m_activeIndex; }
//! Sets currently active index (displayed position, etc.)
void setActiveIndex(double index) { m_activeIndex = index; }
//! Sets the sensor graphic representation scale
void setGraphicScale(PointCoordinateType scale) { m_scale = scale; }
//! Returns the sensor graphic representation scale
PointCoordinateType getGraphicScale() const { return m_scale; }
//! Apply sensor 'viewport' to a 3D view
/** \param win 3D view to which to apply the sensor viewport (or the associated 'display' if 0)
\return success
**/
virtual bool applyViewport(ccGenericGLDisplay* win = 0);
//inherited from ccHObject
virtual void applyGLTransformation(const ccGLMatrix& trans) override;
protected:
//inherited from ccHObject
virtual bool toFile_MeOnly(QFile& out) const override;
virtual bool fromFile_MeOnly(QFile& in, short dataVersion, int flags) override;
//! Positions buffer (optional)
ccIndexedTransformationBuffer* m_posBuffer;
//! Rigid transformation between this sensor and its associated positions
/** The transformation goes from the sensor position(s) to the sensor "optical" center.
**/
ccGLMatrix m_rigidTransformation;
//! Active index (for displayed position, etc.)
double m_activeIndex;
//! Color of the sensor
/** Default color is green.
**/
ccColor::Rgb m_color;
//! Sensor graphic representation scale
PointCoordinateType m_scale;
};
#endif //CC_SENSOR_HEADER
|