File: classifier.cpp

package info (click to toggle)
cloudcompare 2.10.1-2
  • links: PTS
  • area: main
  • in suites: buster
  • size: 55,916 kB
  • sloc: cpp: 219,837; ansic: 29,944; makefile: 67; sh: 45
file content (393 lines) | stat: -rw-r--r-- 11,966 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
//##########################################################################
//#                                                                        #
//#                     CLOUDCOMPARE PLUGIN: qCANUPO                       #
//#                                                                        #
//#  This program is free software; you can redistribute it and/or modify  #
//#  it under the terms of the GNU General Public License as published by  #
//#  the Free Software Foundation; version 2 or later of the License.      #
//#                                                                        #
//#  This program is distributed in the hope that it will be useful,       #
//#  but WITHOUT ANY WARRANTY; without even the implied warranty of        #
//#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the          #
//#  GNU General Public License for more details.                          #
//#                                                                        #
//#      COPYRIGHT: UEB (UNIVERSITE EUROPEENNE DE BRETAGNE) / CNRS         #
//#                                                                        #
//##########################################################################

//This file is directly inspired of the equivalently named file in the
//original CANUPO project, by N. Brodu and D. Lague.

#include "classifier.h"

//Qt
#include <QFile>

//system
#include <assert.h>
#include <limits.h>

Classifier::Classifier()
	: class1(0)
	, class2(0)
	, absMaxXY(0)
	, axisScaleRatio(1.0f)
	, descriptorID(DESC_INVALID)
	, dimPerScale(0)
{}

bool Classifier::checkRefPoints()
{
	// dot product with (+1,+1) vector gives the classification sign
	if (refPointPos.x + refPointPos.y < 0)
	{
		std::swap(refPointPos, refPointNeg);
	}

	return (refPointPos.x + refPointPos.y >= 0);
}

float Classifier::classify2D_checkcondnum(const Point2D& P, const Point2D& R, float& condnumber) const
{
	condnumber = 0;
	if (path.size() < 2)
	{
		assert(false);
		return 0;
	}

	// consider each path segment as a mini-classifier
	// the segment PR[Pt-->Refpt] and each path's segment cross
	// iff each one classifies the end point of the other in different classes
	Point2D PR = R-P;
	Point2D u = PR; u.normalize();

	unsigned numcross = 0;

	//we'll also look for the distance between P and the nearest segment
	float closestSquareDist = -1.0f;

	size_t segCount = path.size() - 1;
	for (size_t i=0; i<segCount; ++i)
	{
		//current path segment (or half-line!)
		Point2D AP = P - path[i];
		Point2D AB = path[i+1] - path[i];
		Point2D v = AB; v.normalize();

		condnumber = std::max<float>(condnumber, fabs(v.dot(u)));

		// Compute whether PR[Pt-->Refpt] and that segment cross
		float denom = (u.x*v.y-v.x*u.y);
		if (denom != 0)
		{
			// 1. check whether the given pt and the refpt are on different sides of the classifier line
			//we search for alpha and beta so that
			// P + alpha * PR = A + beta * AB
			float alpha = (AP.y * v.x - AP.x * v.y)/denom;
			bool pathIntersects = (alpha >= 0 && alpha*alpha <= PR.norm2());
			if (pathIntersects)
			{
				float beta = (AP.y * u.x - AP.x * u.y)/denom;

				// first and last lines are projected to infinity
				bool refSegIntersects = ((i == 0 || beta >= 0) && (i+1 == segCount || beta*beta < AB.norm2())); //not "beta*beta <= AB.norm2()" because the equality case will be managed by the next segment!

				// crossing iif each segment/line separates the other
				if (refSegIntersects)
					numcross++;
			}
		}

		// closest distance from the point to that segment
		// 1. projection of the point of the line
		float squareDistToSeg = 0;
		float distAH = v.dot(AP);
		if ((i == 0 || distAH >= 0.0) && (i+1 == segCount || distAH <= AB.norm()))
		{
			// 2. Is the projection within the segment limit? yes => closest
			Point2D PH = (path[i] + v * distAH) - P;
			squareDistToSeg = PH.norm2();
		}
		else
		{
			// 3. otherwise closest is the minimum of the distance to the segment ends
			Point2D BP = P - path[i+1];
			squareDistToSeg = std::min( AP.norm2(), BP.norm2() );
		}

		if (closestSquareDist < 0 || squareDistToSeg < closestSquareDist)
		{
			closestSquareDist = squareDistToSeg;
		}
	}

	assert(closestSquareDist >= 0);
	float deltaNorm = sqrt(closestSquareDist);

	return ((numcross & 1) == 0 ? deltaNorm : -deltaNorm);
}

float Classifier::classify2D(const Point2D& P) const
{
	float condpos, condneg;
	float predpos = classify2D_checkcondnum(P,refPointPos,condpos);
	float predneg = classify2D_checkcondnum(P,refPointNeg,condneg);

	// normal nearly aligned = bad conditionning, the lower the dot prod the better
	return condpos < condneg ? predpos : -predneg;
}

Classifier::Point2D Classifier::project(const CorePointDesc& mscdata) const
{
	assert(weightsAxis1.size() == weightsAxis2.size());
	assert(weightsAxis1.size() > 1);

	//There may be less weights than parameters in the descriptor
	//if we use a descriptor computed with more (bigger) scales.
	//In this case we assume the matching scales are all at the end!
	//(i.e. the smallest)
	size_t weightCount = weightsAxis1.size()-1;
	size_t paramCount = mscdata.params.size();
	assert(weightCount <= paramCount);
	unsigned shift = static_cast<unsigned>(paramCount - weightCount);

	Point2D P( weightsAxis1.back(), weightsAxis2.back() );

	for (size_t i=0; i<weightCount; ++i)
	{
		P.x += weightsAxis1[i] * mscdata.params[shift+i];
		P.y += weightsAxis2[i] * mscdata.params[shift+i];
	}

	return P;
}

float Classifier::classify(const CorePointDesc& mscdata) const
{
	Point2D P = project(mscdata);
	return classify2D(P);
}

bool Classifier::Load(	QString filename,
						std::vector<Classifier>& classifiers,
						std::vector<float>& scales,
						QString& error,
						FileHeader* header/*=0*/,
						bool headerOnly/*=false*/)
{
	QFile file(filename);
	if (!file.open(QIODevice::ReadOnly))
	{
		error = QString("Failed to open input classifier file!");
		return false;
	}

	scales.clear();
	classifiers.clear();

	//DGM: sadly we can't use a stream as data in prm files are saved in a strange way
	//QDataStream stream(&file);
	//--> changing the stream 'byte order' doesn't help :(
	//stream.setByteOrder(QDataStream::LittleEndian);

	// scales count
	unsigned nscales;
	file.read(reinterpret_cast<char*>(&nscales), sizeof(unsigned));

	unsigned dimPerScale = 2;
	unsigned descriptorID = 1;

	if (nscales == 9999)
	{
		//we are loading a new 'prm' file (generated by qCanupo)
		//descriptor ID
		file.read(reinterpret_cast<char*>(&descriptorID), sizeof(unsigned));
		//dimension per scale
		file.read(reinterpret_cast<char*>(&dimPerScale), sizeof(unsigned));
		//and now the real number of scales
		file.read(reinterpret_cast<char*>(&nscales), sizeof(unsigned));
	}

	// values count
	try
	{
		scales.resize(nscales);
	}
	catch (const std::bad_alloc&)
	{
		error = QString("Not enough memory!");
		return false;
	}

	// read scale values
	{
		for (unsigned s=0; s<nscales; ++s)
			file.read(reinterpret_cast<char*>(&scales[s]), sizeof(float));
	}

	// number of classifiers
	unsigned nclassifiers;
	file.read(reinterpret_cast<char*>(&nclassifiers), sizeof(unsigned));

	if (header)
	{
		header->classifierCount = nclassifiers;
		header->dimPerScale = dimPerScale;
		header->descID = descriptorID;
	}
	
	if (headerOnly)
	{
		//we can stop here
		return true;
	}

	// reserve classifiers array
	try
	{
		classifiers.resize(nclassifiers);
	}
	catch (const std::bad_alloc&)
	{
		error = QString("Not enough memory!");
		return false;
	}

	// read classifiers
	try
	{
		const unsigned fdim = nscales*dimPerScale;
		for (unsigned ci=0; ci<nclassifiers; ++ci)
		{
			Classifier& classifier = classifiers[ci];

			classifier.dimPerScale = dimPerScale;
			classifier.descriptorID = descriptorID;

			classifier.scales = scales; //all classifiers inside a file have the same scales!
			file.read(reinterpret_cast<char*>(&classifier.class1), sizeof(int));
			file.read(reinterpret_cast<char*>(&classifier.class2), sizeof(int));

			classifier.weightsAxis1.resize(fdim+1);
			{
				for (unsigned i=0; i<=fdim; ++i)
					file.read(reinterpret_cast<char*>(&classifier.weightsAxis1[i]), sizeof(float));
			}
			classifier.weightsAxis2.resize(fdim+1);
			{
				for (unsigned i=0; i<=fdim; ++i)
					file.read(reinterpret_cast<char*>(&classifier.weightsAxis2[i]), sizeof(float));
			}

			unsigned pathsize;
			file.read(reinterpret_cast<char*>(&pathsize), sizeof(unsigned));
			classifier.path.resize(pathsize);
			{
				for (unsigned i=0; i<pathsize; ++i)
				{
					file.read(reinterpret_cast<char*>(&classifier.path[i].x), sizeof(float));
					file.read(reinterpret_cast<char*>(&classifier.path[i].y), sizeof(float));
				}
			}

			file.read(reinterpret_cast<char*>(&classifier.refPointPos.x),	sizeof(float));
			file.read(reinterpret_cast<char*>(&classifier.refPointPos.y),	sizeof(float));
			file.read(reinterpret_cast<char*>(&classifier.refPointNeg.x),	sizeof(float));
			file.read(reinterpret_cast<char*>(&classifier.refPointNeg.y),	sizeof(float));
			file.read(reinterpret_cast<char*>(&classifier.absMaxXY),		sizeof(float));
			file.read(reinterpret_cast<char*>(&classifier.axisScaleRatio),	sizeof(float));

			if (!classifier.checkRefPoints())
			{
				//DGM: strange test, that fails for valid classifiers!
				//error = QString("Invalid reference points in the classifier");
				//return false;
			}
		}
	}
	catch (const std::bad_alloc&)
	{
		error = QString("Not enough memory!");
		return false;
	}

	return true;
}

bool Classifier::save(	QString filename,
						QString& error)
{
	QFile file(filename);
	if (!file.open(QIODevice::WriteOnly))
	{
		error = QString("Failed to open output file!");
		return false;
	}

	//DGM: sadly we can't use a stream as data in prm files are saved in a strange way
	//see Classifier::Load

	if (descriptorID != DESC_DIMENSIONALITY || dimPerScale != 2)
	{
		//we code the 'new' PRM files with 9999 in place of the number of scales!
		const unsigned headerCode = 9999;
		file.write(reinterpret_cast<const char*>(&headerCode), sizeof(unsigned));

		//descriptor ID
		file.write(reinterpret_cast<const char*>(&descriptorID), sizeof(unsigned));
		//dimension per scale
		file.write(reinterpret_cast<const char*>(&dimPerScale), sizeof(unsigned));
	}

	// number of scales
	unsigned nscales = static_cast<unsigned>(scales.size());
	file.write(reinterpret_cast<const char*>(&nscales), sizeof(unsigned));

	// write scale values
	{
		for (unsigned s=0; s<nscales; ++s)
			file.write(reinterpret_cast<const char*>(&scales[s]), sizeof(float));
	}

	// number of 2-class classifiers = 1!
	unsigned nclassifiers = 1;
	file.write(reinterpret_cast<const char*>(&nclassifiers), sizeof(unsigned));

	// write classifier
	const unsigned fdim = nscales*dimPerScale;
	file.write(reinterpret_cast<const char*>(&class1), sizeof(int));
	file.write(reinterpret_cast<const char*>(&class2), sizeof(int));

	//weightsAxis1
	{
		for (unsigned i=0; i<=fdim; ++i)
			file.write(reinterpret_cast<const char*>(&weightsAxis1[i]), sizeof(float));
	}
	//weightsAxis2
	{
		for (unsigned i=0; i<=fdim; ++i)
			file.write(reinterpret_cast<const char*>(&weightsAxis2[i]), sizeof(float));
	}

	unsigned pathsize = static_cast<unsigned>(path.size());
	file.write(reinterpret_cast<const char*>(&pathsize), sizeof(unsigned));
	{
		for (unsigned i=0; i<pathsize; ++i)
		{
			file.write(reinterpret_cast<const char*>(&path[i].x), sizeof(float));
			file.write(reinterpret_cast<const char*>(&path[i].y), sizeof(float));
		}
	}

	file.write(reinterpret_cast<const char*>(&refPointPos.x),	sizeof(float));
	file.write(reinterpret_cast<const char*>(&refPointPos.y),	sizeof(float));
	file.write(reinterpret_cast<const char*>(&refPointNeg.x),	sizeof(float));
	file.write(reinterpret_cast<const char*>(&refPointNeg.y),	sizeof(float));
	file.write(reinterpret_cast<const char*>(&absMaxXY),		sizeof(float));
	file.write(reinterpret_cast<const char*>(&axisScaleRatio),	sizeof(float));

	file.close();

	return true;
}