File: RasterGridFilter.cpp

package info (click to toggle)
cloudcompare 2.10.1-2
  • links: PTS
  • area: main
  • in suites: buster
  • size: 55,916 kB
  • sloc: cpp: 219,837; ansic: 29,944; makefile: 67; sh: 45
file content (576 lines) | stat: -rw-r--r-- 17,731 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
//##########################################################################
//#                                                                        #
//#                              CLOUDCOMPARE                              #
//#                                                                        #
//#  This program is free software; you can redistribute it and/or modify  #
//#  it under the terms of the GNU General Public License as published by  #
//#  the Free Software Foundation; version 2 or later of the License.      #
//#                                                                        #
//#  This program is distributed in the hope that it will be useful,       #
//#  but WITHOUT ANY WARRANTY; without even the implied warranty of        #
//#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the          #
//#  GNU General Public License for more details.                          #
//#                                                                        #
//#          COPYRIGHT: EDF R&D / TELECOM ParisTech (ENST-TSI)             #
//#                                                                        #
//##########################################################################

#ifdef CC_GDAL_SUPPORT

#include "RasterGridFilter.h"

//qCC_db
#include <ccPointCloud.h>
#include <ccScalarField.h>
#include <ccMesh.h>
#include <ccPlane.h>

//GDAL
#include <gdal_priv.h>
#include <cpl_conv.h> // for CPLMalloc()

//Qt
#include <QMessageBox>

//System
#include <string.h> //for memset

bool RasterGridFilter::canLoadExtension(const QString& upperCaseExt) const
{
	return (	upperCaseExt == "TIF"
			||	upperCaseExt == "TIFF"
			||	upperCaseExt == "ADF");
}

bool RasterGridFilter::canSave(CC_CLASS_ENUM type, bool& multiple, bool& exclusive) const
{
	//not supported yet
	return false;
}

CC_FILE_ERROR RasterGridFilter::loadFile(const QString& filename, ccHObject& container, LoadParameters& parameters)
{
	GDALAllRegister();
	ccLog::PrintDebug("(GDAL drivers: %i)", GetGDALDriverManager()->GetDriverCount());

	try
	{
		GDALDataset* poDataset = static_cast<GDALDataset*>(GDALOpen( qPrintable(filename), GA_ReadOnly ));

		if( poDataset != nullptr )
		{
			ccLog::Print(QString("Raster file: '%1'").arg(filename));
			ccLog::Print( "Driver: %s/%s",
				poDataset->GetDriver()->GetDescription(), 
				poDataset->GetDriver()->GetMetadataItem( GDAL_DMD_LONGNAME ) );

			int rasterCount = poDataset->GetRasterCount();
			int rasterX = poDataset->GetRasterXSize();
			int rasterY = poDataset->GetRasterYSize();
			ccLog::Print( "Size is %dx%dx%d", rasterX, rasterY, rasterCount );

			if( poDataset->GetProjectionRef() != nullptr )
				ccLog::Print( "Projection is `%s'", poDataset->GetProjectionRef() );

			double adfGeoTransform[6] = {	 0, //top left x
											 1, //w-e pixel resolution (can be negative)
											 0, //0
											 0, //top left y
											 0, //0
											 1  //n-s pixel resolution (can be negative)
			};

			if( poDataset->GetGeoTransform( adfGeoTransform ) == CE_None )
			{
				ccLog::Print( "Origin = (%.6f,%.6f)", adfGeoTransform[0], adfGeoTransform[3] );
				ccLog::Print( "Pixel Size = (%.6f,%.6f)", adfGeoTransform[1], adfGeoTransform[5] );
			}

			if (adfGeoTransform[1] == 0 || adfGeoTransform[5] == 0)
			{
				ccLog::Warning("Invalid pixel size! Forcing it to (1,1)");
				adfGeoTransform[1] = adfGeoTransform[5] = 1;
			}

			//first check if the raster actually has 'color' bands
			int colorBands = 0;
			{
				for (int i = 1; i <= rasterCount; ++i)
				{
					GDALRasterBand* poBand = poDataset->GetRasterBand(i);
					GDALColorInterp colorInterp = poBand->GetColorInterpretation();

					switch (colorInterp)
					{
					case GCI_RedBand:
					case GCI_GreenBand:
					case GCI_BlueBand:
					case GCI_AlphaBand:
						++colorBands;
						break;
					default:
						break;
					}
				}
			}

			bool loadAsTexturedQuad = false;
			if (colorBands >= 3)
			{
				loadAsTexturedQuad =
					(QMessageBox::question(	parameters.parentWidget,
											"Result type",
											"Import raster as a cloud (yes) or a texture quad? (no)",
											QMessageBox::Yes,
											QMessageBox::No) == QMessageBox::No);
			}

			ccPointCloud* pc = new ccPointCloud();

			CCVector3d origin(adfGeoTransform[0], adfGeoTransform[3], 0.0);
			CCVector3d Pshift(0, 0, 0);
			//check for 'big' coordinates
			{
				bool preserveCoordinateShift = true;
				if (HandleGlobalShift(origin, Pshift, preserveCoordinateShift, parameters))
				{
					if (pc && preserveCoordinateShift)
					{
						pc->setGlobalShift(Pshift);
					}
					ccLog::Warning("[RasterFilter::loadFile] Raster has been recentered! Translation: (%.2f ; %.2f ; %.2f)", Pshift.x, Pshift.y, Pshift.z);
				}
			}

			//create blank raster 'grid'
			ccMesh* quad = 0;
			QImage quadTexture;
			if (loadAsTexturedQuad)
			{
				quad = new ccMesh(pc);
				quad->addChild(pc);
				pc->setName("vertices");
				pc->setEnabled(false);

				//reserve memory
				quadTexture = QImage(rasterX, rasterY, QImage::Format_RGB32);
				if (!pc->reserve(4) || !quad->reserve(2) || quadTexture.size() != QSize(rasterX, rasterY))
				{
					delete quad;
					return CC_FERR_NOT_ENOUGH_MEMORY;
				}

				// B ------ C
				// |        |
				// A ------ D
				CCVector3d B = origin + Pshift; //origin is 'top left'
				CCVector3d C = B;
				C.x += rasterX * adfGeoTransform[1];
				C.y += rasterX * adfGeoTransform[4];
				CCVector3d D = C;
				D.x += rasterY * adfGeoTransform[2];
				D.y += rasterY * adfGeoTransform[5];
				CCVector3d A = B;
				A.x += rasterY * adfGeoTransform[2];
				A.y += rasterY * adfGeoTransform[5];

				pc->addPoint(CCVector3::fromArray(A.u));
				pc->addPoint(CCVector3::fromArray(B.u));
				pc->addPoint(CCVector3::fromArray(C.u));
				pc->addPoint(CCVector3::fromArray(D.u));

				quad->addTriangle(0, 2, 1); //A C B
				quad->addTriangle(0, 3, 2); //A D C
			}
			else
			{
				if (!pc->reserve(static_cast<unsigned>(rasterX * rasterY)))
				{
					delete pc;
					return CC_FERR_NOT_ENOUGH_MEMORY;
				}

				double z = 0.0 /*+ Pshift.z*/;
				for (int j = 0; j < rasterY; ++j)
				{
					for (int i = 0; i < rasterX; ++i)
					{
						double x = adfGeoTransform[0] + (static_cast<double>(i) + 0.5) * adfGeoTransform[1] + (static_cast<double>(j) + 0.5) * adfGeoTransform[2] + Pshift.x;
						double y = adfGeoTransform[3] + (static_cast<double>(i) + 0.5) * adfGeoTransform[4] + (static_cast<double>(j) + 0.5) * adfGeoTransform[5] + Pshift.y;
						CCVector3 P(static_cast<PointCoordinateType>(x), static_cast<PointCoordinateType>(y), static_cast<PointCoordinateType>(z));
						pc->addPoint(P);
					}
				}
				QVariant xVar = QVariant::fromValue<int>(rasterX);
				QVariant yVar = QVariant::fromValue<int>(rasterY);
				pc->setMetaData("raster_width", xVar);
				pc->setMetaData("raster_height", yVar);
			}

			//fetch raster bands
			bool zRasterProcessed = false;
			unsigned zInvalid = 0;
			double zMinMax[2] = { 0, 0 };

			for (int i = 1; i <= rasterCount; ++i)
			{
				ccLog::Print( "[GDAL] Reading band #%i", i);
				GDALRasterBand* poBand = poDataset->GetRasterBand(i);

				GDALColorInterp colorInterp = poBand->GetColorInterpretation();

				int nBlockXSize, nBlockYSize;
				poBand->GetBlockSize( &nBlockXSize, &nBlockYSize );
				ccLog::Print( "[GDAL] Block=%dx%d, Type=%s, ColorInterp=%s", nBlockXSize, nBlockYSize, GDALGetDataTypeName(poBand->GetRasterDataType()), GDALGetColorInterpretationName(colorInterp) );

				//fetching raster scan-line
				int nXSize = poBand->GetXSize();
				int nYSize = poBand->GetYSize();
				assert(nXSize == rasterX);
				assert(nYSize == rasterY);
			
				int bGotMin, bGotMax;
				double adfMinMax[2] = {0, 0};
				adfMinMax[0] = poBand->GetMinimum( &bGotMin );
				adfMinMax[1] = poBand->GetMaximum( &bGotMax );
				if (!bGotMin || !bGotMax)
				{
					//DGM FIXME: if the file is corrupted (e.g. ASCII ArcGrid with missing rows) this method will enter in a infinite loop!
					GDALComputeRasterMinMax((GDALRasterBandH)poBand, TRUE, adfMinMax);
				}
				ccLog::Print( "[GDAL] Min=%.3fd, Max=%.3f", adfMinMax[0], adfMinMax[1] );

				GDALColorTable* colTable = poBand->GetColorTable();
				if( colTable != nullptr )
					printf( "[GDAL] Band has a color table with %d entries", colTable->GetColorEntryCount() );

				if( poBand->GetOverviewCount() > 0 )
					printf( "[GDAL] Band has %d overviews", poBand->GetOverviewCount() );

				if (	colorInterp == GCI_Undefined //probably heights? DGM: no GDAL is lost if the bands are coded with 64 bits values :(
					&&	!zRasterProcessed
					&&	(colorBands >= 3 || rasterCount < 4 || i > (rasterCount == 4 ? 3 : 4))
					&&	!loadAsTexturedQuad
					/*&& !colTable*/)
				{
					zRasterProcessed = true;
					zMinMax[0] = adfMinMax[0];
					zMinMax[1] = adfMinMax[1];

					double* scanline = (double*)CPLMalloc(sizeof(double)*nXSize);
					//double* scanline = new double[nXSize];
					memset(scanline, 0, sizeof(double)*nXSize);

					for (int j = 0; j < nYSize; ++j)
					{
						if (poBand->RasterIO(	GF_Read,
												/*xOffset=*/0,
												/*yOffset=*/j,
												/*xSize=*/nXSize,
												/*ySize=*/1,
												/*buffer=*/scanline,
												/*bufferSizeX=*/nXSize,
												/*bufferSizeY=*/1,
												/*bufferType=*/GDT_Float64,
												/*x_offset=*/0,
												/*y_offset=*/0 ) != CE_None)
						{
							assert(!quad);
							delete pc;
							CPLFree(scanline);
							GDALClose(poDataset);
							return CC_FERR_READING;
						}

						for (int k = 0; k < nXSize; ++k)
						{
							double z = static_cast<double>(scanline[k]) + Pshift[2];
							unsigned pointIndex = static_cast<unsigned>(k + j * rasterX);
							if (pointIndex <= pc->size())
							{
								if (z < zMinMax[0] || z > zMinMax[1])
								{
									z = zMinMax[0] - 1.0;
									++zInvalid;
								}
								const_cast<CCVector3*>(pc->getPoint(pointIndex))->z = static_cast<PointCoordinateType>(z);
							}
						}
					}

					//update bounding-box
					pc->invalidateBoundingBox();

					if (scanline)
						CPLFree(scanline);
					scanline = 0;
				}
				else //colors
				{
					bool isRGB = false;
					bool isScalar = false;
					bool isPalette = false;
				
					switch(colorInterp)
					{
					case GCI_Undefined:
						isScalar = true;
						break;
					case GCI_PaletteIndex:
						isPalette = true;
						break;
					case GCI_RedBand:
					case GCI_GreenBand:
					case GCI_BlueBand:
						isRGB = true;
						break;
					case GCI_AlphaBand:
						if (adfMinMax[0] != adfMinMax[1])
						{
							if (loadAsTexturedQuad)
								isRGB = true;
							else
								isScalar = true; //we can't load the alpha band as a cloud color (transparency is not handled yet)
						}
						else
						{
							ccLog::Warning(QString("Alpha band ignored as it has a unique value (%1)").arg(adfMinMax[0]));
						}
						break;
					default:
						isScalar = true;
						break;
					}

					if (isRGB || isPalette)
					{
						//first check that a palette exists if the band is a palette index
						if (isPalette && !colTable)
						{
							ccLog::Warning(QString("Band is declared as a '%1' but no palette is associated!").arg(GDALGetColorInterpretationName(colorInterp)));
						}
						else
						{
							//instantiate memory for RBG colors if necessary
							if (!loadAsTexturedQuad && !pc->hasColors() && !pc->setRGBColor(ccColor::MAX, ccColor::MAX, ccColor::MAX))
							{
								ccLog::Warning(QString("Failed to instantiate memory for storing color band '%1'!").arg(GDALGetColorInterpretationName(colorInterp)));
							}
							else
							{
								assert(poBand->GetRasterDataType() <= GDT_Int32);

								int* colIndexes = (int*)CPLMalloc(sizeof(int)*nXSize);
								//double* scanline = new double[nXSize];
								memset(colIndexes, 0, sizeof(int)*nXSize);

								for (int j = 0; j < nYSize; ++j)
								{
									if (poBand->RasterIO( GF_Read, /*xOffset=*/0, /*yOffset=*/j, /*xSize=*/nXSize, /*ySize=*/1, /*buffer=*/colIndexes, /*bufferSizeX=*/nXSize, /*bufferSizeY=*/1, /*bufferType=*/GDT_Int32, /*x_offset=*/0, /*y_offset=*/0 ) != CE_None)
									{
										CPLFree(colIndexes);
										if (quad)
											delete quad;
										else
											delete pc;
										return CC_FERR_READING;
									}

									for (int k = 0; k < nXSize; ++k)
									{
										unsigned pointIndex = static_cast<unsigned>(k + j * rasterX);
										if (loadAsTexturedQuad || pointIndex <= pc->size())
										{
											ccColor::Rgba C;
											if (loadAsTexturedQuad)
											{
												QRgb origColor = quadTexture.pixel(k, j);
												C = ccColor::FromQRgba(origColor);
											}
											else
											{
												const ccColor::Rgb& origColor = pc->getPointColor(pointIndex);
												C = ccColor::Rgba(origColor, ccColor::MAX);
											}

											switch (colorInterp)
											{
											case GCI_PaletteIndex:
												assert(colTable);
												{
													GDALColorEntry col;
													colTable->GetColorEntryAsRGB(colIndexes[k], &col);
													C.r = static_cast<ColorCompType>(col.c1 & ccColor::MAX);
													C.g = static_cast<ColorCompType>(col.c2 & ccColor::MAX);
													C.b = static_cast<ColorCompType>(col.c3 & ccColor::MAX);
												}
												break;

											case GCI_RedBand:
												C.r = static_cast<ColorCompType>(colIndexes[k] & ccColor::MAX);
												break;
											case GCI_GreenBand:
												C.g = static_cast<ColorCompType>(colIndexes[k] & ccColor::MAX);
												break;
											case GCI_BlueBand:
												C.b = static_cast<ColorCompType>(colIndexes[k] & ccColor::MAX);
												break;

											case GCI_AlphaBand:
												C.a = static_cast<ColorCompType>(colIndexes[k] & ccColor::MAX);
												break;

											default:
												assert(false);
												break;
											}

											if (loadAsTexturedQuad)
											{
												quadTexture.setPixel(k, j, qRgba(C.r, C.g, C.b, C.a));
											}
											else
											{
												pc->setPointColor(pointIndex, C);
											}
										}
									}
								}

								if (colIndexes)
									CPLFree(colIndexes);
								colIndexes = 0;
							}
						}
					}
					else if (isScalar && !loadAsTexturedQuad)
					{
						QString sfName = QString("band #%1 (%2)").arg(i).arg(GDALGetColorInterpretationName(colorInterp)); //SF names really need to be unique!
						ccScalarField* sf = new ccScalarField(qPrintable(sfName));
						if (!sf->resizeSafe(pc->size(), true, NAN_VALUE))
						{
							ccLog::Warning(QString("Failed to instantiate memory for storing '%1' as a scalar field!").arg(sf->getName()));
							sf->release();
							sf = nullptr;
						}
						else
						{
							double* colValues = (double*)CPLMalloc(sizeof(double)*nXSize);
							//double* scanline = new double[nXSize];
							memset(colValues, 0, sizeof(double)*nXSize);

							for (int j=0; j<nYSize; ++j)
							{
								if (poBand->RasterIO( GF_Read, /*xOffset=*/0, /*yOffset=*/j, /*xSize=*/nXSize, /*ySize=*/1, /*buffer=*/colValues, /*bufferSizeX=*/nXSize, /*bufferSizeY=*/1, /*bufferType=*/GDT_Float64, /*x_offset=*/0, /*y_offset=*/0 ) != CE_None)
								{
									CPLFree(colValues);
									delete pc;
									return CC_FERR_READING;
								}

								for (int k=0; k<nXSize; ++k)
								{
									unsigned pointIndex = static_cast<unsigned>(k + j * rasterX);
									if (pointIndex <= pc->size())
									{
										ScalarType s = static_cast<ScalarType>(colValues[k]);
										sf->setValue(pointIndex,s);
									}
								}
							}

							if (colValues)
								CPLFree(colValues);
							colValues = 0;

							sf->computeMinAndMax();
							pc->addScalarField(sf);
							if (pc->getNumberOfScalarFields() == 1)
							{
								pc->setCurrentDisplayedScalarField(0);
							}
						}
					}
				}
			}

			if (quad)
			{
				ccPlane::SetQuadTexture(quad, quadTexture.mirrored());
				container.addChild(quad);
			}
			else if (pc)
			{
				if (!zRasterProcessed)
				{
					ccLog::Warning("Raster has no height (Z) information: you can convert one of its scalar fields to Z with 'Edit > Scalar Fields > Set SF as coordinate(s)'");
				}
				else if (zInvalid != 0 && zInvalid < pc->size())
				{
					//shall we remove the points with invalid heights?
					if (QMessageBox::question(0, "Remove NaN points?", "This raster has pixels with invalid heights. Shall we remove them?", QMessageBox::Yes, QMessageBox::No) == QMessageBox::Yes)
					{
						CCLib::ReferenceCloud validPoints(pc);
						unsigned count = pc->size();
						bool error = true;
						if (validPoints.reserve(count-zInvalid))
						{
							for (unsigned i=0; i<count; ++i)
							{
								if (pc->getPoint(i)->z >= zMinMax[0])
									validPoints.addPointIndex(i);
							}

							if (validPoints.size() > 0)
							{
								validPoints.resize(validPoints.size());
								ccPointCloud* newPC = pc->partialClone(&validPoints);
								if (newPC)
								{
									delete pc;
									pc = newPC;
									error = false;
								}
							}
							else
							{
								assert(false);
							}
						}

						if (error)
						{
							ccLog::Error("Not enough memory to remove the points with invalid heights!");
						}
					}
				}
				container.addChild(pc);

				//we give the priority to colors!
				if (pc->hasColors())
				{
					pc->showColors(true);
					pc->showSF(false);
				}
				else if (pc->hasScalarFields())
				{
					pc->showSF(true);
				}
			}

			GDALClose(poDataset);
		}
		else
		{
			return CC_FERR_UNKNOWN_FILE;
		}
	}
	catch(...)
	{
		return CC_FERR_THIRD_PARTY_LIB_EXCEPTION;
	}

	return CC_FERR_NO_ERROR;
}

#endif