1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
|
//##########################################################################
//# #
//# CLOUDCOMPARE PLUGIN: qCANUPO #
//# #
//# This program is free software; you can redistribute it and/or modify #
//# it under the terms of the GNU General Public License as published by #
//# the Free Software Foundation; version 2 or later of the License. #
//# #
//# This program is distributed in the hope that it will be useful, #
//# but WITHOUT ANY WARRANTY; without even the implied warranty of #
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
//# GNU General Public License for more details. #
//# #
//# COPYRIGHT: UEB (UNIVERSITE EUROPEENNE DE BRETAGNE) / CNRS #
//# #
//##########################################################################
#include "qCanupoTools.h"
//Local
#include "trainer.h"
//CCLib
#include <DistanceComputationTools.h>
#include <Neighbourhood.h>
#include <ParallelSort.h>
//qCC_db
#include <ccGenericPointCloud.h>
#include <ccOctree.h>
#include <ccPointCloud.h>
#include <ccProgressDialog.h>
#include <ccScalarField.h>
//qCC_plugins
#include "../../ccMainAppInterface.h"
//Qt
#include <QApplication>
#include <QComboBox>
#include <QMainWindow>
#include <QProgressDialog>
#include <QtConcurrentMap>
//ComputeCorePointsDescriptors parameters
static struct
{
CCLib::GenericIndexedCloud* corePoints;
ccGenericPointCloud* sourceCloud;
CCLib::DgmOctree* octree;
unsigned char octreeLevel;
CorePointDescSet* descriptors;
bool invalidDescriptors;
CCLib::NormalizedProgress* nProgress;
bool processCanceled;
bool errorOccurred;
ScaleParamsComputer* computer; //the per-scale parameters computer
std::vector<ccScalarField*>* roughnessSFs; //for test
} s_computeCorePointsDescParams;
//! Per-point descriptor computer (all the parameters are stored in s_computeCorePointsDescParams)
void ComputeCorePointDescriptor(unsigned index)
{
if (s_computeCorePointsDescParams.processCanceled)
return;
const CCVector3* P = s_computeCorePointsDescParams.corePoints->getPoint(index);
CCLib::DgmOctree::NeighboursSet neighbours;
//extract the neighbors (maximum radius)
float maxRadius = s_computeCorePointsDescParams.descriptors->scales().front()/2;
int n = s_computeCorePointsDescParams.octree->getPointsInSphericalNeighbourhood(*P,
maxRadius,
neighbours,
s_computeCorePointsDescParams.octreeLevel);
if (n != 0)
{
size_t scaleCount = s_computeCorePointsDescParams.descriptors->scales().size();
//get reference on corresponding descriptor
assert(s_computeCorePointsDescParams.descriptors->size() > index);
CorePointDesc& desc = s_computeCorePointsDescParams.descriptors->at(index);
unsigned dimPerScale = s_computeCorePointsDescParams.descriptors->dimPerScale();
assert(desc.params.size() == scaleCount*dimPerScale);
//init the whole neighborhood subset (we will prune it each time)
CCLib::ReferenceCloud subset(s_computeCorePointsDescParams.sourceCloud);
{
if (!subset.reserve(n))
{
//not enough memory!
s_computeCorePointsDescParams.errorOccurred = true;
s_computeCorePointsDescParams.processCanceled = true; //to make the loop stop!
return;
}
//sort the neighbors by increasing distance
ParallelSort(neighbours.begin(), neighbours.end(), CCLib::DgmOctree::PointDescriptor::distComp);
for (int j = 0; j < n; ++j)
{
subset.addPointIndex(neighbours[j].pointIndex);
}
}
s_computeCorePointsDescParams.computer->reset();
for (size_t i=0; i<scaleCount; ++i)
{
const double radius = s_computeCorePointsDescParams.descriptors->scales()[i]/2; //we start from the biggest
if (i != 0)
{
//trim the points that don't fall in the current neighborhood
double squareRadius = radius*radius;
CCLib::DgmOctree::PointDescriptor fakeDesc(nullptr,0,squareRadius);
CCLib::DgmOctree::NeighboursSet::iterator up = std::upper_bound(neighbours.begin(),neighbours.end(),fakeDesc,CCLib::DgmOctree::PointDescriptor::distComp);
if (up != neighbours.end())
{
size_t count = std::max<size_t>( 1, up - neighbours.begin() );
neighbours.resize(count);
subset.resize(static_cast<unsigned>(count));
}
}
//optional: compute per-level roughness
if (s_computeCorePointsDescParams.roughnessSFs)
{
ScalarType roughness = NAN_VALUE;
if (subset.size() >= 3)
{
//to compute we take the nearest point to the query point as 'central' point
//warning: it should work in most of the cases, apart if the core points have nothing to do
//with the global cloud!!!
unsigned lastIndex = subset.size()-1;
subset.swap(0, lastIndex);
//temporarily remove the central point (now at the end)
unsigned globalIndex = subset.getPointGlobalIndex(lastIndex);
subset.resize(lastIndex);
CCLib::Neighbourhood Z(&subset);
const PointCoordinateType* lsPlane = Z.getLSPlane();
if (lsPlane)
{
//distance to the LS plane fitted on the nearest neighbors
const CCVector3* centralPoint = s_computeCorePointsDescParams.sourceCloud->getPoint(globalIndex);
roughness = fabs(CCLib::DistanceComputationTools::computePoint2PlaneDistance(centralPoint,lsPlane));
}
//put back the point at its original place!
subset.addPointIndex(globalIndex);
subset.swap(0, lastIndex);
}
assert(s_computeCorePointsDescParams.roughnessSFs->size() == scaleCount);
ccScalarField* sf = s_computeCorePointsDescParams.roughnessSFs->at(i);
assert(sf && sf->currentSize() > index);
sf->setValue(index,roughness);
}
bool invalidScale = false;
if (!s_computeCorePointsDescParams.computer->computeScaleParams(subset, radius, &(desc.params[i*dimPerScale]), invalidScale))
{
//an error occurred!
s_computeCorePointsDescParams.errorOccurred = true;
s_computeCorePointsDescParams.processCanceled = true; //to make the loop stop!
return;
}
if (invalidScale)
{
s_computeCorePointsDescParams.invalidDescriptors = true;
//no need to compute the remaining scales!
for (size_t j=i+1; j<scaleCount; ++j)
{
//copy the same parameters for all scales (see CANUPO paper)
memcpy(&(desc.params[j*dimPerScale]), &(desc.params[i*dimPerScale]), sizeof(float)*dimPerScale);
}
//neighbours.clear();
//subset.clear(true);
break;
}
}
}
else
{
//if the widest neighborhood has less than 3 points, we can't compute a valid descriptor!
s_computeCorePointsDescParams.invalidDescriptors = true;
}
//progress notification
if (s_computeCorePointsDescParams.nProgress && !s_computeCorePointsDescParams.nProgress->oneStep())
{
s_computeCorePointsDescParams.processCanceled = true;
}
}
bool qCanupoTools::ComputeCorePointsDescriptors(CCLib::GenericIndexedCloud* corePoints,
CorePointDescSet& corePointsDescriptors,
ccGenericPointCloud* sourceCloud,
const std::vector<float>& sortedScales,
bool& invalidDescriptors,
QString& error, //if any
unsigned descriptorID/*=DESC_DIMENSIONALITY*/,
int maxThreadCount/*=0*/,
CCLib::GenericProgressCallback* progressCb/*=0*/,
CCLib::DgmOctree* inputOctree/*=0*/,
std::vector<ccScalarField*>* roughnessSFs/*=0*/)
{
assert(corePoints && sourceCloud);
assert(!sortedScales.empty());
invalidDescriptors = true;
error = QString();
unsigned corePtsCount = corePoints->size();
if (corePtsCount == 0)
{
error = "No core points?!";
return false;
}
size_t scaleCount = sortedScales.size();
if (scaleCount == 0)
{
error = "No scales?!";
return false;
}
//descriptor (computer)
s_computeCorePointsDescParams.computer = ScaleParamsComputer::GetByID(descriptorID);
if (!s_computeCorePointsDescParams.computer)
{
error = QString("Unhandled descriptor ID (%1)!").arg(descriptorID);
return false;
}
if (s_computeCorePointsDescParams.computer->needSF() && !corePoints->enableScalarField())
{
error = "Couldn't find a scalar field for core points!";
return false;
}
corePointsDescriptors.setDescriptorID(descriptorID);
corePointsDescriptors.setDimPerScale(s_computeCorePointsDescParams.computer->dimPerScale());
CCLib::DgmOctree* theOctree = inputOctree;
if (!theOctree)
{
theOctree = new CCLib::DgmOctree(sourceCloud);
if (theOctree->build(progressCb) == 0)
{
error = "Failed to build the octree (not enough memory?)";
delete theOctree;
return false;
}
}
CCLib::NormalizedProgress nProgress(progressCb, corePtsCount);
if (progressCb)
{
if (progressCb->textCanBeEdited())
{
progressCb->setInfo(qPrintable(QString("Core points: %1\nSource points: %2").arg(corePtsCount).arg(sourceCloud->size())));
progressCb->setMethodTitle("Computing descriptors");
}
progressCb->start();
QApplication::processEvents();
}
//reserve memory for descriptors storage
bool success = true;
try
{
corePointsDescriptors.resize(corePtsCount);
}
catch (const std::bad_alloc&)
{
success = false;
}
if (success)
success = corePointsDescriptors.setScales(sortedScales); //automatically resizes the 'params' structure for each core point
if (!success)
{
error = "Not enough memory!";
if (!inputOctree)
delete theOctree;
return false;
}
PointCoordinateType biggestRadius = sortedScales.front()/2; //we extract the biggest neighborhood
unsigned char octreeLevel = theOctree->findBestLevelForAGivenNeighbourhoodSizeExtraction(biggestRadius);
s_computeCorePointsDescParams.corePoints = corePoints;
s_computeCorePointsDescParams.descriptors = &corePointsDescriptors;
s_computeCorePointsDescParams.sourceCloud = sourceCloud;
s_computeCorePointsDescParams.octree = theOctree;
s_computeCorePointsDescParams.octreeLevel = octreeLevel;
s_computeCorePointsDescParams.nProgress = progressCb ? &nProgress : nullptr;
s_computeCorePointsDescParams.processCanceled = false;
s_computeCorePointsDescParams.errorOccurred = false;
s_computeCorePointsDescParams.invalidDescriptors = false;
s_computeCorePointsDescParams.roughnessSFs = roughnessSFs;
//we try the parallel way (if we have enough memory)
bool useParallelStrategy = true;
#ifdef _DEBUG
useParallelStrategy = false;
#endif
std::vector<unsigned> corePointsIndexes;
if (useParallelStrategy)
{
try
{
corePointsIndexes.resize(corePtsCount);
}
catch (const std::bad_alloc&)
{
//not enough memory
useParallelStrategy = false;
}
}
if (useParallelStrategy)
{
for (unsigned i=0; i<corePtsCount; ++i)
{
corePointsIndexes[i] = i;
}
if (maxThreadCount == 0)
{
maxThreadCount = QThread::idealThreadCount();
}
assert(maxThreadCount <= QThread::idealThreadCount());
QThreadPool::globalInstance()->setMaxThreadCount(maxThreadCount);
QtConcurrent::blockingMap(corePointsIndexes, ComputeCorePointDescriptor);
}
else
{
//manually call the static per-point method!
for (unsigned i=0; i<corePtsCount; ++i)
{
ComputeCorePointDescriptor(i);
}
}
//output flags
bool wasCanceled = s_computeCorePointsDescParams.processCanceled;
bool errorOccurred = s_computeCorePointsDescParams.errorOccurred;
if (errorOccurred)
error = "An error occurred during descriptors computation!";
else if (wasCanceled)
error = "Process has been cancelled by the user";
invalidDescriptors = s_computeCorePointsDescParams.invalidDescriptors;
//reset static parameters (just to be clean ;)
s_computeCorePointsDescParams.corePoints = nullptr;
s_computeCorePointsDescParams.descriptors = nullptr;
s_computeCorePointsDescParams.sourceCloud = nullptr;
s_computeCorePointsDescParams.octree = nullptr;
s_computeCorePointsDescParams.octreeLevel = 0;
s_computeCorePointsDescParams.nProgress = nullptr;
s_computeCorePointsDescParams.processCanceled = false;
s_computeCorePointsDescParams.errorOccurred = false;
s_computeCorePointsDescParams.invalidDescriptors = false;
s_computeCorePointsDescParams.computer = nullptr;
if (progressCb)
{
progressCb->stop();
}
if (!inputOctree)
delete theOctree;
return !errorOccurred && !wasCanceled;
}
bool qCanupoTools::CompareVectors(const std::vector<float>& first, const std::vector<float>& second)
{
//check scales
size_t firstCount = first.size();
if (firstCount != second.size())
return false;
for (size_t i=0; i<firstCount; ++i)
if (!Fpeq<float>(first[i],second[i]))
return false;
return true;
}
size_t qCanupoTools::TestVectorsOverlap(const std::vector<float>& first, const std::vector<float>& second)
{
size_t size1 = first.size();
size_t size2 = second.size();
size_t minCount = std::min(size1, size2);
size_t i = 0;
for (i=0; i<minCount; ++i)
if (!Fpeq<float>(first[size1-1-i],second[size2-1-i]))
break;
return i;
}
QString qCanupoTools::GetEntityName(ccHObject* obj)
{
if (!obj)
{
assert(false);
return QString();
}
QString name = obj->getName();
if (name.isEmpty())
name = "unnamed";
name += QString(" [ID %1]").arg(obj->getUniqueID());
return name;
}
ccPointCloud* qCanupoTools::GetCloudFromCombo(QComboBox* comboBox, ccHObject* dbRoot)
{
assert(comboBox && dbRoot);
if (!comboBox || !dbRoot)
{
assert(false);
return nullptr;
}
//return the cloud currently selected in the combox box
int index = comboBox->currentIndex();
if (index < 0)
{
assert(false);
return nullptr;
}
unsigned uniqueID = comboBox->itemData(index).toUInt();
ccHObject* item = dbRoot->find(uniqueID);
if (!item || !item->isA(CC_TYPES::POINT_CLOUD))
{
assert(false);
return nullptr;
}
return static_cast<ccPointCloud*>(item);
}
bool qCanupoTools::EvaluateClassifier( const Classifier& classifier,
const CorePointDescSet& descriptors1,
const CorePointDescSet& descriptors2,
const std::vector<float>& scales,
EvalParameters& params)
{
params = EvalParameters();
if (descriptors1.empty() || descriptors2.empty())
{
//empty descriptors?
return false;
}
//Evaluate on 1st class
{
size_t nsamples1 = descriptors1.size();
double sumd = 0;
double sumd2 = 0;
for (size_t i=0; i<nsamples1; ++i)
{
float d = classifier.classify(descriptors1[i]);
if (d > 0)
params.false1++;
else
params.true1++;
sumd += static_cast<double>(d);
sumd2 += static_cast<double>(d*d);
}
params.mu1 = sumd / static_cast<double>(nsamples1);
params.var1 = sumd2 / static_cast<double>(nsamples1) - params.mu1*params.mu1;
}
//Evaluate on 2nd class
{
size_t nsamples2 = descriptors2.size();
double sumd = 0;
double sumd2 = 0;
for (size_t i=0; i<nsamples2; ++i)
{
float d = classifier.classify(descriptors2[i]);
if (d < 0)
params.false2++;
else
params.true2++;
sumd += static_cast<double>(d);
sumd2 += static_cast<double>(d*d);
}
params.mu2 = sumd / static_cast<double>(nsamples2);
params.var2 = sumd2 / static_cast<double>(nsamples2) - params.mu2*params.mu2;
}
return true;
}
bool qCanupoTools::TrainClassifier( Classifier& classifier,
const CorePointDescSet& descriptors1,
const CorePointDescSet& descriptors2,
const std::vector<float>& scales,
ccPointCloud* mscCloud,
const CorePointDescSet* evaluationDescriptors/*=0*/,
ccMainAppInterface* app/*=0*/)
{
//fuse both descriptor sets in a single 'dlib' structure
size_t nsamples1 = descriptors1.size();
size_t nsamples2 = descriptors2.size();
if (nsamples1 == 0 || nsamples2 == 0)
{
if (app)
app->dispToConsole("Invalid descriptors!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
assert(descriptors1.descriptorID() == descriptors2.descriptorID());
classifier.descriptorID = descriptors1.descriptorID();
unsigned dimPerScale = descriptors1.dimPerScale();
assert(dimPerScale == descriptors2.dimPerScale());
classifier.dimPerScale = dimPerScale;
//we use the specified 'scales' (not necessarily all descriptors will be used!)
assert((descriptors1.front().params.size() % dimPerScale) == 0);
size_t paramsCount = descriptors1.front().params.size() / dimPerScale;
size_t scaleCount = scales.size();
assert(scaleCount <= paramsCount);
scaleCount = std::min(scaleCount, paramsCount);
classifier.scales = scales;
//already set outside!
//classifier.class1 = 1;
//classifier.class2 = 2;
size_t nsamples = nsamples1 + nsamples2;
size_t fdim = scaleCount * dimPerScale;
std::vector<LDATrainer::sample_type> samples;
std::vector<float> labels;
try
{
LDATrainer::sample_type nanSample;
nanSample.set_size(fdim,1);
samples.resize(nsamples,nanSample);
labels.resize(nsamples,1); //labels for class#1 will be changed to -1 (see below)
}
catch (const std::bad_alloc&)
{
if (app)
app->dispToConsole("Not enough memory!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
//add class #1 data
{
for (size_t i=0; i<nsamples1; ++i)
{
const CorePointDesc& desc = descriptors1[i];
LDATrainer::sample_type& sample = samples[i];
//assert(scaleCount <= paramsCount); //already tested above
size_t shift = (paramsCount-scaleCount)*dimPerScale; //if we use less scales than parameters
for (size_t j=0; j<fdim; ++j)
{
sample(j) = desc.params[shift+j];
}
//class #1 is labelled with '-1'
labels[i] = -1;
}
}
//add class #2 data
{
for (size_t i=0; i<nsamples2; ++i)
{
const CorePointDesc& desc = descriptors2[i];
LDATrainer::sample_type& sample = samples[nsamples1+i];
//assert(scaleCount <= paramsCount); //already tested above
size_t shift = (paramsCount-scaleCount)*dimPerScale; //if we use less scales than parameters
for (size_t j=0; j<fdim; ++j)
{
sample(j) = desc.params[shift+j];
}
//class #2 is labelled with '1' (already done above)
//labels[nsamples1+i] = 1;
}
}
//Computing the two best projection directions
QMainWindow* parentWindow = (app ? app->getMainWindow() : nullptr);
LDATrainer trainer;
{
QProgressDialog tempProgressDlg("LDA (step #1) in progress... please wait...",QString(),0,0,parentWindow);
tempProgressDlg.show();
QApplication::processEvents();
// shuffle before internal cross-validation to spread instances of each class
dlib::randomize_samples(samples, labels);
try
{
trainer.train(10, samples, labels);
}
catch(...)
{
if (app)
app->dispToConsole("Oups, it seems the LDA classifier just crashed!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
}
// get the projections of each sample on the first classifier direction
std::vector<float> proj1;
{
try
{
proj1.resize(nsamples);
}
catch (const std::bad_alloc&)
{
if (app)
app->dispToConsole("Not enough memory!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
try
{
for (size_t i=0; i<nsamples; ++i)
{
proj1[i] = static_cast<float>( trainer.predict(samples[i]) );
}
}
catch(...)
{
if (app)
app->dispToConsole("Oups, it seems the LDA classifier just crashed!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
//std::pair<std::vector<float>::const_iterator, std::vector<float>::const_iterator> mm = std::minmax_element(proj1.begin(),proj1.end());
//m_app->dispToConsole(QString("Min/max(proj1) = (%1 , %2)").arg(*mm.first).arg(*mm.second));
}
dlib::matrix<LDATrainer::sample_type,0,1> basis;
{
basis.set_size(fdim);
for (size_t i=0; i<fdim; ++i)
{
basis(i).set_size(fdim);
for (size_t j=0; j<fdim; ++j)
basis(i)(j) = 0;
basis(i)(i) = 1;
}
}
LDATrainer::sample_type w_vect;
{
w_vect.set_size(fdim);
for (size_t i=0; i<fdim; ++i)
w_vect(i) = static_cast<float>(trainer.m_weights[i]);
}
GramSchmidt(basis,w_vect);
//Determining orthogonal direction
std::vector<LDATrainer::sample_type> samples_reduced;
{
try
{
samples_reduced.resize(nsamples);
}
catch (const std::bad_alloc&)
{
if (app)
app->dispToConsole("Not enough memory!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
for (size_t i=0; i<nsamples; ++i)
samples_reduced[i].set_size(fdim-1);
// project the data onto the hyperplane so as to get the second direction
for (size_t si=0; si<nsamples; ++si)
for (size_t i=1; i<fdim; ++i)
samples_reduced[si](i-1) = dlib::dot(samples[si], basis(i));
}
LDATrainer orthoTrainer;
try
{
QProgressDialog tempProgressDlg("LDA (step #2) in progress... please wait...",QString(),0,0,parentWindow);
tempProgressDlg.show();
QApplication::processEvents();
orthoTrainer.train(10, samples_reduced, labels);
}
catch(...)
{
if (app)
app->dispToConsole("Oups, it seems the LDA classifier just crashed!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
// convert back the classifier weights into the original space
{
try
{
orthoTrainer.m_weights.resize(fdim+1);
}
catch (const std::bad_alloc&)
{
if (app)
app->dispToConsole("Not enough memory!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
orthoTrainer.m_weights[fdim] = orthoTrainer.m_weights[fdim-1];
size_t i=0;
for (i=0; i<fdim; ++i)
w_vect(i) = 0;
for (i=1; i<fdim; ++i)
w_vect += orthoTrainer.m_weights[i-1] * basis(i);
for (i=0; i<fdim; ++i)
orthoTrainer.m_weights[i] = w_vect(i);
}
std::vector<float> proj2;
{
try
{
proj2.resize(nsamples);
}
catch (const std::bad_alloc&)
{
if (app)
app->dispToConsole("Not enough memory!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
try
{
for (size_t i=0; i<nsamples; ++i)
{
proj2[i] = static_cast<float>( orthoTrainer.predict(samples[i]) );
}
}
catch(...)
{
if (app)
app->dispToConsole("Oups, it seems the LDA classifier just crashed!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
//std::pair<std::vector<float>::const_iterator, std::vector<float>::const_iterator> mm = std::minmax_element(proj2.begin(),proj2.end());
//m_app->dispToConsole(QString("Min/max(proj2) = (%1 , %2)").arg(*mm.first).arg(*mm.second));
}
// compute the reference points for orienting the classifier boundaries
// pathological cases are possible where an arbitrary point in the (>0,>0)
// quadrant is not in the +1 class for example
// here, just use the mean of the classes
ComputeReferencePoints( classifier.refPointPos,
classifier.refPointNeg,
proj1,
proj2,
labels);
classifier.weightsAxis1 = trainer.m_weights;
classifier.weightsAxis2 = orthoTrainer.m_weights;
if (true)
{
// Same as Brodu's code:
// Experimental: dilatation to highlight the internal data structure
if (!DilateClassifier( classifier,
proj1,
proj2,
labels,
samples,
trainer,
orthoTrainer))
{
if (app)
app->dispToConsole("Not enough memory!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
}
//proceed to boundary evaluation
{
Classifier::Point2D boundaryCenter(0,0);
Classifier::Point2D boundaryDir(0,1);
assert(mscCloud);
if (!mscCloud)
{
if (app)
app->dispToConsole("[Internal error] Invalid output MSC cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
//if we have no 'evaluation' cloud, we'll add it to the sum of the two input clouds
size_t cloudSize = nsamples;
if (evaluationDescriptors)
cloudSize += evaluationDescriptors->size();
mscCloud->clear();
if (!mscCloud->reserve(cloudSize))
{
if (app)
app->dispToConsole("Not enough memory to determine the classifier behavior!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
bool hasColors = true;
if (!mscCloud->reserveTheRGBTable())
{
if (app)
app->dispToConsole("Not enough memory to display colors!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
}
else
{
mscCloud->showColors(true);
}
//generate the cloud of (colored) MSC "points"
for (size_t i = 0; i < cloudSize; ++i)
{
LDATrainer::sample_type sample;
sample.set_size(fdim);
const CorePointDesc* desc = nullptr;
const ccColor::Rgb* col = &ccColor::lightGrey;
if (i < nsamples1)
{
desc = &descriptors1[i];
col = &ccColor::blue;
}
else if (i < nsamples)
{
desc = &descriptors2[i-nsamples1];
col = &ccColor::red;
}
else if (evaluationDescriptors)
{
desc = &evaluationDescriptors->at(i-nsamples);
//col = &ccColor::lightGrey;
}
assert(desc && col);
size_t shift = (paramsCount - scaleCount)*dimPerScale; //if we use less scales than parameters
for (size_t j = 0; j < fdim; ++j)
{
sample(j) = desc->params[shift + j];
}
double x = trainer.predict(sample);
double y = orthoTrainer.predict(sample);
mscCloud->addPoint( CCVector3( static_cast<float>(x),
static_cast<float>(y),
0) );
if (hasColors && col)
{
mscCloud->addRGBColor(*col);
}
}
//DGM: we only use the evaluation cloud for representation now!
#if 0
if (evaluationDescriptors)
{
// radius from probabilistic SVM, diameter = 90% chance of correct classif
PointCoordinateType radius = static_cast<PointCoordinateType>(-log(1.0/0.9 - 1.0)/2.0);
//we'll need the octree
ccProgressDialog pDlg(true,parentWindow);
if (!mscCloud->computeOctree(&pDlg))
{
if (app)
app->dispToConsole("Not enough memory to determine the classifier boundary on evaluation cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
ccOctree* octree = mscCloud->getOctree();
assert(octree);
unsigned char octreeLevel = octree->findBestLevelForAGivenNeighbourhoodSizeExtraction(radius);
int minNeighborCount = 0;
Classifier::Point2D bestDir(0,0);
Classifier::Point2D bestStartingPoint(0,0);
const int c_searchTransSteps = 13; // 2*13=26 steps between the reference points
const int c_searchDirCount = 90; // from 0 to 180 each 2 degree (unoriented lines)
CosSinTable<c_searchDirCount> tableCosSin;
float transStep = mscCloud->getOwnBB().getMaxBoxDim() / (c_searchTransSteps*2);
//progress notification
pDlg.reset();
pDlg.setCancelButton(0);
pDlg.setWindowTitle("Determining boundary line");
pDlg.setRange(0,c_searchTransSteps*2);
pDlg.setInfo(qPrintable(QString("Search steps: %1").arg(c_searchTransSteps*2)));
//we look for the line with the least number of neighbor points
for (int td=0; td<=c_searchTransSteps*2; ++td)
{
//strating point
Classifier::Point2D A = classifier.refPointNeg + (classifier.refPointPos - classifier.refPointNeg) * (static_cast<float>(td) / static_cast<float>(c_searchTransSteps*2));
// now we swipe a decision boundary in each direction around the point
// and look for the lowest overall density along the boundary
int sumds[c_searchDirCount];
// for each orientation
int minDirIndex = 0;
for (int sd=0; sd<c_searchDirCount; ++sd)
{
// unit vector in the direction of the line
Classifier::Point2D u( tableCosSin.cosines[sd],
tableCosSin.sines[sd] );
sumds[sd] = 0;
for (int sp = -c_searchTransSteps; sp <= c_searchTransSteps; ++sp)
{
float s = sp * transStep;
// use the parametric P2D = A + u*s formulation of a line
Classifier::Point2D P2D = A + u * s;
CCVector3 P(P2D.x,P2D.y,0);
CCLib::DgmOctree::NeighboursSet Yk;
int count = octree->getPointsInSphericalNeighbourhood(P,radius,Yk,octreeLevel);
// count the number of neighbors
sumds[sd] += count;
}
// keep track of the best direction for this starting point
if (sumds[sd] < sumds[minDirIndex])
minDirIndex = sd;
}
if (td == 0 || sumds[minDirIndex] < minNeighborCount)
{
minNeighborCount = sumds[minDirIndex];
bestDir.x = tableCosSin.cosines[minDirIndex];
bestDir.y = tableCosSin.sines[minDirIndex];
bestStartingPoint = A;
}
//progress notification
pDlg.setValue(td);
}
pDlg.close();
// decision boundary in this 2D space
boundaryCenter = bestStartingPoint;
boundaryDir = bestDir;
}
else
#endif
{
//evaluate the boundary simply with the two input "class" clouds
Classifier::Point2D c1(0,0), c2(0,0);
unsigned n1=0, n2=0;
ComputeReferencePoints(c2,c1,proj1,proj2,labels,&n2,&n1);
Classifier::Point2D w_vect = c2 - c1;
w_vect.normalize();
Classifier::Point2D w_orth(-w_vect.y,w_vect.x);
double cba2_max = 0;
const int c_searchSteps = 180;
CosSinTable<c_searchSteps> tableCosSin;
//progress notification
ccProgressDialog pDlg(false,parentWindow);
pDlg.setWindowTitle("Determining boundary line");
pDlg.setRange(0,c_searchSteps);
pDlg.setInfo(qPrintable(QString("Search steps: %1").arg(c_searchSteps)));
for (int sd=1; sd<c_searchSteps; ++sd)
{
Classifier::Point2D v( tableCosSin.cosines[sd],
tableCosSin.sines[sd] );
dlib::matrix<double,2,2> basis;
Classifier::Point2D base_vec1 = w_vect;
Classifier::Point2D base_vec2 = w_vect * v.x + w_orth * v.y;
basis(0,0) = base_vec1.x; basis(0,1) = base_vec2.x;
basis(1,0) = base_vec1.y; basis(1,1) = base_vec2.y;
basis = inv(basis);
double m1=0, m2=0;
std::vector<double> p1, p2;
p1.reserve(n1);
p2.reserve(n2);
for (size_t i=0; i<nsamples; ++i)
{
dlib::matrix<double,2,1> P;
P(0) = proj1[i];
P(1) = proj2[i];
P = basis * P;
const double& d = P(0); // projection on w_vect along the slanted direction
if (labels[i] < 0)
{
p1.push_back(d);
m1 += d;
}
else
{
p2.push_back(d);
m2 += d;
}
}
m1 /= static_cast<double>(n1);
m2 /= static_cast<double>(n2);
// search for optimal separation
bool reversed = false;
if (m1 > m2)
{
reversed = true;
std::swap(m1, m2);
p1.swap(p2);
}
ParallelSort(p1.begin(), p1.end());
ParallelSort(p2.begin(), p2.end());
for (int i = 0; i <= 100; ++i)
{
double pos = m1 + i * (m2 - m1) / 100.0;
size_t idx1 = std::lower_bound(p1.begin(), p1.end(), pos) - p1.begin();
size_t idx2 = std::lower_bound(p2.begin(), p2.end(), pos) - p2.begin();
double pr1 = idx1 / static_cast<double>(n1);
double pr2 = 1.0 - idx2 / static_cast<double>(n2);
double cba2 = fabs(pr1 + pr2);
if (cba2 > cba2_max)
{
cba2_max = cba2;
double r = (pos - m1) / (m2 - m1);
if (reversed)
r = 1.0 - r;
Classifier::Point2D center = c1 + (c2 - c1) * static_cast<float>(r);
boundaryCenter = center;
boundaryDir = base_vec2;
}
}
pDlg.setValue(sd);
}
pDlg.close();
}
//update classifier info (boundary)
{
PointCoordinateType l = mscCloud->getOwnBB().getDiagVec().y / 2;
classifier.path.resize(2);
classifier.path[0] = boundaryCenter + boundaryDir * l;
classifier.path[1] = boundaryCenter - boundaryDir * l;
}
}
return true;
}
|