1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
|
//##########################################################################
//# #
//# CLOUDCOMPARE PLUGIN: ccCompass #
//# #
//# This program is free software; you can redistribute it and/or modify #
//# it under the terms of the GNU General Public License as published by #
//# the Free Software Foundation; version 2 of the License. #
//# #
//# This program is distributed in the hope that it will be useful, #
//# but WITHOUT ANY WARRANTY; without even the implied warranty of #
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
//# GNU General Public License for more details. #
//# #
//# COPYRIGHT: Sam Thiele 2017 #
//# #
//##########################################################################
#include <array>
//Qt
#include <QCheckBox>
#include <QFileDialog>
#include <QFileInfo>
#include <QIntValidator>
//common
#include <ccPickingHub.h>
//qCC_db
#include <ccProgressDialog.h>
#include <qcombobox.h>
#include "ccBox.h"
#include "ccCompass.h"
#include "ccCompassDlg.h"
#include "ccCompassInfo.h"
#include "ccFitPlaneTool.h"
#include "ccGeoObject.h"
#include "ccLineationTool.h"
#include "ccMapDlg.h"
#include "ccNoteTool.h"
#include "ccPinchNodeTool.h"
#include "ccSNECloud.h"
#include "ccThicknessTool.h"
#include "ccTopologyTool.h"
#include "ccTraceTool.h"
//initialize default static pars
bool ccCompass::drawName = false;
bool ccCompass::drawStippled = true;
bool ccCompass::drawNormals = true;
bool ccCompass::fitPlanes = true;
int ccCompass::costMode = ccTrace::DARK;
bool ccCompass::mapMode = false;
int ccCompass::mapTo = ccGeoObject::LOWER_BOUNDARY;
ccCompass::ccCompass(QObject* parent) :
QObject( parent )
, ccStdPluginInterface( ":/CC/plugin/qCompass/info.json" )
{
//initialize all tools
m_fitPlaneTool = new ccFitPlaneTool();
m_traceTool = new ccTraceTool();
m_lineationTool = new ccLineationTool();
m_thicknessTool = new ccThicknessTool();
m_topologyTool = new ccTopologyTool();
m_noteTool = new ccNoteTool();
m_pinchNodeTool = new ccPinchNodeTool();
}
//deconstructor
ccCompass::~ccCompass()
{
//delete all tools
delete m_fitPlaneTool;
delete m_traceTool;
delete m_lineationTool;
delete m_thicknessTool;
delete m_topologyTool;
delete m_noteTool;
delete m_pinchNodeTool;
}
void ccCompass::onNewSelection(const ccHObject::Container& selectedEntities)
{
//disable the main plugin icon if no entity is loaded
m_action->setEnabled(m_app && m_app->dbRootObject() && m_app->dbRootObject()->getChildrenNumber() != 0);
if (!m_dlg | !m_mapDlg)
{
return; //not initialized yet - ignore callback
}
if (m_activeTool)
{
m_activeTool->onNewSelection(selectedEntities); //pass on to the active tool
}
//clear GeoObject selection & disable associated GUI
if (m_geoObject)
{
m_geoObject->setActive(false);
}
m_geoObject = nullptr;
m_geoObject_id = -1;
if (m_mapDlg)
{
m_mapDlg->setLowerButton->setEnabled(false);
m_mapDlg->setUpperButton->setEnabled(false);
m_mapDlg->setInteriorButton->setEnabled(false);
m_mapDlg->selectionLabel->setEnabled(false);
m_mapDlg->selectionLabel->setText("No Selection");
}
//has a GeoObject (or a child of one?) been selected?
for (ccHObject* obj : selectedEntities)
{
//recurse upwards looking for geoObject & relevant part (interior, upper, lower)
ccHObject* o = obj;
bool interior = false;
bool upper = false;
bool lower = false;
while (o)
{
interior = interior || ccGeoObject::isGeoObjectInterior(o);
upper = upper || ccGeoObject::isGeoObjectUpper(o);
lower = lower || ccGeoObject::isGeoObjectLower(o);
//have we found a geoObject?
if (ccGeoObject::isGeoObject(o))
{
//found one!
m_geoObject = static_cast<ccGeoObject*>(o);
if (m_geoObject) //cast succeeded
{
m_geoObject_id = m_geoObject->getUniqueID(); //store id
m_geoObject->setActive(true); //display as "active"
//activate GUI
if (!ccGeoObject::isSingleSurfaceGeoObject(m_geoObject))
{
m_mapDlg->setLowerButton->setEnabled(true);
m_mapDlg->setUpperButton->setEnabled(true);
m_mapDlg->setInteriorButton->setEnabled(true);
}
m_mapDlg->selectionLabel->setEnabled(true);
m_mapDlg->selectionLabel->setText(m_geoObject->getName());
//set appropriate upper/lower/interior setting on gui
if (interior)
{
writeToInterior();
}
else if (upper)
{
writeToUpper();
}
else if (lower)
{
writeToLower();
}
//done!
return;
}
}
//next parent
o = o->getParent();
}
}
}
//Submit the action to launch ccCompass to CC
QList<QAction *> ccCompass::getActions()
{
//default action (if it has not been already created, it's the moment to do it)
if (!m_action) //this is the action triggered by clicking the "Compass" button in the plugin menu
{
//here we use the default plugin name, description and icon,
//but each action can have its own!
m_action = new QAction(getName(), this);
m_action->setToolTip(getDescription());
m_action->setIcon(getIcon());
//connect appropriate signal
connect(m_action, &QAction::triggered, this, &ccCompass::doAction); //this binds the m_action to the ccCompass::doAction() function
}
return QList<QAction *>{ m_action };
}
//Called by CC when the plugin should be activated - sets up the plugin and then calls startMeasuring()
void ccCompass::doAction()
{
//m_app should have already been initialized by CC when plugin is loaded!
//(--> pure internal check)
assert(m_app);
//initialize tools (essentially give them a copy of m_app)
m_traceTool->initializeTool(m_app);
m_fitPlaneTool->initializeTool(m_app);
m_lineationTool->initializeTool(m_app);
m_thicknessTool->initializeTool(m_app);
m_topologyTool->initializeTool(m_app);
m_noteTool->initializeTool(m_app);
m_pinchNodeTool->initializeTool(m_app);
//check valid window
if (!m_app->getActiveGLWindow())
{
m_app->dispToConsole("[ccCompass] Could not find valid 3D window.", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
//bind gui
if (!m_dlg)
{
//bind GUI events
m_dlg = new ccCompassDlg(m_app->getMainWindow());
//general
ccCompassDlg::connect(m_dlg->closeButton, SIGNAL(clicked()), this, SLOT(onClose()));
ccCompassDlg::connect(m_dlg->acceptButton, SIGNAL(clicked()), this, SLOT(onAccept()));
ccCompassDlg::connect(m_dlg->saveButton, SIGNAL(clicked()), this, SLOT(onSave()));
ccCompassDlg::connect(m_dlg->undoButton, SIGNAL(clicked()), this, SLOT(onUndo()));
ccCompassDlg::connect(m_dlg->infoButton, SIGNAL(clicked()), this, SLOT(showHelp()));
//modes
ccCompassDlg::connect(m_dlg->mapMode, SIGNAL(clicked()), this, SLOT(enableMapMode()));
ccCompassDlg::connect(m_dlg->compassMode, SIGNAL(clicked()), this, SLOT(enableMeasureMode()));
//tools
ccCompassDlg::connect(m_dlg->pickModeButton, SIGNAL(clicked()), this, SLOT(setPick()));
ccCompassDlg::connect(m_dlg->pairModeButton, SIGNAL(clicked()), this, SLOT(setLineation()));
ccCompassDlg::connect(m_dlg->planeModeButton, SIGNAL(clicked()), this, SLOT(setPlane()));
ccCompassDlg::connect(m_dlg->traceModeButton, SIGNAL(clicked()), this, SLOT(setTrace()));
//extra tools
ccCompassDlg::connect(m_dlg->m_pinchTool, SIGNAL(triggered()), this, SLOT(addPinchNode()));
ccCompassDlg::connect(m_dlg->m_measure_thickness, SIGNAL(triggered()), this, SLOT(setThickness()));
ccCompassDlg::connect(m_dlg->m_measure_thickness_twoPoint, SIGNAL(triggered()), this, SLOT(setThickness2()));
ccCompassDlg::connect(m_dlg->m_youngerThan, SIGNAL(triggered()), this, SLOT(setYoungerThan()));
ccCompassDlg::connect(m_dlg->m_follows, SIGNAL(triggered()), this, SLOT(setFollows()));
ccCompassDlg::connect(m_dlg->m_equivalent, SIGNAL(triggered()), this, SLOT(setEquivalent()));
ccCompassDlg::connect(m_dlg->m_mergeSelected, SIGNAL(triggered()), this, SLOT(mergeGeoObjects()));
ccCompassDlg::connect(m_dlg->m_fitPlaneToGeoObject, SIGNAL(triggered()), this, SLOT(fitPlaneToGeoObject()));
ccCompassDlg::connect(m_dlg->m_recalculateFitPlanes, SIGNAL(triggered()), this, SLOT(recalculateFitPlanes()));
ccCompassDlg::connect(m_dlg->m_toPointCloud, SIGNAL(triggered()), this, SLOT(convertToPointCloud()));
ccCompassDlg::connect(m_dlg->m_distributeSelection, SIGNAL(triggered()), this, SLOT(distributeSelection()));
ccCompassDlg::connect(m_dlg->m_estimateNormals, SIGNAL(triggered()), this, SLOT(estimateStructureNormals()));
ccCompassDlg::connect(m_dlg->m_estimateP21, SIGNAL(triggered()), this, SLOT(estimateP21()));
ccCompassDlg::connect(m_dlg->m_estimateStrain, SIGNAL(triggered()), this, SLOT(estimateStrain()));
ccCompassDlg::connect(m_dlg->m_noteTool, SIGNAL(triggered()), this, SLOT(setNote()));
ccCompassDlg::connect(m_dlg->m_loadFoliations, SIGNAL(triggered()), this, SLOT(importFoliations()));
ccCompassDlg::connect(m_dlg->m_loadLineations, SIGNAL(triggered()), this, SLOT(importLineations()));
ccCompassDlg::connect(m_dlg->m_toSVG, SIGNAL(triggered()), this, SLOT(exportToSVG()));
//settings menu
ccCompassDlg::connect(m_dlg->m_showNames, SIGNAL(toggled(bool)), this, SLOT(toggleLabels(bool)));
ccCompassDlg::connect(m_dlg->m_showStippled, SIGNAL(toggled(bool)), this, SLOT(toggleStipple(bool)));
ccCompassDlg::connect(m_dlg->m_showNormals, SIGNAL(toggled(bool)), this, SLOT(toggleNormals(bool)));
ccCompassDlg::connect(m_dlg->m_recalculate, SIGNAL(triggered()), this, SLOT(recalculateSelectedTraces()));
}
if (!m_mapDlg)
{
m_mapDlg = new ccMapDlg(m_app->getMainWindow());
ccCompassDlg::connect(m_mapDlg->m_create_geoObject, SIGNAL(triggered()), this, SLOT(addGeoObject()));
ccCompassDlg::connect(m_mapDlg->m_create_geoObjectSS, SIGNAL(triggered()), this, SLOT(addGeoObjectSS()));
ccCompassDlg::connect(m_mapDlg->setInteriorButton, SIGNAL(clicked()), this, SLOT(writeToInterior()));
ccCompassDlg::connect(m_mapDlg->setUpperButton, SIGNAL(clicked()), this, SLOT(writeToUpper()));
ccCompassDlg::connect(m_mapDlg->setLowerButton, SIGNAL(clicked()), this, SLOT(writeToLower()));
}
m_dlg->linkWith(m_app->getActiveGLWindow());
m_mapDlg->linkWith(m_app->getActiveGLWindow());
//load ccCompass objects
tryLoading();
//start in measure mode
enableMeasureMode();
//begin measuring
startMeasuring();
}
//loop through DB tree looking for ccCompass objects that
//are not represented by our custom class. If any are found,
//replace them. Assuming not too many objects are found, this should be
//quite fast; hence we call it every time the selection changes.
void ccCompass::tryLoading()
{
//setup progress window
ccProgressDialog prg(true, m_app->getMainWindow());
prg.setMethodTitle("Compass");
prg.setInfo("Converting Compass types...");
prg.start();
//loop through DB_Tree and find any ccCompass objects
std::vector<int> originals; //ids of original objects
std::vector<ccHObject*> replacements; //pointers to objects that will replace the originals
unsigned nChildren = m_app->dbRootObject()->getChildrenNumber();
for (unsigned i = 0; i < nChildren; i++)
{
prg.setValue(static_cast<int>((50 * i) / nChildren));
ccHObject* c = m_app->dbRootObject()->getChild(i);
tryLoading(c, &originals, &replacements);
}
//replace all "originals" with their corresponding "duplicates"
for (size_t i = 0; i < originals.size(); i++)
{
prg.setValue(50 + (50 * i) / originals.size());
ccHObject* original = m_app->dbRootObject()->find(originals[i]);
ccHObject* replacement = replacements[i];
replacement->setVisible(original->isVisible());
replacement->setEnabled(original->isEnabled());
if (!original) //can't find for some reason?
continue;
if (!replacement) //can't find for some reason?
continue;
//steal all the children
for (unsigned c = 0; c < original->getChildrenNumber(); c++)
{
replacement->addChild(original->getChild(c));
}
//remove them from the orignal parent
original->detatchAllChildren();
//add new parent to scene graph
original->getParent()->addChild(replacement);
//delete originals
m_app->removeFromDB(original);
//add replacement to dbTree
m_app->addToDB(replacement, false, false, false, false);
//is replacement a GeoObject? If so, "disactivate" it
if (ccGeoObject::isGeoObject(replacement))
{
ccGeoObject* g = static_cast<ccGeoObject*>(replacement);
g->setActive(false);
}
}
prg.close();
}
void ccCompass::tryLoading(ccHObject* obj, std::vector<int>* originals, std::vector<ccHObject*>* replacements)
{
//recurse on children
for (unsigned i = 0; i < obj->getChildrenNumber(); i++)
{
tryLoading(obj->getChild(i), originals, replacements);
}
//is object already represented by a ccCompass class?
if (dynamic_cast<ccFitPlane*>(obj)
|| dynamic_cast<ccTrace*>(obj)
|| dynamic_cast<ccPointPair*>(obj) //n.b. several classes inherit from PointPair, so this cast will still succede for them
|| dynamic_cast<ccGeoObject*>(obj)
|| dynamic_cast<ccSNECloud*>(obj))
{
return; //we need do nothing!
}
//are we a geoObject
if (ccGeoObject::isGeoObject(obj))
{
ccHObject* geoObj = new ccGeoObject(obj,m_app);
//add to originals/duplicates list [these are used later to overwrite the originals]
originals->push_back(obj->getUniqueID());
replacements->push_back(geoObj);
return;
}
//are we a fit plane?
if (ccFitPlane::isFitPlane(obj))
{
//cast to plane
ccPlane* p = dynamic_cast<ccPlane*>(obj);
if (p)
{
//create equivalent fit plane object
ccHObject* plane = new ccFitPlane(p);
//add to originals/duplicates list [these are used later to overwrite the originals]
originals->push_back(obj->getUniqueID());
replacements->push_back(plane);
return;
}
}
//are we a SNE cloud?
if (ccSNECloud::isSNECloud(obj))
{
ccHObject* sneCloud = new ccSNECloud(static_cast<ccPointCloud*>(obj));
originals->push_back(obj->getUniqueID());
replacements->push_back(sneCloud);
return;
}
//is the HObject a polyline? (this will be the case for lineations & traces)
ccPolyline* p = dynamic_cast<ccPolyline*>(obj);
if (p)
{
//are we a trace?
if (ccTrace::isTrace(obj))
{
ccTrace* trace = new ccTrace(p);
trace->setWidth(2);
//add to originals/duplicates list [these are used later to overwrite the originals]
originals->push_back(obj->getUniqueID());
replacements->push_back(trace);
return;
}
//are we a lineation?
if (ccLineation::isLineation(obj))
{
ccHObject* lin = new ccLineation(p);
originals->push_back(obj->getUniqueID());
replacements->push_back(lin);
return;
}
//are we a thickness?
if (ccThickness::isThickness(obj))
{
ccHObject* t = new ccThickness(p);
originals->push_back(obj->getUniqueID());
replacements->push_back(t);
return;
}
//are we a topology relation?
//todo
//are we a pinchpiont
if (ccPinchNode::isPinchNode(obj))
{
ccHObject* n = new ccPinchNode(p);
originals->push_back(obj->getUniqueID());
replacements->push_back(n);
return;
}
//are we a note?
if (ccNote::isNote(obj))
{
ccHObject* n = new ccNote(p);
originals->push_back(obj->getUniqueID());
replacements->push_back(n);
return;
}
}
}
//Begin measuring
bool ccCompass::startMeasuring()
{
//check valid gl window
if (!m_app->getActiveGLWindow())
{
//invalid pointer error
m_app->dispToConsole("Error: ccCompass could not find the Cloud Compare window. Abort!", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
//setup listener for mouse events
m_app->getActiveGLWindow()->installEventFilter(this);
//refresh window
m_app->getActiveGLWindow()->redraw(true, false);
//start GUI
m_app->registerOverlayDialog(m_dlg, Qt::TopRightCorner);
m_dlg->start();
//activate active tool
if (m_activeTool)
{
m_activeTool->toolActivated();
}
m_active = true;
return true;
}
//Exits measuring
bool ccCompass::stopMeasuring(bool finalStop/*=false*/)
{
//remove click listener
if (m_app->getActiveGLWindow())
{
m_app->getActiveGLWindow()->removeEventFilter(this);
}
//reset gui
cleanupBeforeToolChange(!finalStop);
//stop picking
stopPicking();
//set active tool to null (avoids tools "doing stuff" when the gui isn't shown)
m_activeTool = nullptr;
//remove overlay GUI
if (m_dlg)
{
m_dlg->stop(true);
m_app->unregisterOverlayDialog(m_dlg);
}
if (m_mapDlg)
{
m_mapDlg->stop(true);
m_app->unregisterOverlayDialog(m_mapDlg);
}
//forget last measurement
if (m_activeTool)
{
m_activeTool->cancel();
m_activeTool->toolDisactivated();
}
//redraw
if (m_app->getActiveGLWindow())
{
m_app->getActiveGLWindow()->redraw(true, false);
}
m_active = false;
return true;
}
//registers this plugin with the picking hub
bool ccCompass::startPicking()
{
if (m_picking) //already picking... don't need to add again
return true;
//activate "point picking mode"
if (!m_app->pickingHub()) //no valid picking hub
{
m_app->dispToConsole("[ccCompass] Could not retrieve valid picking hub. Measurement aborted.", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
if (!m_app->pickingHub()->addListener(this, true, true))
{
m_app->dispToConsole("Another tool is already using the picking mechanism. Stop it first", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return false;
}
m_picking = true;
return true;
}
//removes this plugin from the picking hub
void ccCompass::stopPicking()
{
//stop picking
if (m_app->pickingHub())
{
m_app->pickingHub()->removeListener(this);
}
m_picking = false;
}
//Get the place/object that new measurements or interpretation should be stored
ccHObject* ccCompass::getInsertPoint()
{
//check if there is an active GeoObject or we are in mapMode
if (ccCompass::mapMode || m_geoObject)
{
//check there is an active GeoObject
if (!m_geoObject)
{
m_app->dispToConsole("[ccCompass] Error: Please select a GeoObject to digitize to.", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
}
//check it actually exists/hasn't been deleted
if (!m_app->dbRootObject()->find(m_geoObject_id))
{
//object has been deleted
m_geoObject = nullptr;
m_geoObject_id = -1;
m_app->dispToConsole("[ccCompass] Error: Please select a GeoObject to digitize to.", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
}
else
{
//object exists - we can use it to find the insert point
ccHObject* insertPoint = m_geoObject->getRegion(ccCompass::mapTo);
if (!insertPoint) //something went wrong?
{
m_app->dispToConsole("[ccCompass] Warning: Could not retrieve valid mapping region for the active GeoObject.", ccMainAppInterface::WRN_CONSOLE_MESSAGE);
}
else
{
return insertPoint; // :)
}
}
}
else
{
//otherwise, we're in "Compass" mode, so...
//find/create a group called "measurements"
ccHObject* measurement_group = nullptr;
//search for a "measurements" group
for (unsigned i = 0; i < m_app->dbRootObject()->getChildrenNumber(); i++)
{
if (m_app->dbRootObject()->getChild(i)->getName() == "measurements")
{
measurement_group = m_app->dbRootObject()->getChild(i);
}
else
{
//also search first-level children of root node (when files are re-loaded this is where things will sit)
for (unsigned c = 0; c < m_app->dbRootObject()->getChild(i)->getChildrenNumber(); c++)
{
if (m_app->dbRootObject()->getChild(i)->getChild(c)->getName() == "measurements")
{
measurement_group = m_app->dbRootObject()->getChild(i)->getChild(c);
break;
}
}
}
//found a valid group :)
if (measurement_group)
{
break;
}
}
//didn't find it - create a new one!
if (!measurement_group)
{
measurement_group = new ccHObject("measurements");
m_app->dbRootObject()->addChild(measurement_group);
m_app->addToDB(measurement_group, false, true, false, false);
}
return measurement_group; //this is the insert point
}
return nullptr; //no valid insert point
}
//This function is called when a point is picked (through the picking hub)
void ccCompass::onItemPicked(const ccPickingListener::PickedItem& pi)
{
pointPicked(pi.entity, pi.itemIndex, pi.clickPoint.x(), pi.clickPoint.y(), pi.P3D); //map straight to pointPicked function
}
//Process point picks
void ccCompass::pointPicked(ccHObject* entity, unsigned itemIdx, int x, int y, const CCVector3& P)
{
if (!entity) //null pick
{
return;
}
//no active tool (i.e. picking mode) - set selected object as active
if (!m_activeTool)
{
m_app->setSelectedInDB(entity, true);
return;
}
//find relevant node to add data to
ccHObject* parentNode = getInsertPoint();
if (parentNode == nullptr) //could not get insert point for some reason
{
return; //bail
}
//ensure what we are writing too is visible (avoids confusion if it is turned off...)
parentNode->setEnabled(true);
//call generic "point-picked" function of active tool
m_activeTool->pointPicked(parentNode, itemIdx, entity, P);
//have we picked a point cloud?
if (entity->isKindOf(CC_TYPES::POINT_CLOUD))
{
//get point cloud
ccPointCloud* cloud = static_cast<ccPointCloud*>(entity); //cast to point cloud
if (!cloud)
{
ccLog::Warning("[Item picking] Shit's fubar (Picked point is not in pickable entities DB?)!");
return;
}
//pass picked point, cloud & insert point to relevant tool
m_activeTool->pointPicked(parentNode, itemIdx, cloud, P);
}
//redraw
m_app->updateUI();
m_app->getActiveGLWindow()->redraw();
}
bool ccCompass::eventFilter(QObject* obj, QEvent* event)
{
//update cost mode (just in case it has changed) & fit plane params
ccCompass::costMode = m_dlg->getCostMode();
ccCompass::fitPlanes = m_dlg->planeFitMode();
ccTrace::COST_MODE = ccCompass::costMode;
if (event->type() == QEvent::MouseButtonDblClick)
{
QMouseEvent* mouseEvent = static_cast<QMouseEvent *>(event);
if (mouseEvent->buttons() == Qt::RightButton)
{
stopMeasuring();
return true;
}
}
return false;
}
//exit this tool
void ccCompass::onClose()
{
//cancel current action
if (m_activeTool)
{
m_activeTool->cancel();
}
//finish measuring
stopMeasuring();
}
void ccCompass::onAccept()
{
if (m_activeTool)
{
m_activeTool->accept();
}
}
//returns true if object was created by ccCompass
bool ccCompass::madeByMe(ccHObject* object)
{
//return isFitPlane(object) | isTrace(object) | isLineation(object);
return object->hasMetaData("ccCompassType");
}
//undo last plane
void ccCompass::onUndo()
{
if (m_activeTool)
{
m_activeTool->undo();
}
}
//called to cleanup pointers etc. before changing the active tool
void ccCompass::cleanupBeforeToolChange(bool autoRestartPicking/*=true*/)
{
//finish current tool
if (m_activeTool)
{
m_activeTool->toolDisactivated();
}
//clear m_hiddenObjects buffer
if (!m_hiddenObjects.empty())
{
for (int i : m_hiddenObjects)
{
ccHObject* o = m_app->dbRootObject()->find(i);
if (o)
{
o->setVisible(true);
}
}
m_hiddenObjects.clear();
m_app->getActiveGLWindow()->redraw(false, false);
}
//uncheck/disable gui components (the relevant ones will be activated later)
if (m_dlg)
{
m_dlg->pairModeButton->setChecked(false);
m_dlg->planeModeButton->setChecked(false);
m_dlg->traceModeButton->setChecked(false);
m_dlg->pickModeButton->setChecked(false);
m_dlg->extraModeButton->setChecked(false);
m_dlg->undoButton->setEnabled(false);
m_dlg->acceptButton->setEnabled(false);
}
if (autoRestartPicking)
{
//check picking is engaged
startPicking();
}
}
//activate lineation mode
void ccCompass::setLineation()
{
//cleanup
cleanupBeforeToolChange();
//activate lineation tool
m_activeTool = m_lineationTool;
m_activeTool->toolActivated();
//trigger selection changed
onNewSelection(m_app->getSelectedEntities());
//update GUI
m_dlg->undoButton->setEnabled(false);
m_dlg->pairModeButton->setChecked(true);
m_app->getActiveGLWindow()->redraw(true, false);
}
//activate plane mode
void ccCompass::setPlane()
{
//cleanup
cleanupBeforeToolChange();
//activate plane tool
m_activeTool = m_fitPlaneTool;
m_activeTool->toolActivated();
//trigger selection changed
onNewSelection(m_app->getSelectedEntities());
//update GUI
m_dlg->undoButton->setEnabled(m_fitPlaneTool->canUndo());
m_dlg->planeModeButton->setChecked(true);
m_app->getActiveGLWindow()->redraw(true, false);
}
//activate trace mode
void ccCompass::setTrace()
{
//cleanup
cleanupBeforeToolChange();
//activate trace tool
m_activeTool = m_traceTool;
m_activeTool->toolActivated();
//trigger selection changed
onNewSelection(m_app->getSelectedEntities());
//update GUI
m_dlg->traceModeButton->setChecked(true);
m_dlg->undoButton->setEnabled( m_traceTool->canUndo() );
m_dlg->acceptButton->setEnabled(true);
m_app->getActiveGLWindow()->redraw(true, false);
}
//activate the paint tool
void ccCompass::setPick()
{
cleanupBeforeToolChange();
m_activeTool = nullptr; //picking tool is default - so no tool class
stopPicking(); //let CC handle picks now
//hide point clouds
hideAllPointClouds(m_app->dbRootObject());
m_dlg->pickModeButton->setChecked(true);
m_dlg->undoButton->setEnabled(false);
m_dlg->acceptButton->setEnabled(false);
m_app->getActiveGLWindow()->redraw(true, false);
}
//activate the pinch-node tool
void ccCompass::addPinchNode()
{
cleanupBeforeToolChange();
//activate thickness tool
m_activeTool = m_pinchNodeTool;
m_activeTool->toolActivated();
//update GUI
m_dlg->extraModeButton->setChecked(true);
m_dlg->undoButton->setEnabled(m_activeTool->canUndo());
m_dlg->acceptButton->setEnabled(false);
m_app->getActiveGLWindow()->redraw(true, false);
}
//activates the thickness tool
void ccCompass::setThickness()
{
cleanupBeforeToolChange();
//activate thickness tool
m_activeTool = m_thicknessTool;
m_activeTool->toolActivated();
ccThicknessTool::TWO_POINT_MODE = false; //one-point mode (unless changed later)
//trigger selection changed
onNewSelection(m_app->getSelectedEntities());
//update GUI
m_dlg->extraModeButton->setChecked(true);
m_dlg->undoButton->setEnabled(m_activeTool->canUndo());
m_dlg->acceptButton->setEnabled(true);
m_app->getActiveGLWindow()->redraw(true, false);
}
//activates the thickness tool in two-point mode
void ccCompass::setThickness2()
{
setThickness();
ccThicknessTool::TWO_POINT_MODE = true; //now set the tool to operate in two-point mode
}
void ccCompass::setYoungerThan() //activates topology tool in "older-than" mode
{
cleanupBeforeToolChange();
m_activeTool = m_topologyTool; //activate topology tool
stopPicking(); //let CC handle picks now - this tool only needs "selection changed" callbacks
//hide point clouds
hideAllPointClouds(m_app->dbRootObject());
//update gui
m_dlg->undoButton->setEnabled(false);
m_dlg->acceptButton->setEnabled(false);
m_app->getActiveGLWindow()->redraw(true, false);
//set topology tool mode
ccTopologyTool::RELATIONSHIP = ccTopologyRelation::YOUNGER_THAN;
}
void ccCompass::setFollows() //activates topology tool in "follows" mode
{
setYoungerThan();
//set topology tool mode
ccTopologyTool::RELATIONSHIP = ccTopologyRelation::IMMEDIATELY_FOLLOWS;
}
void ccCompass::setEquivalent() //activates topology mode in "equivalent" mode
{
setYoungerThan();
//set topology tool mode
ccTopologyTool::RELATIONSHIP = ccTopologyRelation::EQUIVALENCE;
}
//activates note mode
void ccCompass::setNote()
{
cleanupBeforeToolChange();
//activate thickness tool
m_activeTool = m_noteTool;
m_activeTool->toolActivated();
//update GUI
m_dlg->extraModeButton->setChecked(true);
m_dlg->undoButton->setEnabled(m_activeTool->canUndo());
m_dlg->acceptButton->setEnabled(false);
m_app->getActiveGLWindow()->redraw(true, false);
}
//merges the selected GeoObjects
void ccCompass::mergeGeoObjects()
{
//get selected GeoObjects
std::vector<ccGeoObject*> objs;
for (ccHObject* o : m_app->getSelectedEntities())
{
if (ccGeoObject::isGeoObject(o))
{
ccGeoObject* g = dynamic_cast<ccGeoObject*> (o);
if (g) //could possibly be null if non-loaded geo-objects exist
{
objs.push_back(g);
}
}
}
if (objs.size() < 2) //not enough geoObjects
{
m_app->dispToConsole("[Compass] Select several GeoObjects to merge.", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return; //nothing to merge
}
//merge geo-objects with first one
ccGeoObject* dest = objs[0];
ccHObject* d_interior = dest->getRegion(ccGeoObject::INTERIOR);
ccHObject* d_upper = dest->getRegion(ccGeoObject::UPPER_BOUNDARY);
ccHObject* d_lower = dest->getRegion(ccGeoObject::LOWER_BOUNDARY);
for (int i = 1; i < objs.size(); i++)
{
ccHObject* interior = objs[i]->getRegion(ccGeoObject::INTERIOR);
ccHObject* upper = objs[i]->getRegion(ccGeoObject::UPPER_BOUNDARY);
ccHObject* lower = objs[i]->getRegion(ccGeoObject::LOWER_BOUNDARY);
//add children to destination
interior->transferChildren(*d_interior, true);
upper->transferChildren(*d_upper, true);
lower->transferChildren(*d_lower, true);
//delete un-needed objects
objs[i]->removeChild(interior);
objs[i]->removeChild(upper);
objs[i]->removeChild(lower);
objs[i]->getParent()->removeChild(objs[i]);
//delete
m_app->removeFromDB(objs[i]);
m_app->removeFromDB(upper);
m_app->removeFromDB(lower);
m_app->removeFromDB(interior);
}
m_app->setSelectedInDB(dest, true);
m_app->redrawAll(true); //redraw gui + 3D view
m_app->dispToConsole("[Compass] Merged selected GeoObjects to " + dest->getName(), ccMainAppInterface::STD_CONSOLE_MESSAGE);
}
//calculates best-fit plane for the upper and lower surfaces of the selected GeoObject
void ccCompass::fitPlaneToGeoObject()
{
m_app->dispToConsole("[Compass] fitPlane", ccMainAppInterface::STD_CONSOLE_MESSAGE);
//loop selected GeoObject
ccHObject* o = m_app->dbRootObject()->find(m_geoObject_id);
if (!o)
{
m_geoObject_id = -1;
return; //invalid id
}
ccGeoObject* obj = static_cast<ccGeoObject*>(o); //get as geoObject
//fit upper plane
ccHObject* upper = obj->getRegion(ccGeoObject::UPPER_BOUNDARY);
ccPointCloud* points = new ccPointCloud(); //create point cloud for storing points
double rms; //float for storing rms values
for (unsigned i = 0; i < upper->getChildrenNumber(); i++)
{
if (ccTrace::isTrace(upper->getChild(i)))
{
ccTrace* t = dynamic_cast<ccTrace*> (upper->getChild(i));
if (t != nullptr) //can in rare cases be a null ptr (dynamic cast will fail for traces that haven't been converted to ccTrace objects)
{
points->reserve(points->size() + t->size()); //make space
for (unsigned p = 0; p < t->size(); p++)
{
points->addPoint(*t->getPoint(p)); //add point to
}
}
}
}
//calculate and store upper fitplane
if (points->size() > 0)
{
ccFitPlane* p = ccFitPlane::Fit(points, &rms);
if (p)
{
QVariantMap map;
map.insert("RMS", rms);
p->setMetaData(map, true);
upper->addChild(p);
m_app->addToDB(p, false, false, false, false);
}
else
{
m_app->dispToConsole("[Compass] Not enough 3D information to generate sensible fit plane.", ccMainAppInterface::WRN_CONSOLE_MESSAGE);
}
}
//rinse and repeat for lower (assuming normal GeoObject; skip this step for single-surface object)
if (!ccGeoObject::isSingleSurfaceGeoObject(obj))
{
points->clear();
ccHObject* lower = obj->getRegion(ccGeoObject::LOWER_BOUNDARY);
for (unsigned i = 0; i < lower->getChildrenNumber(); i++)
{
if (ccTrace::isTrace(lower->getChild(i)))
{
ccTrace* t = dynamic_cast<ccTrace*> (lower->getChild(i));
if (t != nullptr) //can in rare cases be a null ptr (dynamic cast will fail for traces that haven't been converted to ccTrace objects)
{
points->reserve(points->size() + t->size()); //make space
for (unsigned p = 0; p < t->size(); p++)
{
points->addPoint(*t->getPoint(p)); //add point to cloud
}
}
}
}
//calculate and store lower fitplane
if (points->size() > 0)
{
ccFitPlane* p = ccFitPlane::Fit(points, &rms);
if (p)
{
QVariantMap map;
map.insert("RMS", rms);
p->setMetaData(map, true);
lower->addChild(p);
m_app->addToDB(p, false, false, false, true);
}
else
{
m_app->dispToConsole("[Compass] Not enough 3D information to generate sensible fit plane.", ccMainAppInterface::WRN_CONSOLE_MESSAGE);
}
}
}
//clean up point cloud
delete(points);
}
//recalculates all fit planes in the DB Tree, except those generated using the Plane Tool
void ccCompass::recalculateFitPlanes()
{
//get all plane objects
ccHObject::Container planes;
m_app->dbRootObject()->filterChildren(planes, true, CC_TYPES::PLANE, true);
std::vector<ccHObject*> garbage; //planes that need to be deleted
for (ccHObject::Container::iterator it = planes.begin(); it != planes.end(); it++)
{
if (!ccFitPlane::isFitPlane((*it)))
continue; //only deal with FitPlane objects
//is parent of the plane a trace object?
ccHObject* parent = (*it)->getParent();
if (ccTrace::isTrace(parent)) //add to recalculate list
{
//recalculate the fit plane
ccTrace* t = static_cast<ccTrace*>(parent);
ccFitPlane* p = t->fitPlane();
if (p)
{
t->addChild(p); //add the new fit-plane
m_app->addToDB(p, false, false, false, false);
}
//add the old plane to the garbage list (to be deleted later)
garbage.push_back((*it));
continue; //next
}
//otherwise - does the plane have a child that is a trace object (i.e. it was created in Compass mode)
for (unsigned c = 0; c < (*it)->getChildrenNumber(); c++)
{
ccHObject* child = (*it)->getChild(c);
if (ccTrace::isTrace(child)) //add to recalculate list
{
//recalculate the fit plane
ccTrace* t = static_cast<ccTrace*>(child);
ccFitPlane* p = t->fitPlane();
if (p)
{
//... do some jiggery pokery
parent->addChild(p); //add fit-plane to the original fit-plane's parent (as we are replacing it)
m_app->addToDB(p, false, false, false, false);
//remove the trace from the original fit-plane
(*it)->detachChild(t);
//add it to the new one
p->addChild(t);
//add the old plane to the garbage list (to be deleted later)
garbage.push_back((*it));
break;
}
}
}
}
//delete all the objects in the garbage
for (int i = 0; i < garbage.size(); i++)
{
garbage[i]->getParent()->removeChild(garbage[i]);
}
}
//prior distribution for orientations (depends on outcrop orientation)
inline double prior(double phi, double theta, double nx, double ny, double nz)
{
//check normal points down
if (nz > 0)
{
nx *= -1; ny *= -1; nz *= -1;
}
//calculate angle between normal vector and the normal estimate(phi, theta)
double alpha = acos(nx * sin(phi)*cos(theta) + ny * cos(phi) * cos(theta) - nz * sin(theta));
return sin(alpha) / (2 * M_PI); //n.b. 2pi is normalising factor so that function integrates to one over all phi,theta
}
//calculate log scale-factor for wishart dist. This only needs to be done once per X, so is pulled out of the wish function for performance
inline double logWishSF(CCLib::SquareMatrixd X, int nobserved)
{
//calculate determinant of X
double detX = X.m_values[0][0] * ((X.m_values[1][1] * X.m_values[2][2]) - (X.m_values[2][1] * X.m_values[1][2])) -
X.m_values[0][1] * (X.m_values[1][0] * X.m_values[2][2] - X.m_values[2][0] * X.m_values[1][2]) +
X.m_values[0][2] * (X.m_values[1][0] * X.m_values[2][1] - X.m_values[2][0] * X.m_values[1][1]);
return (nobserved - 4.0)*0.5*log(detX) - (nobserved*3. / 2.)*log(2.0) - // parts of gamma function that do not depend on the scale matrix
((3.0 / 2.0)*log(M_PI) + lgamma(nobserved / 2.0) + lgamma((nobserved / 2.0) - 0.5) + lgamma((nobserved / 2.0) - 1.0)); // log(gamma3(nobserved/2))
}
//calculate log wishart probability density
inline double logWishart(CCLib::SquareMatrixd X, int nobserved, double phi, double theta, double alpha, double e1, double e2, double e3, double lsf)
{
//--------------------------------------------------
//Derive scale matrix eigenvectors (basis matrix)
//--------------------------------------------------
double e[3][3];
double i[3][3];
//eigenvector 3 (normal to plane defined by theta->phi)
e[0][2] = sin(phi) * cos(theta);
e[1][2] = cos(phi) * cos(theta);
e[2][2] = -sin(theta);
//eigenvector 2 (normal of theta->phi projected into horizontal plane and rotated by angle alpha)
e[0][1] = sin(phi) * sin(theta) * sin(alpha) - cos(phi) * cos(alpha);
e[1][1] = sin(phi) * cos(alpha) + sin(theta) * cos(phi) * sin(alpha);
e[2][1] = sin(alpha) * cos(theta);
//eigenvector 1 (calculate using cross product)
e[0][0] = e[1][2] * e[2][1] - e[2][2] * e[1][1];
e[1][0] = e[2][2] * e[0][1] - e[0][2] * e[2][1];
e[2][0] = e[0][2] * e[1][1] - e[1][2] * e[0][1];
//calculate determinant of the scale matrix by multiplying it's eigens
double D = e1*e2*e3;
//calculate the inverse of the scale matrix (we don't actually need to compute the scale matrix)
e1 = 1.0 / e1; //N.B. Note that by inverting the eigenvalues we compute the inverse scale matrix
e2 = 1.0 / e2;
e3 = 1.0 / e3;
//calculate unique components of I from the eigenvectors and inverted eigenvalues
i[0][0] = e1*e[0][0] * e[0][0] + e2*e[0][1] * e[0][1] + e3*e[0][2] * e[0][2]; //diagonal component
i[1][1] = e1*e[1][0] * e[1][0] + e2*e[1][1] * e[1][1] + e3*e[1][2] * e[1][2];
i[2][2] = e1*e[2][0] * e[2][0] + e2*e[2][1] * e[2][1] + e3*e[2][2] * e[2][2];
i[0][1] = e1*e[0][0] * e[1][0] + e2*e[0][1] * e[1][1] + e3*e[0][2] * e[1][2]; //off-axis component
i[0][2] = e1*e[0][0] * e[2][0] + e2*e[0][1] * e[2][1] + e3*e[0][2] * e[2][2];
i[1][2] = e1*e[1][0] * e[2][0] + e2*e[1][1] * e[2][1] + e3*e[1][2] * e[2][2];
//compute the trace of I times X
double trIX = (i[0][0] * X.m_values[0][0] + i[0][1] * X.m_values[1][0] + i[0][2] * X.m_values[2][0]) +
(i[0][1] * X.m_values[0][1] + i[1][1] * X.m_values[1][1] + i[1][2] * X.m_values[2][1]) +
(i[0][2] * X.m_values[0][2] + i[1][2] * X.m_values[1][2] + i[2][2] * X.m_values[2][2]);
//return the log wishart probability density
return lsf - 0.5 * (trIX + nobserved*log(D));
}
//Estimate the normal vector to the structure this trace represents at each point in this trace.
//declare variables for the dlg used by the below function as statics, so they are remembered between uses (for convenience)
static unsigned int minsize = 500; //these are the defaults
static unsigned int maxsize = 1000;
static double tcDistance = 10.0; //the square of the maximum distance to compute thicknesses for
static unsigned int oversample = 30;
static double likPower = 1.0;
static bool calcThickness = true;
static double stride = 0.025;
static int dof = 10;
void ccCompass::estimateStructureNormals()
{
//******************************************
//build dialog to get input properties
//******************************************
QDialog dlg(m_app->getMainWindow());
QVBoxLayout* vbox = new QVBoxLayout();
QLabel minSizeLabel("Minimum trace size (points):");
QLineEdit minSizeText(QString::number(minsize)); minSizeText.setValidator(new QIntValidator(5, std::numeric_limits<int>::max()));
QLabel maxSizeLabel("Maximum trace size (points):");
QLineEdit maxSizeText(QString::number(maxsize)); maxSizeText.setValidator(new QIntValidator(50, std::numeric_limits<int>::max()));
QLabel dofLabel("Wishart Degrees of Freedom:");
QLineEdit dofText(QString::number(dof)); dofText.setValidator(new QIntValidator(3, std::numeric_limits<int>::max()));
QLabel likPowerLabel("Likelihood power:");
QLineEdit likPowerText(QString::number(likPower)); likPowerText.setValidator(new QDoubleValidator(0.01, std::numeric_limits<double>::max(), 6));
QLabel calcThickLabel("Calculate thickness:");
QCheckBox calcThickChk("Calculate thickness"); calcThickChk.setChecked(calcThickness);
QLabel distanceLabel("Distance cutoff (m):");
QLineEdit distanceText(QString::number(tcDistance)); distanceText.setValidator(new QDoubleValidator(0, std::numeric_limits<double>::max(), 6));
QLabel sampleLabel("Samples:");
QLineEdit sampleText(QString::number(oversample)); sampleText.setValidator(new QIntValidator(1, 10000)); //>10000 samples per point will break even the best computer!
QLabel strideLabel("MCMC Stride (radians):");
QLineEdit strideText(QString::number(stride)); strideText.setValidator(new QDoubleValidator(0.0000001, 0.5, 6));
//tooltips
minSizeText.setToolTip("The minimum size of the normal-estimation window.");
maxSizeText.setToolTip("The maximum size of the normal-estimation window.");
dofText.setToolTip("Sets the degrees of freedom parameter for the Wishart distribution. Due to non-independent data/errors in traces, this should be low (~10). Higher give more confident results - use with care!");
distanceText.setToolTip("The furthest distance to search for points on the opposite surface of a GeoObject during thickness calculations.");
sampleText.setToolTip("Sample n orientation estimates at each point in each trace to quantify uncertainty.");
likPowerText.setToolTip("Fudge factor to change the balance between the prior and likelihood functions. Advanced use only - see docs for details.");
strideText.setToolTip("Standard deviation of the normal distribution used to calculate monte-carlo jumps during sampling. Larger numbers sample more widely but are slower to run.");
QDialogButtonBox buttonBox(QDialogButtonBox::Ok | QDialogButtonBox::Cancel);
QObject::connect(&buttonBox, SIGNAL(accepted()), &dlg, SLOT(accept()));
QObject::connect(&buttonBox, SIGNAL(rejected()), &dlg, SLOT(reject()));
vbox->addWidget(&minSizeLabel);
vbox->addWidget(&minSizeText);
vbox->addWidget(&maxSizeLabel);
vbox->addWidget(&maxSizeText);
vbox->addWidget(&dofLabel);
vbox->addWidget(&dofText);
vbox->addWidget(&likPowerLabel);
vbox->addWidget(&likPowerText);
vbox->addWidget(&sampleLabel);
vbox->addWidget(&sampleText);
vbox->addWidget(&strideLabel);
vbox->addWidget(&strideText);
vbox->addWidget(&calcThickLabel);
vbox->addWidget(&calcThickChk);
vbox->addWidget(&distanceLabel);
vbox->addWidget(&distanceText);
vbox->addWidget(&buttonBox);
dlg.setLayout(vbox);
//execute dialog and get results
int result = dlg.exec();
if (result == QDialog::Rejected) {
return; //bail!
}
//get values
minsize = minSizeText.text().toInt(); //these are the defaults
maxsize = maxSizeText.text().toInt();
dof = dofText.text().toInt();
tcDistance = distanceText.text().toDouble(); //the square of the maximum distance to compute thicknesses for
oversample = sampleText.text().toInt();
likPower = likPowerText.text().toDouble();
calcThickness = calcThickChk.isChecked();
stride = strideText.text().toDouble();
//cleanup
dlg.close();
delete vbox;
//someone is an idiot
if (maxsize < minsize) {
m_app->dispToConsole("[ccCompass] Error - provided maxsize is less than minsize? Get your shit together...", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
m_app->dispToConsole("[ccCompass] Estimating structure normals. This may take a while...", ccMainAppInterface::STD_CONSOLE_MESSAGE);
//declare some variables used in the loops
double d = 0.0;
double cx = 0.0;
double cy = 0.0;
double cz = 0.0;
int iid = 0;
CCLib::SquareMatrixd eigVectors;
std::vector<double> eigValues;
bool hasNormals = true;
bool broken = false; //assume normals exist until check later on
//setup progress dialog
ccProgressDialog prg(true, m_app->getMainWindow());
prg.setMethodTitle("Estimating Structure Normals");
prg.setInfo("Gathering data...");
prg.start();
prg.update(0.0);
//gather objects to process
std::vector<std::array<ccHObject*,2>> datasets; //upper/lower surfaces will be put into this array
std::vector<ccPointCloud*> pinchClouds;
for (ccHObject* o : m_app->getSelectedEntities())
{
//option 1 - selected object is a GeoObject or has GeoObject children
ccHObject::Container objs;
if (ccGeoObject::isGeoObject(o)) { //selected object is a geoObject
objs.push_back(o);
} else //otherwise search for all GeoObjects
{
o->filterChildren(objs, true, CC_TYPES::HIERARCHY_OBJECT); //n.b. geoObjects are simpy considered to be hierarchy objects by CC
}
bool foundGeoObject = false;
for (ccHObject* o2 : objs) {
if (ccGeoObject::isGeoObject(o2)) {
ccGeoObject* g = dynamic_cast<ccGeoObject*> (o2);
if (g) {//could possibly be null if non-loaded geo-objects exist
foundGeoObject = true; //use to escape to next object later
//store upper and lower regions
std::array<ccHObject*, 2> data = { g->getRegion(ccGeoObject::LOWER_BOUNDARY),g->getRegion(ccGeoObject::UPPER_BOUNDARY) };
if (ccGeoObject::isSingleSurfaceGeoObject(g)) { //special case - single surface geoboject (upper and lower regions will be the same). Set upper to null
data[1] = nullptr; }
datasets.push_back(data);
//build empty point cloud for pinch nodes to go in
ccPointCloud* cloud = new ccPointCloud(); //points will be written here if the object is a GeoObject and if it contains pinch nodes
pinchClouds.push_back(cloud); //store it
//gather pinch-nodes from GeoObject
ccHObject::Container objs;
g->filterChildren(objs, true, CC_TYPES::POLY_LINE); //pinch nodes inherit the polyline clas
for (ccHObject* c : objs) {
if (ccPinchNode::isPinchNode(c)) { //is it a pinch node?
ccPinchNode* p = dynamic_cast<ccPinchNode*>(c);
if (p != nullptr) //can in rare cases fail
{
cloud->reserve(cloud->size() + 1); //pinch nodes only have one point
cloud->addPoint(*p->getPoint(0)); //get this point
}
}
}
}
}
}
if (foundGeoObject) {
continue; //skip to next object if we found one (or more!) GeoObjects
}
//option 2 - selected object is a trace or has children that are traces
objs.clear();
if (ccTrace::isTrace(o)) { //selected object is a trace
objs.push_back(o);
}
else {//otherwise search for all GeoObjects
o->filterChildren(objs, true, CC_TYPES::POLY_LINE); //n.b. geoObjects are simpy considered to be hierarchy objects by CC
}
for (ccHObject* o2 : objs) {
if (ccTrace::isTrace(o2) && o2->isEnabled()) {//is it a trace?
ccTrace* t = dynamic_cast<ccTrace*> (o2);
if (t != nullptr) {//can in rare cases be a null ptr (dynamic cast will fail for traces that haven't been converted to ccTrace objects)
std::array<ccHObject*, 2> data = { t, nullptr };
datasets.push_back(data); //store data for processing
pinchClouds.push_back(new ccPointCloud()); //push empty cloud (no pinch nodes).
}
}
}
}
if (datasets.empty()) { //no data found
m_app->dispToConsole("[ccCompass] No GeoObjects or Traces could be found to estimate structure normals for. Please select some!", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
}
//process datasets std::array<ccHObject*, 2> regions : datasets
for (int _d = 0; _d < datasets.size(); _d++)
{
//update progress dialog
prg.setInfo(QStringLiteral("Processing %1 of %2 datasets: Calculating fit planes...").arg( _d+1 ).arg( datasets.size() ));
prg.update(0.0f);
if (prg.isCancelRequested()) {
break;
}
//get regions and pinchNodes to work on this step
std::array<ccHObject*, 2> regions = datasets[_d];
ccPointCloud* pinchNodes = pinchClouds[_d];
//************************************************
//LOAD POINT DATA FROM TRACESS IN REGIONS
//************************************************
ccPointCloud* points[] = { new ccSNECloud(), //Lower Boundary Points
new ccSNECloud() }; //Upper Boundary Points (will remain empty for everything execept multi-surface GeoObjects)
ccPointCloud* samples[] = { nullptr, nullptr }; //lower and upper boundary samples (will be populated later if samples are generated).
//for lower,upper in the case of a GeoObject, otherwise regions[1] will be null and will be ignored
for (unsigned r = 0; r < 2; r++)
{
if (regions[r] == nullptr) {
delete points[r];
continue; //skip null regions
}
//search for traces in this region
ccHObject::Container objs;
if (ccTrace::isTrace(regions[r])) { //given object is a trace
objs.push_back(regions[r]);
} else { //otherwise search for child traces (this is a GeoObject region so traces need to be joined together)
regions[r]->filterChildren(objs, true, CC_TYPES::POLY_LINE);
}
for (ccHObject* c : objs)
{
if (ccTrace::isTrace(c) && c->isEnabled()) //is it a trace?
{
ccTrace* t = dynamic_cast<ccTrace*> (c);
if (t != nullptr) //can in rare cases be a null ptr (dynamic cast will fail for traces that haven't been converted to ccTrace objects)
{
//copy points from this trace across into the relevant point cloud for future access
points[r]->reserve(points[r]->size() + t->size()); //make space
points[r]->reserveTheNormsTable(); //make space for normals
points[r]->setGlobalScale(t->getGlobalScale()); //copy global shift & scale onto new point cloud
points[r]->setGlobalShift(t->getGlobalShift());
for (unsigned p = 0; p < t->size(); p++)
{
points[r]->addPoint(*t->getPoint(p)); //add point to relevant surface
points[r]->addNorm(t->getPointNormal(p)); //add point normal
}
}
}
}
//skip if there are not enough points!
if (points[r]->size() < minsize) {
m_app->dispToConsole(QString::asprintf("[ccCompass] Warning: Region %d contains less than minsize points. Region ignored.", regions[r]->getUniqueID()), ccMainAppInterface::WRN_CONSOLE_MESSAGE);
delete points[r];
points[r] = nullptr;
regions[r] = nullptr;
continue;
}
//*********************************************************
//SORT GATHERED POINTS INTO ORDER ALONG LONG-AXIS OF TRACE
//*********************************************************
CCLib::Neighbourhood Z(points[r]); //put points for this surface into a neighbourhood and get the sorting direction (principal eigenvector)
const CCVector3* longAxis = Z.getLSPlaneX(); //n.b. this is a normal vector
if (longAxis == nullptr) {
//fail friendly if eigens could not be computed
m_app->dispToConsole(QString::asprintf("[ccCompass] Warning: Could not compute eigensystem for region %u. Region ignored.", regions[r]->getUniqueID()), ccMainAppInterface::WRN_CONSOLE_MESSAGE);
continue; //skip to next region
}
//now sort points along this vector
std::vector<unsigned> pid; //store link to point id in original cloud (for later data storage)
std::vector<double> dist, px, py, pz, nx, ny, nz;
//add first point
pid.push_back(0); dist.push_back(points[r]->getPoint(0)->dot(*longAxis));
px.push_back(points[r]->getPoint(0)->x); py.push_back(points[r]->getPoint(0)->y); pz.push_back(points[r]->getPoint(0)->z);
nx.push_back(points[r]->getPointNormal(0).x); ny.push_back(points[r]->getPointNormal(0).y); nz.push_back(points[r]->getPointNormal(0).z);
for (unsigned p = 0; p < points[r]->size(); p++) {
//calculate distance along the longAxis
d = points[r]->getPoint(p)->dot(*longAxis);
//quick-check to see if point can just be pushed to end of the list
if (dist[dist.size() - 1] <= d) {
pid.push_back(p); dist.push_back(d);
px.push_back(points[r]->getPoint(p)->x); py.push_back(points[r]->getPoint(p)->y); pz.push_back(points[r]->getPoint(p)->z);
nx.push_back(points[r]->getPointNormal(p).x); ny.push_back(points[r]->getPointNormal(p).y); nz.push_back(points[r]->getPointNormal(p).z);
}
else {
//find insert point
for (int n = 0; n < dist.size(); n++)
{
//check id = n
if (dist[n] > d) //found an insert point from the left
{
iid = n;
break;
} //TODO - could optimise this by searching backwards from the end also?
}
//do inserts
dist.insert(dist.begin() + iid, d);
pid.insert(pid.begin() + iid, p);
px.insert(px.begin() + iid, points[r]->getPoint(p)->x);
py.insert(py.begin() + iid, points[r]->getPoint(p)->y);
pz.insert(pz.begin() + iid, points[r]->getPoint(p)->z);
nx.insert(nx.begin() + iid, points[r]->getPointNormal(p).x);
ny.insert(ny.begin() + iid, points[r]->getPointNormal(p).y);
nz.insert(nz.begin() + iid, points[r]->getPointNormal(p).z);
}
}
//**************************************************************************************************
//CREATE BREAKS AT PINCH NODES (these prevent planes including points from two sides of a pinch node
//**************************************************************************************************
std::vector<bool> breaks(px.size(), false); //if point n is a break (closest point to a pinch node), breaks[n] == True.
CCLib::DgmOctree::NeighboursSet neighbours;
//build octree over points in combined trace
ccOctree::Shared oct = points[r]->computeOctree();
unsigned char level = oct->findBestLevelForAGivenPopulationPerCell(2); //init vars needed for nearest neighbour search
CCLib::ReferenceCloud* nCloud = new CCLib::ReferenceCloud(points[r]);
d = -1.0; //re-use the d variable rather than re-declaring another
for (unsigned p = 0; p < pinchNodes->size(); p++)
{
//get closest point in combined trace to this pinch node
nCloud->clear(false);
oct->findPointNeighbourhood(pinchNodes->getPoint(p), nCloud, 1, level, d);
breaks[nCloud->getPointGlobalIndex(0)] = true; //assign
}
//***********************************************************************************************
//RECURSE THROUGH ALL POSSIBLE COMBINATIONS OF POINTS TO FIND THE BEST STRUCTURE NORMAL ESTIMATE
//***********************************************************************************************
//declare variables used in nested loops below
int n;
double mnx, mny, mnz, lpd, lsf, phi, theta, alpha, len;
bool hasValidSNE = false; //becomes true once a valid plane is found
std::vector<double> bestPd(px.size(), std::numeric_limits<double>::lowest()); //best (log) probability density observed for each point
std::vector<double> bestPhi(px.size(), 0);
std::vector<double> bestTheta(px.size(), 0);
std::vector<double> bestAlpha(px.size(), 0);
std::vector<double> bestE1(px.size(), 0);
std::vector<double> bestE2(px.size(), 0);
std::vector<double> bestE3(px.size(), 0);
std::vector<CCLib::SquareMatrixd> bestX(px.size()); //keep track of best COV matrix for each trace (for oversampling later)
std::vector<CCVector3> sne(px.size()); //list of the best surface normal estimates found for each point (corresponds with the MAP above)
std::vector<int> start(px.size(),0); //index of start point for best planes
std::vector<int> end(px.size(),0); //index of end point for best planes
std::vector<int> segmentID(px.size(),-1); //unique id for each point segment.
std::vector<CCVector3> normal(px.size()); //list of the surface normals (as opposed to structure normals stored in SNE).
//check if valid normals have been retrieved
if (hasNormals) {
if (abs(nx[0]) <= 0.000001 && abs(ny[0]) <= 0.0000001 && abs(nz[0]) <= 0.00000001) //zero normal vector means normals not computed
{
m_app->dispToConsole("[ccCompass] Warning: Cannot compensate for outcrop-surface bias as point cloud has no normals. Structure normal estimates may be misleading or incorrect.", ccMainAppInterface::WRN_CONSOLE_MESSAGE);
hasNormals = false; //don't bother checking again - if normals are computed they will exist for all points
}
}
//loop through all possible continuous subsets of the combined trace with minsize < length < maxsize.
for (unsigned _min = 0; _min < px.size() - minsize; _min++)
{
//update progress bar
prg.update(100 * _min / static_cast<float>(px.size() - minsize));
if (prg.isCancelRequested()) {
//cleanup
delete points[r];
for (int i = 0; i < pinchClouds.size(); i++) {
delete pinchClouds[i];
}
return; }
//do inner loop
for (unsigned _max = _min + minsize; _max < std::min(static_cast<unsigned>(px.size()), _min + maxsize); _max++)
{
//size of the current subset
n = _max - _min + 1;
//-------------------------------------------------------------------------------------------------------------------------------------
//compute centroid of points between min and max (and the average normal). Also check if break-point exists (if so skip this subset)
//-------------------------------------------------------------------------------------------------------------------------------------
cx = 0.0; cy = 0.0; cz = 0.0;
mnx = 0.0; mny = 0.0; mnz = 0.0;
broken = false;
for (unsigned p = _min; p <= _max; p++) {
cx += px[p]; cy += py[p]; cz += pz[p]; //average point positions
if (hasNormals) {
mnx += nx[p]; mny += ny[p]; mnz += nz[p]; //average point normals
}
if (breaks[pid[p]]) { //is this a breakpoint
broken = true;
break; //skip to next plane!
}
}
if (broken) {
break; //skip to next _min point
}
cx /= n; cy /= n; cz /= n; //position vector of subset centroid
if (hasNormals) {
mnx /= n; mny /= n; mnz /= n; //average normal vector of subset centroid
len = sqrt(mnx*mnx + mny*mny + mnz*mnz); //normalise
mnx /= len; mny /= len; mnz /= len;
}
hasValidSNE = true; //we have now found at least one valid plane
//-----------------------------------------------------------------------------
//compute the scatter and covariance matrices of this section of the trace
//-----------------------------------------------------------------------------
CCLib::SquareMatrixd X(3); //scale matrix
for (unsigned p = _min; p <= _max; p++)
{
X.m_values[0][0] += (px[p] - cx) * (px[p] - cx); //mXX
X.m_values[1][1] += (py[p] - cy) * (py[p] - cy); //mYY
X.m_values[2][2] += (pz[p] - cz) * (pz[p] - cz); //mZZ
X.m_values[0][1] += (px[p] - cx) * (py[p] - cy); //mXY
X.m_values[0][2] += (px[p] - cx) * (pz[p] - cz); //mXZ
X.m_values[1][2] += (py[p] - cy) * (pz[p] - cz); //mYZ
}
CCLib::SquareMatrixd cov(3); //convert to covariance matrix
cov.m_values[0][0] = X.m_values[0][0] / n; cov.m_values[1][1] = X.m_values[1][1] / n; cov.m_values[2][2] = X.m_values[2][2] / n;
cov.m_values[0][1] = X.m_values[0][1] / n; cov.m_values[0][2] = X.m_values[0][2] / n; cov.m_values[1][2] = X.m_values[1][2] / n;
//update X to reflect the dof (rather than the true number of samples, as these are not truly independent due to spatial covariance)
X.m_values[0][0] = cov.m_values[0][0] * dof; X.m_values[1][1] = cov.m_values[1][1] * dof; X.m_values[2][2] = cov.m_values[2][2] * dof;
X.m_values[0][1] = cov.m_values[0][1] * dof; X.m_values[0][2] = cov.m_values[0][2] * dof; X.m_values[1][2] = cov.m_values[1][2] * dof;
//fill symmetric parts
X.m_values[1][0] = X.m_values[0][1]; cov.m_values[1][0] = cov.m_values[0][1];
X.m_values[2][0] = X.m_values[0][2]; cov.m_values[2][0] = cov.m_values[0][2];
X.m_values[2][1] = X.m_values[1][2]; cov.m_values[2][1] = cov.m_values[1][2];
//compute and sort eigens
Jacobi<double>::ComputeEigenValuesAndVectors(cov, eigVectors, eigValues, true); //get eigens
Jacobi<double>::SortEigenValuesAndVectors(eigVectors, eigValues); //sort into decreasing order
//----------------------------------------------------------------------------------------------------
//Compute the trend and plunge of the best-fit plane (based entirely on the eigensystem).
//These values will be the maxima of the wishart likelihood distribution and are used to efficiently
//estimate the maxima a-postiori. This will be incorrect where we are at the low-point in the prior,
//but it doesn't matter that much....
//----------------------------------------------------------------------------------------------------
//calculate trend and plunge of 3rd eigenvector (this represents the "best-fit-plane").
phi = atan2(eigVectors.m_values[0][2], eigVectors.m_values[1][2]); //trend of the third eigenvector
theta = -asin(eigVectors.m_values[2][2]); //plunge of the principal eigenvector
//ensure phi and theta are in the correct domain
if (theta < 0) //ensure dip angle is positive
{
phi = phi + (M_PI);
theta = -theta;
}
while (phi < 0) //ensure phi ranges between 0 and 2 pi
{
phi += 2 * M_PI;
} while (phi > 2 * M_PI)
{
phi -= 2 * M_PI;
}
//calculate third angle (alpha) defining the orientation of the eigensystem
alpha = asin(eigVectors.m_values[2][1] / cos(theta)); //alpha = arcsin(eigVector2.z / cos(theta))
//map alpha to correct domain (0 to 180 degrees)
while (alpha < 0) {
alpha += M_PI;
}
while (alpha > M_PI) {
alpha -= M_PI;
}
//compute log-likelihood of this plane estimate
//dof = _max - _min - 1;
lsf = logWishSF(X, dof);
lpd = likPower*logWishart(X, dof, phi, theta, alpha, eigValues[0], eigValues[1], eigValues[2], lsf);
//multiply by prior
if (hasNormals)
{
lpd += log(prior(phi, theta, mnx, mny, mnz));
}
//----------------------------------------------------------------------------
//Check if this is the best observed posterior probability
//----------------------------------------------------------------------------
for (unsigned p = _min; p <= _max; p++)
{
if (lpd > bestPd[p]) //this is a better Pd
{
bestPd[p] = lpd;
bestPhi[p] = phi;
bestTheta[p] = theta;
bestAlpha[p] = alpha;
bestE1[p] = eigValues[0];
bestE2[p] = eigValues[1];
bestE3[p] = eigValues[2];
sne[p] = CCVector3(eigVectors.m_values[0][2], eigVectors.m_values[1][2], eigVectors.m_values[2][2]);
start[p] = _min;
end[p] = _max;
segmentID[p] = _max * px.size() + _min;
bestX[p] = X;
normal[p] = CCVector3(mnx, mny, mnz);
}
}
}
}
if (!hasValidSNE) { //if segments between pinch nodes are too small, then we will not get any valid fit-planes
m_app->dispToConsole(QString::asprintf("[ccCompass] Warning: Region %d contains no valid points (PinchNodes break the trace into small segments?). Region ignored.", regions[r]->getUniqueID()), ccMainAppInterface::WRN_CONSOLE_MESSAGE);
delete points[r];
points[r] = nullptr;
regions[r] = nullptr;
continue;
}
//#################################################################################################################
//STORE SNE ESTIMATES ON CLOUD
//##################################################################################################################
points[r]->setName("SNE");
//build scalar fields
CCLib::ScalarField* startSF = points[r]->getScalarField(points[r]->addScalarField(new ccScalarField("StartPoint")));
CCLib::ScalarField* endSF = points[r]->getScalarField(points[r]->addScalarField(new ccScalarField("EndPoint")));
CCLib::ScalarField* idSF = points[r]->getScalarField(points[r]->addScalarField(new ccScalarField("SegmentID")));
CCLib::ScalarField* weightSF = points[r]->getScalarField(points[r]->addScalarField(new ccScalarField("Weight")));
CCLib::ScalarField* trend = points[r]->getScalarField(points[r]->addScalarField(new ccScalarField("Trend")));
CCLib::ScalarField* plunge = points[r]->getScalarField(points[r]->addScalarField(new ccScalarField("Plunge")));
CCLib::ScalarField* pointID = points[r]->getScalarField(points[r]->addScalarField(new ccScalarField("PointID"))); //used for linking samples representing the same point
weightSF->reserve(px.size());
startSF->reserve(px.size());
endSF->reserve(px.size());
idSF->reserve(px.size());
trend->reserve(px.size());
plunge->reserve(px.size());
pointID->reserve(px.size());
//store best-guess (maximum a-postiori) surface normal estimates
for (unsigned p = 0; p < px.size(); p++)
{
points[r]->setPointNormal(pid[p], sne[p]);
weightSF->setValue(pid[p], bestPd[p]);
startSF->setValue(pid[p], start[p]);
endSF->setValue(pid[p], end[p]);
idSF->setValue(pid[p], segmentID[p]);
trend->setValue(pid[p], bestPhi[p] * 180.0 / M_PI);
plunge->setValue(pid[p], bestTheta[p] * 180.0 / M_PI);
pointID->setValue(pid[p], pid[p]);
}
//compute range
weightSF->computeMinAndMax();
startSF->computeMinAndMax();
endSF->computeMinAndMax();
idSF->computeMinAndMax();
trend->computeMinAndMax();
plunge->computeMinAndMax();
pointID->computeMinAndMax();
//set weight to visible
points[r]->setCurrentDisplayedScalarField(0);
points[r]->showSF(true);
//add cloud to object
regions[r]->addChild(points[r]);
m_app->addToDB(points[r], false, false, false, false);
//*************************************************************************************
//SAMPLE ORIENTATIONS FROM POSTERIORS FOR EACH POINTS SNE TO PROPAGATE UNCERTAINTY
//*************************************************************************************
if (oversample > 1)
{
//build point cloud to store MCMC samples in and associated scalar fields
samples[r] = new ccSNECloud();
samples[r]->setName("SNE_Samples");
samples[r]->setGlobalScale(points[r]->getGlobalScale()); //copy global shift & scale onto new point cloud
samples[r]->setGlobalShift(points[r]->getGlobalShift());
samples[r]->reserve(px.size()*oversample);
samples[r]->reserveTheNormsTable();
CCLib::ScalarField* startSF = samples[r]->getScalarField(samples[r]->addScalarField(new ccScalarField("StartPoint")));
CCLib::ScalarField* endSF = samples[r]->getScalarField(samples[r]->addScalarField(new ccScalarField("EndPoint")));
CCLib::ScalarField* idSF = samples[r]->getScalarField(samples[r]->addScalarField(new ccScalarField("SegmentID")));
CCLib::ScalarField* weightSF = samples[r]->getScalarField(samples[r]->addScalarField(new ccScalarField("Weight")));
CCLib::ScalarField* trend = samples[r]->getScalarField(samples[r]->addScalarField(new ccScalarField("Trend")));
CCLib::ScalarField* plunge = samples[r]->getScalarField(samples[r]->addScalarField(new ccScalarField("Plunge")));
CCLib::ScalarField* pointID = samples[r]->getScalarField(samples[r]->addScalarField(new ccScalarField("PointID")));
weightSF->reserve(px.size()*oversample);
startSF->reserve(px.size()*oversample);
endSF->reserve(px.size()*oversample);
idSF->reserve(px.size()*oversample);
trend->reserve(px.size()*oversample);
plunge->reserve(px.size()*oversample);
pointID->reserve(px.size()*oversample);
//init random number generators
std::random_device rd;
std::default_random_engine generator(rd());
std::normal_distribution<double> N(0.0, stride); //construct random samplers
std::uniform_real_distribution<double> U(0.0, 1.0);
//loop through points
for (unsigned p = 0; p < px.size(); p++)
{
//update progress dialog
prg.setInfo(QStringLiteral("Processing %1 of %2 datasets: Sampling points...").arg( _d + 1 ).arg( datasets.size() ));
prg.update(100.0f * p / static_cast<float>(px.size()));
if (prg.isCancelRequested()) {
//cleanup
delete points[r];
for (int i = 0; i < pinchClouds.size(); i++)
{
delete pinchClouds[i];
if (samples[0] != nullptr)
{
delete samples[0];
}
if (samples[1] != nullptr)
{
delete samples[1];
}
}
return;
}
//skip stand-alone points (with no co-variance matrix)
if (bestX[p].m_values == nullptr)
{
continue;
}
//calculate log scale factor for wish distribution
lsf = logWishSF(bestX[p], dof);
//initialise MCMC sampler at likelihood maxima (to avoid need for burn-in period)
double lpdProposed;
double lpdCurrent = bestPd[p];
double phi = bestPhi[p];
double theta = bestTheta[p];
double alpha = bestAlpha[p];
double e1 = bestE1[p];
double e2 = bestE2[p];
double e3 = bestE3[p];
double _phi, _theta, _alpha; //propsals
//generate chain
unsigned count = 0;
unsigned iter = 0;
while (count < oversample)
{
//generate proposed sample
_phi = phi + N(generator);
_theta = theta + N(generator);
_alpha = alpha + N(generator);
//evaluate log-likelihood of proposal
lpdProposed = likPower*logWishart(bestX[p], dof, _phi, _theta, _alpha, e1, e2, e3, lsf);
//apply prior?
if (hasNormals)
{
lpdProposed += log(prior(_phi, _theta, normal[p].x, normal[p].y, normal[p].z));
}
//accept or reject
if (log(U(generator)) <= lpdProposed - lpdCurrent)
{
//accept - update chain
phi = _phi;
theta = _theta;
alpha = _alpha;
//calculate normal vector
CCVector3 norm(sin(phi)*cos(theta), cos(phi)*cos(theta), -sin(theta));
//store sample in point cloud
samples[r]->addPoint(CCVector3(px[p], py[p], pz[p]));
samples[r]->addNorm(norm);
weightSF->addElement(lpdProposed);
startSF->addElement(start[p]);
endSF->addElement(end[p]);
idSF->addElement(segmentID[p]);
trend->addElement(phi * 180.0 / M_PI);
plunge->addElement(theta * 180.0 / M_PI);
pointID->addElement(pid[p]);
//move to next point
lpdCurrent = lpdProposed;
count++;
}
if (iter > 1000000 * oversample)
{
m_app->dispToConsole("[ccCompass] Warning - MCMC sampler failed so sampling will be incomplete.", ccMainAppInterface::WRN_CONSOLE_MESSAGE);
break;
}
iter++;
}
}
//get rid of excess space in arrays (if samples were not generated in sections)
samples[r]->shrinkToFit();
samples[r]->normalsHaveChanged();
weightSF->shrink_to_fit();
startSF->shrink_to_fit();
idSF->shrink_to_fit();
trend->shrink_to_fit();
plunge->shrink_to_fit();
pointID->shrink_to_fit();
//compute range
weightSF->computeMinAndMax();
startSF->computeMinAndMax();
endSF->computeMinAndMax();
idSF->computeMinAndMax();
trend->computeMinAndMax();
plunge->computeMinAndMax();
pointID->computeMinAndMax();
//set weight to visible
samples[r]->setCurrentDisplayedScalarField(0);
samples[r]->showSF(true);
//add cloud to object
regions[r]->addChild(samples[r]);
m_app->addToDB(samples[r], false, false, false, false);
//samples[r]->setEnabled(false); //disable by default
}
}
//compute thicknesses if upper + lower surfaces are defined
if (regions[0] != nullptr && regions[1] != nullptr && calcThickness) //have both surfaces been defined?
{
if (points[0]->size() > 0 && points[1]->size() > 0) { //do both surfaces have points in them?
prg.setInfo(QStringLiteral("Processing %1 of %2 datasets: Estimating thickness...").arg( _d + 1 ).arg( datasets.size() ));
for (int r = 0; r < 2; r++)
{
//make scalar field
CCLib::ScalarField* thickSF = points[r]->getScalarField(points[r]->addScalarField(new ccScalarField("Thickness")));
thickSF->reserve(points[r]->size());
//set thickness to visible scalar field
points[r]->setCurrentDisplayedScalarField(points[r]->getScalarFieldIndexByName("Thickness"));
points[r]->showSF(true);
//create scalar field in samples point cloud
CCLib::ScalarField* thickSF_sample = nullptr;
CCLib::ScalarField* idSF_sample = nullptr;
if (samples[r] != nullptr)
{
thickSF_sample = samples[r]->getScalarField(samples[r]->addScalarField(new ccScalarField("Thickness")));
thickSF_sample->reserve(samples[r]->size());
idSF_sample = samples[r]->getScalarField(samples[r]->getScalarFieldIndexByName("PointID"));
samples[r]->setCurrentDisplayedScalarField(samples[r]->getScalarFieldIndexByName("Thickness"));
samples[r]->showSF(true);
}
//figure out id of the compared surface (opposite to the current one)
int compID = 0;
if (r == 0) {
compID = 1;
}
//get octree for the picking and build picking data structures
ccOctree::Shared oct = points[compID]->getOctree();
CCLib::ReferenceCloud* nCloud = new CCLib::ReferenceCloud(points[compID]);
unsigned char level = oct->findBestLevelForAGivenNeighbourhoodSizeExtraction(tcDistance/2);
CCLib::DgmOctree::NeighboursSet neighbours;
d = -1.0;
//loop through points in this surface
for (unsigned p = 0; p < points[r]->size(); p++)
{
//keep progress bar up to date
if (r == 0)
{
prg.update((50.0f * p) / points[r]->size()); //first 50% from lower surface
} else
{
prg.update(50.0f + (50.0f * p) / points[r]->size()); //second 50% from upper surface
}
if (prg.isCancelRequested())
{
//cleanup
for (int i = 0; i < pinchClouds.size(); i++)
{
delete pinchClouds[i];
}
return;
}
//pick nearest point in opposite surface closest to this one
nCloud->clear();
oct->findPointNeighbourhood(points[r]->getPoint(p), nCloud, 1, level, d);
//skip points that are a long way from their opposite neighbours
if (d > tcDistance*tcDistance)
{
thickSF->setValue(p, -1.0);
if (samples[r] != nullptr)
{
for (unsigned s = 0; s < samples[r]->size(); s++)
{
if (idSF_sample->getValue(s) == p) //find samples matching this point
{
thickSF_sample->setValue(s, -1.0);
}
}
}
continue;
}
//calculate thickness for this point pair in sne cloud
//build equation of the plane
PointCoordinateType pEq[4];
pEq[0] = points[r]->getPointNormal(p).x;
pEq[1] = points[r]->getPointNormal(p).y;
pEq[2] = points[r]->getPointNormal(p).z;
pEq[3] = points[r]->getPoint(p)->dot(points[r]->getPointNormal(p));
//calculate point to plane distance
d = CCLib::DistanceComputationTools::computePoint2PlaneDistance(nCloud->getPoint(0), pEq);
//write thickness scalar field
thickSF->setValue(p, abs(d));
//flip normals so that it points in the correct direction
points[r]->setPointNormal(p, points[r]->getPointNormal(p) * (d / abs(d)));
//if samples have been generated, also calculate thicknesses for matching sets of points
if (samples[r] != nullptr)
{
for (unsigned s = 0; s < samples[r]->size(); s++)
{
if (idSF_sample->getValue(s) == p) //find samples matching this point
{
//calculate and store thickness
PointCoordinateType pEq[4];
pEq[0] = samples[r]->getPointNormal(s).x;
pEq[1] = samples[r]->getPointNormal(s).y;
pEq[2] = samples[r]->getPointNormal(s).z;
pEq[3] = samples[r]->getPoint(s)->dot(samples[r]->getPointNormal(s));
d = CCLib::DistanceComputationTools::computePoint2PlaneDistance(nCloud->getPoint(0), pEq);
thickSF_sample->setValue(s, abs(d));
samples[r]->setPointNormal(s, samples[r]->getPointNormal(s) * (d / abs(d)));
}
}
}
}
//compute min and max of thickness scalar fields
thickSF->computeMinAndMax();
if (thickSF_sample != nullptr)
{
thickSF_sample->computeMinAndMax();
}
}
}
}
}
//cleanup
for (int i = 0; i < pinchClouds.size(); i++)
{
delete pinchClouds[i];
}
//notify finish
prg.stop();
m_app->dispToConsole("[ccCompass] Structure normal estimation complete.", ccMainAppInterface::STD_CONSOLE_MESSAGE);
//redraw
m_app->redrawAll();
}
//Estimate strain from Mode-I dykes and veins
static double binSize = 50;
static bool useExternalSNE = true;
static bool buildGraphics = true;
static double exag = 2.0f;
void ccCompass::estimateStrain()
{
//******************************
//gather structure traces
//******************************
std::vector<ccPolyline*> lines;
for (ccHObject* o : m_app->getSelectedEntities())
{
//Is selected object a trace?
if (ccTrace::isTrace(o) && o->isEnabled()) {
lines.push_back(static_cast<ccPolyline*>(o));
continue;
}
//Clearly not... what about it's children?
ccHObject::Container objs;
o->filterChildren(objs, true, CC_TYPES::POLY_LINE); //look for SNE
for (ccHObject* c : objs)
{
if (ccTrace::isTrace(c) && c->isEnabled())
{
lines.push_back(static_cast<ccPolyline*>(c));
}
}
}
//calculate bounding box of all traces
float minx = std::numeric_limits<float>::max(), maxx = std::numeric_limits<float>::lowest();
float miny = std::numeric_limits<float>::max(), maxy = std::numeric_limits<float>::lowest();
float minz = std::numeric_limits<float>::max(), maxz = std::numeric_limits<float>::lowest();
if (lines.empty())
{
m_app->dispToConsole("[ccCompass] Error - no traces or SNEs found to compute estimate strain with.", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
//check bounds
for (ccPolyline* poly : lines)
{
CCVector3 bbMin, bbMax;
if (poly->size() > 0) //avoid (0,0,0),(0,0,0) bounding boxes...
{
poly->getBoundingBox(bbMin, bbMax);
minx = std::min(bbMin.x, minx); maxx = std::max(bbMax.x, maxx);
miny = std::min(bbMin.y, miny); maxy = std::max(bbMax.y, maxy);
minz = std::min(bbMin.z, minz); maxz = std::max(bbMax.z, maxz);
}
}
//******************************
//get bin-size from user
//******************************
QDialog dlg(m_app->getMainWindow());
QVBoxLayout* vbox = new QVBoxLayout();
QLabel boxSizeLabel("Voxel Size:");
QLineEdit boxSizeText(QString::number(binSize)); boxSizeText.setValidator(new QDoubleValidator(0.00001, std::numeric_limits<double>::max(), 6));
QCheckBox externalSNEChk("Use external SNE:"); externalSNEChk.setChecked(useExternalSNE);
QCheckBox buildBlocksChk("Build graphics:"); buildBlocksChk.setChecked(buildGraphics);
QLabel exagLabel("Shape exaggeration factor:");
QLineEdit exagText(QString::number(exag)); boxSizeText.setValidator(new QDoubleValidator(0.00001, std::numeric_limits<double>::max(), 6));
boxSizeText.setToolTip("The voxel size for computing strain. This should be large enough that most boxes contain SNEs.");
externalSNEChk.setToolTip("Use SNE orientation estimates for outside the current cell if none are avaliable within it.");
buildBlocksChk.setToolTip("Build graphic strain ellipses and grid domains. Useful for validation.");
exagText.setToolTip("Exaggerate the shape of strain ellipses for easier visualisation.");
QDialogButtonBox buttonBox(QDialogButtonBox::Ok | QDialogButtonBox::Cancel);
QObject::connect(&buttonBox, SIGNAL(accepted()), &dlg, SLOT(accept()));
QObject::connect(&buttonBox, SIGNAL(rejected()), &dlg, SLOT(reject()));
vbox->addWidget(&boxSizeLabel);
vbox->addWidget(&boxSizeText);
vbox->addWidget(&buildBlocksChk);
vbox->addWidget(&exagLabel);
vbox->addWidget(&exagText);
vbox->addWidget(&externalSNEChk);
vbox->addWidget(&buttonBox);
dlg.setLayout(vbox);
//execute dialog and get results
int result = dlg.exec();
if (result == QDialog::Rejected) {
return; //bail!
}
//get values
binSize = boxSizeText.text().toDouble();
useExternalSNE = externalSNEChk.isChecked();
buildGraphics = buildBlocksChk.isChecked();
exag = exagText.text().toDouble();
//cleanup
dlg.close();
delete vbox;
//setup progress window
ccProgressDialog prg(true, m_app->getMainWindow());
prg.setMethodTitle("Computing strain estimates");
prg.start();
//***************************************
//build grid for evaluating strain within
//***************************************
//pad out by a bin size on each side to avoid gaps due to rounding
minx -= binSize;
miny -= binSize;
minz -= binSize;
maxx += binSize;
maxy += binSize;
maxz += binSize;
int nx = (maxx - minx) / binSize;
int ny = (maxy - miny) / binSize;
int nz = (maxz - minz) / binSize;
//*********************************************
//Map geo-objects onto cells
//*********************************************
prg.setInfo("Gathering GeoObjects...");
std::vector< std::unordered_set<ccGeoObject*> > geoObjectBins(nx*ny*nz, std::unordered_set<ccGeoObject*>());
for (int i = 0; i < lines.size(); i++)
{
prg.update(100.0 * i / float(lines.size()));
if (prg.isCancelRequested())
{
return;
}
ccGeoObject* g = ccGeoObject::getGeoObjectParent(lines[i]);
if (g != nullptr)
{
for (unsigned p = 0; p < lines[i]->size(); p++)
{
CCVector3 V = *lines[i]->getPoint(p);
//compute cell this point falls in
int x = (V.x - minx) / binSize;
int y = (V.y - miny) / binSize;
int z = (V.z - minz) / binSize;
int idx = x + nx * (y + ny * z);
//store reference to this geoobject
if (idx < geoObjectBins.size())
{
geoObjectBins[idx].insert(g);
}
else
{
//n.b. this *should* never happen!
const QString message = QStringLiteral( "[ccCompass] Error: cell %1 is outside of mesh bounds (with total size = %2 [%3,%4,%5])." )
.arg( idx )
.arg( geoObjectBins.size() )
.arg( nx ).arg( ny ).arg( nz );
m_app->dispToConsole( message, ccMainAppInterface::ERR_CONSOLE_MESSAGE );
return;
}
}
}
}
//*********************************************
//Loop through cells and compute strain tensor
//*********************************************
std::vector<int> nStructures(nx*ny*nz, 0); //number of structures used to compute the strain tensor per cell
std::vector<int> nIgnored(nx*ny*nz, 0); //number of structured ignored during the above calculation (as they did not have orientation/thickness estimates)
std::vector<ccPointCloud*> dataInCell(nx*ny*nz, nullptr);
//init object to store blocks in
ccHObject* blocks = nullptr;
if (buildGraphics)
{
blocks = new ccHObject("Blocks");
}
//init strain tensors
CCLib::SquareMatrixd I(3); I.toIdentity();
std::vector<CCLib::SquareMatrixd> F(nx*ny*nz, CCLib::SquareMatrixd(I)); //deformation gradient tensors
int validCells = 0;
prg.setInfo("Calculating strain tensors...");
for (int x = 0; x < nx; x++)
{
for (int y = 0; y < ny; y++)
{
for (int z = 0; z < nz; z++)
{
int idx = x + nx * (y + ny * z);
prg.update((100.0f * idx) / (nx*ny*nz));
if (prg.isCancelRequested())
{
delete blocks;
return;
}
//build graphics objects. These are deleted later if no graphics were built.
dataInCell[idx] = new ccSNECloud();
dataInCell[idx]->setName("DataInCell");
ccScalarField* thickness = new ccScalarField("Thickness");
dataInCell[idx]->addScalarField(thickness);
for (ccGeoObject* g : geoObjectBins[idx])
{
//calculate average dilation vector for this structure (based on the SNEs within this cell)
CCVector3 average_direction; //dilation direction
double average_thickness = 0.0; //amount of dilation
//TODO - write code that also tracks error/variability in orientation/length of dilation vectors?
int n_lower = 0, n_upper = 0;
ccHObject::Container objs;
g->filterChildren(objs, true, CC_TYPES::POINT_CLOUD,true); //look for SNE
for (ccHObject* c : objs)
{
if (ccSNECloud::isSNECloud(c))
{
ccSNECloud* s = dynamic_cast<ccSNECloud*>(c);
if (s != nullptr)
{
//check that a thickness scalar field exists
int thickSF = s->getScalarFieldIndexByName("Thickness");
if (thickSF != -1)
{
s->setCurrentOutScalarField(thickSF);
int region = ccGeoObject::getGeoObjectRegion(s);
if (!(region == ccGeoObject::LOWER_BOUNDARY || region == ccGeoObject::UPPER_BOUNDARY))
{
continue;
}
//loop through points and only pick those that fall in this bin
for (unsigned p = 0; p < s->size(); p++)
{
CCVector3 V = *s->getPoint(p);
//compute voxel that last vertex of this segment falls in
int _x = (V.x - minx) / binSize;
int _y = (V.y - miny) / binSize;
int _z = (V.z - minz) / binSize;
int _idx = _x + nx * (_y + ny * _z);
if (_idx == idx)
{
//compute averages
CCVector3 normal = s->getPointNormal(p);
if (average_direction.norm2() == 0.0)
{
average_direction = normal;
}else if (normal.dot(average_direction) < 0)
{
//avoid vectors pointing in opposite directions (as opposite normal directions are equivalent)
average_direction += -1 * normal;
} else
{
average_direction += normal;
}
average_thickness += s->getPointScalarValue(p);
//increment counters
if (region == ccGeoObject::UPPER_BOUNDARY)
{
n_upper++;
}
else
{
n_lower++;
}
//write to point cloud
if (buildGraphics)
{
dataInCell[idx]->reserve(1);
thickness->reserve(1);
thickness->addElement(s->getPointScalarValue(p));
dataInCell[idx]->addPoint(V);
dataInCell[idx]->reserveTheNormsTable();
dataInCell[idx]->addNorm(s->getPointNormal(p));
}
}
}
if (buildGraphics)
{
thickness->computeMinAndMax();
dataInCell[idx]->setCurrentDisplayedScalarField(0);
dataInCell[idx]->showSF(true);
}
}
}
}
}
//check that an upper SNE has been observed, otherwise we ignore this structure
if (n_upper == 0 && n_lower == 0)
{
nIgnored[idx]++;
continue; //skip this structure
}
//compute average dilation vector
average_direction.normalize();
average_thickness /= (n_lower + n_upper);
//increment number of structures that have contributed to the strain in this cell and number of valid cells for which
//strain can be estimated
validCells++;
nStructures[idx]++;
//build local coordinate system relative to the dyke opening vector (opening vector N, strike vector S, dip vector D)
CCVector3 N = average_direction;
CCVector3 S = N.cross(CCVector3(0.0f, 0.0f, 1.0f));
CCVector3 D = N.cross(S);
//define basis matrix
CCLib::SquareMatrixd B(3);
B.setValue(0, 0, N.x); B.setValue(1, 0, N.y); B.setValue(2, 0, N.z);
B.setValue(0, 1, S.x); B.setValue(1, 1, S.y); B.setValue(2, 1, S.z);
B.setValue(0, 2, D.x); B.setValue(1, 2, D.y); B.setValue(2, 2, D.z);
//compute transform matrix that apply's a scaling/stretching equal to the dyke thickness and in the direction of its normal
CCLib::SquareMatrixd e(3); e.toIdentity();
e.setValue(0, 0, (binSize + average_thickness) / binSize); //stretch matrix in local coordinates
CCLib::SquareMatrixd F_increment = B*(e*B.transposed());// transform to global coords
//apply this (multiply with) the deformation gradient tensor
//N.B. The order here is important, but we don't know the timing!
//Hence we need to somehow bootstrap this to try all possibilites.
F[idx] = F_increment*F[idx];
//build blocks for visualisation?
if (buildGraphics)
{
double gl16[16]; B.toGlMatrix(gl16);
gl16[12] = minx + (x+0.5) * binSize; gl16[13] = miny + (y+0.5) * binSize; gl16[14] = minz + (z+0.5)*binSize; gl16[15] = 1.0;
ccGLMatrix gl(gl16);
ccGenericPrimitive* box = new ccBox(CCVector3(average_thickness, binSize/2, binSize/2), &gl, "BlockStrain");
dataInCell[idx]->addChild(box);
}
}
}
}
}
//remove progress bar
prg.close();
//**************************************************************
//store strain tensors on point cloud and build graphics
//**************************************************************
ccPointCloud* points = new ccPointCloud("Strain");
points->setGlobalScale(lines[0]->getGlobalScale()); //copy global shift & scale from one of the polylines (N.B. we assume here that all features have the same shift/scale)
points->setGlobalShift(lines[0]->getGlobalShift());
points->reserve(validCells);
ccScalarField* nValidSF = new ccScalarField("nValid");
ccScalarField* nIgnoredSF = new ccScalarField("nIgnored");
ccScalarField* JSF = new ccScalarField("J");
points->addScalarField(nValidSF);
points->addScalarField(nIgnoredSF);
points->addScalarField(JSF);
nValidSF->reserve(validCells);
nIgnoredSF->reserve(validCells);
JSF->reserve(validCells);
ccScalarField* eSF[3][3];
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
eSF[i][j] = new ccScalarField(QString::asprintf("E%d%d", i + 1, j + 1).toStdString().c_str());
eSF[i][j]->reserve(validCells);
points->addScalarField(eSF[i][j]);
}
}
ccHObject* ellipses = nullptr;
ccHObject* grid = nullptr;
if (buildGraphics)
{
ellipses = new ccHObject("Ellipses");
grid = new ccHObject("Grid");
points->addChild(ellipses);
points->addChild(grid);
points->addChild(blocks);
}
//loop through bins and build points/graphics where strain has been estimated
for (int x = 0; x < nx; x++)
{
for (int y = 0; y < ny; y++)
{
for (int z = 0; z < nz; z++)
{
int idx = x + nx * (y + ny * z);
if (nStructures[idx] > 0)
{
//build point
CCVector3 p(minx + ((x + 0.5) * binSize), miny + ((y + 0.5) * binSize), minz + ((z + 0.5) * binSize));
points->addPoint(p);
nValidSF->addElement(nStructures[idx]);
nIgnoredSF->addElement(nIgnored[idx]);
//decompose into the rotation and right-stretch
CCLib::SquareMatrixd eigVectors; std::vector<double> eigValues;
CCLib::SquareMatrixd B = F[idx] * F[idx].transposed();
Jacobi<double>::ComputeEigenValuesAndVectors(B, eigVectors, eigValues, true); //get eigens
CCLib::SquareMatrixd U_local(3); U_local.toIdentity(); //calculate stretch matrix in local (un-rotated coordinates)
U_local.setValue(0, 0, sqrt(eigValues[0])); U_local.setValue(1, 1, sqrt(eigValues[1])); U_local.setValue(2, 2, sqrt(eigValues[2]));
CCLib::SquareMatrixd U = eigVectors.transposed() * (U_local * eigVectors); //transform back into global coordinates
//compute jacobian (volumetric strain)
double J = eigValues[0] * eigValues[1] * eigValues[2]; //F[idx].computeDet();
JSF->addElement(J);
//store strain tensor
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
eSF[i][j]->addElement(U.getValue(i, j));
}
}
if (buildGraphics)
{
//compute eigens of F
eigVectors.clear(); eigValues.clear();
Jacobi<double>::ComputeEigenValuesAndVectors(F[idx], eigVectors, eigValues, true); //get eigens
Jacobi<double>::SortEigenValuesAndVectors(eigVectors, eigValues);
//apply exaggeration to eigenvalues (exaggerate shape of the strain ellipse)
CCLib::SquareMatrixd transMat(3);
transMat.setValue(0, 0, pow(eigValues[0] / eigValues[1], exag));
transMat.setValue(1, 1, pow(eigValues[1] / eigValues[1], exag));
transMat.setValue(2, 2, pow(eigValues[2] / eigValues[1], exag));
//transform back into global coords
transMat = eigVectors * (transMat * eigVectors.transposed());
double gl16[16]; transMat.toGlMatrix(gl16);
gl16[12] = p.x; gl16[13] = p.y; gl16[14] = p.z; gl16[15] = 1.0; //add translation to GL matrix
ccGLMatrix gl(gl16);
ccGenericPrimitive* ellipse = new ccSphere(binSize / 3, &gl, "StrainEllipse");
ellipse->setColor(ccColor::blue);
ellipse->showColors(true);
ellipses->addChild(ellipse);
//store strain tensor on the graphic for reference
QVariantMap* map = new QVariantMap();
map->insert("Exx", U.getValue(0, 0) - 1.0); map->insert("Exy", U.getValue(0, 1)); map->insert("Exz", U.getValue(0, 2));
map->insert("Eyx", U.getValue(1, 0)); map->insert("Eyy", U.getValue(1, 1) - 1.0); map->insert("Eyz", U.getValue(1, 2));
map->insert("Ezx", U.getValue(2, 0)); map->insert("Ezy", U.getValue(2, 1)); map->insert("Ezz", U.getValue(2, 2) - 1.0);
map->insert("J", J);
ellipse->setMetaData(*map, true);
//create cubes to highlight gridding
ccGLMatrix T;
T.setTranslation(p);
ccGenericPrimitive* box = new ccBox(CCVector3(binSize, binSize, binSize), &T, "GridCell");
grid->addChild(box);
box->showWired(true);
//add points to this grid cell
box->addChild(dataInCell[idx]);
}
}
else //no strain estimate here - cleanup
{
delete dataInCell[idx];
}
}
}
}
//finalize scalar fields
nValidSF->computeMinAndMax();
nIgnoredSF->computeMinAndMax();
JSF->computeMinAndMax();
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
eSF[i][j]->computeMinAndMax();
}
}
//store & display mesh
m_app->dbRootObject()->addChild(points);
m_app->addToDB(points);
points->setCurrentDisplayedScalarField(0);
points->showSF(true);
}
//Estimate P21 intensity of selected structures
static double searchR = 10;
static unsigned subsample = 25;
void ccCompass::estimateP21()
{
//setup point cloud to store data in
ccPointCloud* cloud = new ccPointCloud();
ccScalarField* weight = new ccScalarField("weight");
cloud->addScalarField(weight);
cloud->setCurrentScalarField(0);
//******************************
//gather polylines and SNEs
//******************************
std::vector<ccPolyline*> lines;
std::vector<ccSNECloud*> sne;
for (ccHObject* o : m_app->getSelectedEntities())
{
//Is selected object a trace?
if (ccTrace::isTrace(o))
{
lines.push_back(static_cast<ccPolyline*>(o));
continue;
}
//What about an SNE cloud?
else if (ccSNECloud::isSNECloud(o))
{
ccSNECloud* s = dynamic_cast<ccSNECloud*>(o);
if (s != nullptr)
{
sne.push_back(s);
}
continue;
}
//Clearly not... what about it's children?
ccHObject::Container objs;
o->filterChildren(objs, true, CC_TYPES::POINT_CLOUD); //look for SNE
for (ccHObject* c : objs)
{
if (ccSNECloud::isSNECloud(c))
{
ccSNECloud* s = dynamic_cast<ccSNECloud*>(c);
if (s != nullptr)
{
sne.push_back(s);
}
}
}
objs.clear();
o->filterChildren(objs, true, CC_TYPES::POLY_LINE); //look for SNE
for (ccHObject* c : objs)
{
if (ccTrace::isTrace(c))
{
lines.push_back(static_cast<ccPolyline*>(c));
}
}
}
if (lines.empty())
{
m_app->dispToConsole("[ccCompass] Error - no polylines or traces found to compute P21.", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
//get points from polylines
ccPointCloud* outcrop = nullptr;
for (ccPolyline* p : lines)
{
//if unknown, find the point cloud features have been digitised on
if (outcrop == nullptr)
{
outcrop = dynamic_cast<ccPointCloud*> (p->getAssociatedCloud());
}
//check that all features have been digitised on the same feature...
if (outcrop != p->getAssociatedCloud())
{
m_app->dispToConsole("[ccCompass] Error - cannot calculate P21 intensity for structures digitised from different point clouds.", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
int sID = ccGeoObject::getGeoObjectRegion(p); //get the region of any associated geo-object this polyline relates too.
double w = 1.0;
if (sID == ccGeoObject::UPPER_BOUNDARY || ccGeoObject::LOWER_BOUNDARY)
{
w = 0.5; //upper/lower boundaries only count for 0.5 as they should be represented/counted twice.
}
cloud->reserve(p->size());
weight->reserve(p->size());
for (unsigned i = 0; i < p->size(); i++)
{
cloud->addPoint(*p->getPoint(i));
weight->addElement(w);
}
}
//compute octree for this cloud (for future picking)
cloud->computeOctree();
//******************************
//get search radius from user
//******************************
QDialog dlg(m_app->getMainWindow());
QVBoxLayout* vbox = new QVBoxLayout();
QLabel boxSizeLabel("Search Radius:");
QLineEdit boxSizeText(QString::number(searchR)); boxSizeText.setValidator(new QDoubleValidator(0.00001, std::numeric_limits<double>::max(), 6));
QLabel subsampleLabel("Subsample:");
QLineEdit subsampleText(QString::number(subsample)); boxSizeText.setValidator(new QIntValidator(1, std::numeric_limits<int>::max()));
boxSizeText.setToolTip("The search radius used to define the region to compute P21 within.");
subsampleText.setToolTip("Only sample P21 on the each n'th point in the original outcrop model (decreases calculation time).");
QDialogButtonBox buttonBox(QDialogButtonBox::Ok | QDialogButtonBox::Cancel);
QObject::connect(&buttonBox, SIGNAL(accepted()), &dlg, SLOT(accept()));
QObject::connect(&buttonBox, SIGNAL(rejected()), &dlg, SLOT(reject()));
vbox->addWidget(&boxSizeLabel);
vbox->addWidget(&boxSizeText);
vbox->addWidget(&subsampleLabel);
vbox->addWidget(&subsampleText);
vbox->addWidget(&buttonBox);
dlg.setLayout(vbox);
//execute dialog and get results
int result = dlg.exec();
if (result == QDialog::Rejected) {
return; //bail!
}
//get values
searchR = boxSizeText.text().toDouble();
subsample = subsampleText.text().toUInt();
m_app->dispToConsole(QString::asprintf("[ccCompass] Estimating P21 Intensity using a search radius of of %f.",searchR), ccMainAppInterface::STD_CONSOLE_MESSAGE);
//cleanup
dlg.close();
delete vbox;
//***************************************************************************
//Setup output cloud
//***************************************************************************
//subsample outcrop cloud
ccPointCloud* outputCloud = new ccPointCloud("P21 Intensity");
outputCloud->reserve(outcrop->size() / subsample);
for (unsigned p = 0; p < outcrop->size(); p+= subsample)
{
outputCloud->addPoint(*outcrop->getPoint(p));
}
//copy global shift
outputCloud->setGlobalScale(outcrop->getGlobalScale()); //copy global scale
outputCloud->setGlobalShift(outcrop->getGlobalShift()); //copy global shift
//setup scalar fields etc
ccScalarField* P21 = new ccScalarField("P21");
outputCloud->addScalarField(P21);
P21->reserve(outputCloud->size());
//*****************************************************************************
//Loop through points on outcrop and calculate trace points / outcrop points
//*****************************************************************************
//get octree for the picking and build picking data structures
ccOctree::Shared trace_oct = cloud->computeOctree();
unsigned char trace_level = trace_oct->findBestLevelForAGivenNeighbourhoodSizeExtraction(searchR);
//structure for nearest neighbors search
CCLib::DgmOctree::NeighboursSet region;
//setup progress dialog
ccProgressDialog prg(true, m_app->getMainWindow());
prg.setMethodTitle("Estimating P21 Intensity");
prg.setInfo("Sampling structures...");
prg.start();
prg.update(0.0);
//loop through points in the output cloud
for (unsigned p = 0; p < outputCloud->size(); p++)
{
//keep progress bar up to date
prg.update(100.0 * p / static_cast<float>(outputCloud->size()));
if (prg.isCancelRequested())
{
//cleanup
delete cloud;
return;
}
//get number of structure points in this neighbourhood
region.clear();
trace_oct->getPointsInSphericalNeighbourhood(*outputCloud->getPoint(p), searchR, region, trace_level);
//calculate total weight (think length) of structure points by summing weights
float sum = 0;
for (int i = 0; i < region.size(); i++)
{
sum += weight->getValue(region[i].pointIndex);
}
//calculate and store number of trace points within this domain
P21->setValue(p, sum);
}
//loop through points in output cloud again, but this time calculate surface area in regions where n_trace wasn't zero
prg.setInfo("Calculating patch areas...");
ccOctree::Shared outcrop_oct = outputCloud->computeOctree();
int n_outcrop = 0;
for (unsigned p = 0; p < outputCloud->size(); p++)
{
float sum = P21->getValue(p);
if (sum > 0) //this domain has at least some structures, so is worth computing patch area
{
//keep progress bar up to date
prg.update(100.0 * p / static_cast<float>(outputCloud->size()));
if (prg.isCancelRequested())
{
//cleanup
delete cloud;
return;
}
//get number of structure points in this neighbourhood
region.clear();
n_outcrop = outcrop_oct->getPointsInSphericalNeighbourhood(*outputCloud->getPoint(p), searchR, region, trace_level);
//update scalar field
P21->setValue(p, sum / (n_outcrop*subsample));
}
}
delete cloud;
//finish
P21->computeMinAndMax();
outputCloud->setCurrentDisplayedScalarField(0);
outputCloud->showSF(true);
m_app->dbRootObject()->addChild(outputCloud);
m_app->addToDB(outputCloud);
}
//converts selected traces or geoObjects to point clouds
void ccCompass::convertToPointCloud()
{
//get selected objects
std::vector<ccGeoObject*> objs;
std::vector<ccPolyline*> lines;
for (ccHObject* o : m_app->getSelectedEntities())
{
if (ccGeoObject::isGeoObject(o))
{
ccGeoObject* g = dynamic_cast<ccGeoObject*> (o);
if (g) //could possibly be null if non-loaded geo-objects exist
{
objs.push_back(g);
}
}
else if (o->isA(CC_TYPES::POLY_LINE))
{
lines.push_back(static_cast<ccPolyline*> (o));
}
else
{
//search children for geo-objects and polylines
ccHObject::Container objs;
o->filterChildren(objs, true, CC_TYPES::POLY_LINE | CC_TYPES::HIERARCHY_OBJECT);
for (ccHObject* c : objs)
{
if (ccGeoObject::isGeoObject(c))
{
ccGeoObject* g = dynamic_cast<ccGeoObject*> (c);
if (g) //could possibly be null if non-loaded geo-objects exist
{
objs.push_back(g);
}
}
if (c->isA(CC_TYPES::POLY_LINE))
{
lines.push_back(static_cast<ccPolyline*>(c));
}
}
}
}
//convert GeoObjects
for (ccGeoObject* o : objs)
{
//get regions
ccHObject* regions[3] = { o->getRegion(ccGeoObject::INTERIOR),
o->getRegion(ccGeoObject::LOWER_BOUNDARY),
o->getRegion(ccGeoObject::UPPER_BOUNDARY)};
//make point cloud
ccPointCloud* points = new ccPointCloud("ConvertedLines"); //create point cloud for storing points
int sfid = points->addScalarField(new ccScalarField("Region")); //add scalar field containing region info
CCLib::ScalarField* sf = points->getScalarField(sfid);
//convert traces in each region
int nRegions = 3;
if (ccGeoObject::isSingleSurfaceGeoObject(o))
{
nRegions = 1; //single surface objects only have one region
}
for (int i = 0; i < nRegions; i++)
{
ccHObject* region = regions[i];
//get polylines/traces
ccHObject::Container poly;
region->filterChildren(poly, true, CC_TYPES::POLY_LINE);
for (ccHObject::Container::const_iterator it = poly.begin(); it != poly.end(); it++)
{
ccPolyline* t = static_cast<ccPolyline*>(*it);
points->setGlobalScale(t->getGlobalScale()); //copy global scale
points->setGlobalShift(t->getGlobalShift()); //copy global shift
points->reserve(points->size() + t->size()); //make space
sf->reserve(points->size() + t->size());
for (unsigned int p = 0; p < t->size(); p++)
{
points->addPoint(*t->getPoint(p)); //add point to cloud
sf->addElement(i);
}
}
}
//save
if (points->size() > 0)
{
sf->computeMinAndMax();
points->setCurrentDisplayedScalarField(sfid);
points->showSF(true);
regions[2]->addChild(points);
m_app->addToDB(points, false, true, false, false);
}
else
{
m_app->dispToConsole("[Compass] No polylines or traces converted - none found.", ccMainAppInterface::WRN_CONSOLE_MESSAGE);
delete points;
}
}
//convert traces not associated with a GeoObject
if (objs.empty())
{
//make point cloud
ccPointCloud* points = new ccPointCloud("ConvertedLines"); //create point cloud for storing points
int sfid = points->addScalarField(new ccScalarField("Region")); //add scalar field containing region info
CCLib::ScalarField* sf = points->getScalarField(sfid);
int number = 0;
for (ccPolyline* t : lines)
{
number++;
points->reserve(points->size() + t->size()); //make space
sf->reserve(points->size() + t->size());
for (unsigned p = 0; p < t->size(); p++)
{
points->addPoint(*t->getPoint(p)); //add point to cloud
sf->addElement(number);
}
}
if (points->size() > 0)
{
sf->computeMinAndMax();
points->setCurrentDisplayedScalarField(sfid);
points->showSF(true);
m_app->dbRootObject()->addChild(points);
m_app->addToDB(points, false, true, false, true);
}
else
{
delete points;
}
}
}
//distributes selected objects into GeoObjects with the same name
void ccCompass::distributeSelection()
{
//get selection
ccHObject::Container selection = m_app->getSelectedEntities();
if (selection.empty())
{
m_app->dispToConsole("[Compass] No objects selected.", ccMainAppInterface::WRN_CONSOLE_MESSAGE);
}
//build list of GeoObjects
std::vector<ccGeoObject*> geoObjs;
ccHObject::Container search;
m_app->dbRootObject()->filterChildren(search, true, CC_TYPES::HIERARCHY_OBJECT, false);
for (ccHObject* obj : search)
{
if (ccGeoObject::isGeoObject(obj))
{
ccGeoObject* g = dynamic_cast<ccGeoObject*>(obj);
if (g)
{
geoObjs.push_back(g);
}
}
}
//loop through selection and try to match with a GeoObject
for (ccHObject* obj : selection)
{
//try to match name
ccGeoObject* bestMatch = nullptr;
int matchingChars = 0; //size of match
for (ccGeoObject* g : geoObjs)
{
//find geoObject with biggest matching name (this avoids issues with Object_1 and Object_11 matching)
if (obj->getName().contains(g->getName())) //object name contains a GeoObject name
{
if (g->getName().size() > matchingChars)
{
matchingChars = g->getName().size();
bestMatch = g;
}
}
}
//was a match found?
if (bestMatch)
{
//detach child from parent and DB Tree
m_app->removeFromDB(obj, false);
//look for upper or low (otherwise put in interior)
if (obj->getName().contains("upper"))
{
bestMatch->getRegion(ccGeoObject::UPPER_BOUNDARY)->addChild(obj); //add to GeoObject upper
}
else if (obj->getName().contains("lower"))
{
bestMatch->getRegion(ccGeoObject::LOWER_BOUNDARY)->addChild(obj); //add to GeoObject lower
}
else
{
bestMatch->getRegion(ccGeoObject::INTERIOR)->addChild(obj); //add to GeoObject interior
}
//deselect and update
obj->setSelected(false);
m_app->addToDB(obj, false, true, false, false);
}
else //a best match was not found...
{
m_app->dispToConsole(QString::asprintf("[Compass] Warning: No GeoObject could be found that matches %s.",obj->getName().toLatin1().data()), ccMainAppInterface::WRN_CONSOLE_MESSAGE);
}
}
m_app->updateUI();
m_app->redrawAll();
}
//recompute entirely each selected trace (useful if the cost function has changed)
void ccCompass::recalculateSelectedTraces()
{
ccTrace::COST_MODE = m_dlg->getCostMode(); //update cost mode
for (ccHObject* obj : m_app->getSelectedEntities())
{
if (ccTrace::isTrace(obj))
{
ccTrace* trc = static_cast<ccTrace*>(obj);
trc->recalculatePath();
}
}
m_app->getActiveGLWindow()->redraw(); //repaint window
}
//recurse and hide visisble point clouds
void ccCompass::hideAllPointClouds(ccHObject* o)
{
if (o->isKindOf(CC_TYPES::POINT_CLOUD) & o->isVisible())
{
o->setVisible(false);
m_hiddenObjects.push_back(o->getUniqueID());
return;
}
for (unsigned i = 0; i < o->getChildrenNumber(); i++)
{
hideAllPointClouds(o->getChild(i));
}
}
//toggle stippling
void ccCompass::toggleStipple(bool checked)
{
ccCompass::drawStippled = checked; //change stippling for newly created planes
recurseStipple(m_app->dbRootObject(), checked); //change stippling for existing planes
m_app->getActiveGLWindow()->redraw(); //redraw
}
void ccCompass::recurseStipple(ccHObject* object,bool checked)
{
//check this object
if (ccFitPlane::isFitPlane(object))
{
ccPlane* p = static_cast<ccPlane*>(object);
p->enableStippling(checked);
}
//recurse
for (unsigned i = 0; i < object->getChildrenNumber(); i++)
{
ccHObject* o = object->getChild(i);
recurseStipple(o, checked);
}
}
//toggle labels
void ccCompass::toggleLabels(bool checked)
{
recurseLabels(m_app->dbRootObject(), checked); //change labels for existing planes
ccCompass::drawName = checked; //change labels for newly created planes
m_app->getActiveGLWindow()->redraw(); //redraw
}
void ccCompass::recurseLabels(ccHObject* object, bool checked)
{
//check this object
if (ccFitPlane::isFitPlane(object) | ccPointPair::isPointPair(object))
{
object->showNameIn3D(checked);
}
//recurse
for (unsigned i = 0; i < object->getChildrenNumber(); i++)
{
ccHObject* o = object->getChild(i);
recurseLabels(o, checked);
}
}
//toggle plane normals
void ccCompass::toggleNormals(bool checked)
{
recurseNormals(m_app->dbRootObject(), checked); //change labels for existing planes
ccCompass::drawNormals = checked; //change labels for newly created planes
m_app->getActiveGLWindow()->redraw(); //redraw
}
void ccCompass::recurseNormals(ccHObject* object, bool checked)
{
//check this object
if (ccFitPlane::isFitPlane(object))
{
ccPlane* p = static_cast<ccPlane*>(object);
p->showNormalVector(checked);
}
//recurse
for (unsigned i = 0; i < object->getChildrenNumber(); i++)
{
ccHObject* o = object->getChild(i);
recurseNormals(o, checked);
}
}
//displays the info dialog
void ccCompass::showHelp()
{
//create new qt window
ccCompassInfo info(m_app->getMainWindow());
info.exec();
}
//enter or turn off map mode
void ccCompass::enableMapMode() //turns on/off map mode
{
//m_app->dispToConsole("ccCompass: Changing to Map mode. Measurements will be associated with GeoObjects.", ccMainAppInterface::STD_CONSOLE_MESSAGE);
m_dlg->mapMode->setChecked(true);
m_dlg->compassMode->setChecked(false);
ccCompass::mapMode = true;
//start gui
m_app->registerOverlayDialog(m_mapDlg, Qt::Corner::TopLeftCorner);
m_mapDlg->start();
m_app->updateOverlayDialogsPlacement();
m_app->getActiveGLWindow()->redraw(true, false);
}
//enter or turn off map mode
void ccCompass::enableMeasureMode() //turns on/off map mode
{
//m_app->dispToConsole("ccCompass: Changing to Compass mode. Measurements will be stored in the \"Measurements\" folder.", ccMainAppInterface::STD_CONSOLE_MESSAGE);
m_dlg->mapMode->setChecked(false);
m_dlg->compassMode->setChecked(true);
ccCompass::mapMode = false;
m_app->getActiveGLWindow()->redraw(true, false);
//turn off map mode dialog
m_mapDlg->stop(true);
m_app->unregisterOverlayDialog(m_mapDlg);
m_app->updateOverlayDialogsPlacement();
}
void ccCompass::addGeoObject(bool singleSurface) //creates a new GeoObject
{
//calculate default name
QString name = m_lastGeoObjectName;
int number = 0;
if (name.contains("_"))
{
number = name.split("_")[1].toInt(); //counter
name = name.split("_")[0]; //initial part
}
number++;
name += QString::asprintf("_%d", number);
//get name
name = QInputDialog::getText(m_app->getMainWindow(), "New GeoObject", "GeoObject Name:", QLineEdit::Normal, name);
if (name == "") //user clicked cancel
{
return;
}
m_lastGeoObjectName = name;
//search for a "interpretation" group [where the new unit will be added]
ccHObject* interp_group = nullptr;
for (unsigned i = 0; i < m_app->dbRootObject()->getChildrenNumber(); i++)
{
if (m_app->dbRootObject()->getChild(i)->getName() == "interpretation")
{
interp_group = m_app->dbRootObject()->getChild(i);
}
else
{
//also search first-level children of root node (when files are re-loaded this is where things will sit)
for (unsigned c = 0; c < m_app->dbRootObject()->getChild(i)->getChildrenNumber(); c++)
{
if (m_app->dbRootObject()->getChild(i)->getChild(c)->getName() == "interpretation")
{
interp_group = m_app->dbRootObject()->getChild(i)->getChild(c);
break;
}
}
}
if (interp_group) //found one :)
{
break;
}
}
//didn't find it - create a new one!
if (!interp_group)
{
interp_group = new ccHObject("interpretation");
m_app->dbRootObject()->addChild(interp_group);
m_app->addToDB(interp_group, false, true, false, false);
}
//create the new GeoObject
ccGeoObject* newGeoObject = new ccGeoObject(name, m_app, singleSurface);
interp_group->addChild(newGeoObject);
m_app->addToDB(newGeoObject, false, true, false, false);
//set it to selected (this will then make it "active" via the selection change callback)
m_app->setSelectedInDB(newGeoObject, true);
}
void ccCompass::addGeoObjectSS()
{
addGeoObject(true);
}
void ccCompass::writeToInterior() //new digitization will be added to the GeoObjects interior
{
ccCompass::mapTo = ccGeoObject::INTERIOR;
m_mapDlg->setInteriorButton->setChecked(true);
m_mapDlg->setUpperButton->setChecked(false);
m_mapDlg->setLowerButton->setChecked(false);
}
void ccCompass::writeToUpper() //new digitization will be added to the GeoObjects upper boundary
{
ccCompass::mapTo = ccGeoObject::UPPER_BOUNDARY;
m_mapDlg->setInteriorButton->setChecked(false);
m_mapDlg->setUpperButton->setChecked(true);
m_mapDlg->setLowerButton->setChecked(false);
}
void ccCompass::writeToLower() //new digitiziation will be added to the GeoObjects lower boundary
{
ccCompass::mapTo = ccGeoObject::LOWER_BOUNDARY;
m_mapDlg->setInteriorButton->setChecked(false);
m_mapDlg->setUpperButton->setChecked(false);
m_mapDlg->setLowerButton->setChecked(true);
}
//convert a point cloud containing field points (x,y,z) and dip+dip-direction scalar fields to planes for visualisation.
void ccCompass::importFoliations()
{
//get selected point cloud
std::vector<ccHObject*> sel = m_app->getSelectedEntities();
if (sel.empty())
{
m_app->dispToConsole("Please select a point cloud containing your field data (this can be loaded from a text file)",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
if (!sel[0]->isA(CC_TYPES::POINT_CLOUD))
{
m_app->dispToConsole("Please select a point cloud containing your field data (this can be loaded from a text file)", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
//get point cloud object
ccPointCloud* cld = static_cast<ccPointCloud*>(sel[0]);
//get user to select scalar field for dip & dip-directon
QDialog dlg(m_app->getMainWindow());
QVBoxLayout* vbox = new QVBoxLayout();
QLabel dipLabel("Dip Field:");
QLabel dipDirLabel("Dip-Direction Field:");
QLabel sizeLabel("Plane Size");
QComboBox dipDirCombo(m_app->getMainWindow());
QComboBox dipCombo(m_app->getMainWindow());
QLineEdit planeSize("2.0"); planeSize.setValidator(new QDoubleValidator(0.01, std::numeric_limits<double>::max(), 6));
//fill combo boxes with field names
//std::vector<QString> fields;
//std::vector<int> idx;
for (unsigned i = 0; i < cld->getNumberOfScalarFields(); i++)
{
dipDirCombo.addItem(cld->getScalarFieldName(i));
dipCombo.addItem(cld->getScalarFieldName(i));
//fields.push_back(cld->getScalarFieldName(i));
//idx.push_back(i);
}
QDialogButtonBox buttonBox(QDialogButtonBox::Ok | QDialogButtonBox::Cancel);
QObject::connect(&buttonBox, SIGNAL(accepted()), &dlg, SLOT(accept()));
QObject::connect(&buttonBox, SIGNAL(rejected()), &dlg, SLOT(reject()));
vbox->addWidget(&dipLabel);
vbox->addWidget(&dipCombo);
vbox->addWidget(&dipDirLabel);
vbox->addWidget(&dipDirCombo);
vbox->addWidget(&buttonBox);
vbox->addWidget(&sizeLabel);
vbox->addWidget(&planeSize);
dlg.setLayout(vbox);
//execute dialog and get results
int result = dlg.exec();
if (result == QDialog::Rejected) {
return; //bail!
}
//get values
int dipSF = cld->getScalarFieldIndexByName(dipCombo.currentText().toStdString().c_str());
int dipDirSF = cld->getScalarFieldIndexByName(dipDirCombo.currentText().toStdString().c_str());
double size = planeSize.text().toDouble();
if (dipSF == dipDirSF)
{
m_app->dispToConsole("Error: Dip and Dip-Direction scalar fields must be different!", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
//loop through points
for (unsigned p = 0; p < cld->size(); p++)
{
float dip = cld->getScalarField(dipSF)->at(p);
float dipdir = cld->getScalarField(dipDirSF)->at(p);
CCVector3 Cd = *cld->getPoint(p);
//build plane and get its orientation
ccPlane* plane = new ccPlane(QString("%1/%2").arg(static_cast<int>(dip), 2, 10, QChar('0')).arg(static_cast<int>(dipdir), 3, 10, QChar('0')));
plane->showNameIn3D(true);
cld->addChild(plane);
m_app->addToDB(plane, false, true, false, false);
CCVector3 N = plane->getNormal();
CCVector3 C = plane->getCenter();
//figure out transform (blatantly stolen from ccPlaneEditDlg::updatePlane())
CCVector3 Nd = ccNormalVectors::ConvertDipAndDipDirToNormal(dip, dipdir, true);
ccGLMatrix trans;
bool needToApplyTrans = false;
bool needToApplyRot = false;
needToApplyRot = (fabs(N.dot(Nd) - PC_ONE) > std::numeric_limits<PointCoordinateType>::epsilon());
needToApplyTrans = needToApplyRot || ((C - Cd).norm2d() != 0);
if (needToApplyTrans)
{
trans.setTranslation(-C);
needToApplyTrans = true;
}
if (needToApplyRot)
{
ccGLMatrix rotation;
//special case: plane parallel to XY
if (fabs(N.z) > PC_ONE - std::numeric_limits<PointCoordinateType>::epsilon())
{
ccGLMatrix rotX; rotX.initFromParameters(-dip * CC_DEG_TO_RAD, CCVector3(1, 0, 0), CCVector3(0, 0, 0)); //plunge
ccGLMatrix rotZ; rotZ.initFromParameters(dipdir * CC_DEG_TO_RAD, CCVector3(0, 0, -1), CCVector3(0, 0, 0));
rotation = rotZ * rotX;
}
else //general case
{
rotation = ccGLMatrix::FromToRotation(N, Nd);
}
trans = rotation * trans;
}
if (needToApplyTrans)
{
trans.setTranslation(trans.getTranslationAsVec3D() + Cd);
}
if (needToApplyRot || needToApplyTrans)
{
plane->applyGLTransformation_recursive(&trans);
//ccLog::Print("[Plane edit] Applied transformation matrix:");
//ccLog::Print(trans.toString(12, ' ')); //full precision
}
plane->setXWidth(size, false);
plane->setYWidth(size, true);
}
}
//convert a point cloud containing field points (x,y,z) and trend + plunge scalar fields to lineation vectors for visualisation.
void ccCompass::importLineations()
{
//get selected point cloud
std::vector<ccHObject*> sel = m_app->getSelectedEntities();
if (sel.empty())
{
m_app->dispToConsole("Please select a point cloud containing your field data (this can be loaded from a text file)", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
if (!sel[0]->isA(CC_TYPES::POINT_CLOUD))
{
m_app->dispToConsole("Please select a point cloud containing your field data (this can be loaded from a text file)", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
//get point cloud object
ccPointCloud* cld = static_cast<ccPointCloud*>(sel[0]);
//get user to select scalar field for dip & dip-directon
QDialog dlg(m_app->getMainWindow());
QVBoxLayout* vbox = new QVBoxLayout();
QLabel dipLabel("Trend Field:");
QLabel dipDirLabel("Plunge Field:");
QLabel sizeLabel("Display Length");
QComboBox dipDirCombo(m_app->getMainWindow());
QComboBox dipCombo(m_app->getMainWindow());
QLineEdit planeSize("2.0"); planeSize.setValidator(new QDoubleValidator(0.01, std::numeric_limits<double>::max(), 6));
//fill combo boxes with field names
for (unsigned i = 0; i < cld->getNumberOfScalarFields(); i++)
{
dipDirCombo.addItem(cld->getScalarFieldName(i));
dipCombo.addItem(cld->getScalarFieldName(i));
}
QDialogButtonBox buttonBox(QDialogButtonBox::Ok | QDialogButtonBox::Cancel);
QObject::connect(&buttonBox, SIGNAL(accepted()), &dlg, SLOT(accept()));
QObject::connect(&buttonBox, SIGNAL(rejected()), &dlg, SLOT(reject()));
vbox->addWidget(&dipLabel);
vbox->addWidget(&dipCombo);
vbox->addWidget(&dipDirLabel);
vbox->addWidget(&dipDirCombo);
vbox->addWidget(&buttonBox);
vbox->addWidget(&sizeLabel);
vbox->addWidget(&planeSize);
dlg.setLayout(vbox);
//execute dialog and get results
int result = dlg.exec();
if (result == QDialog::Rejected) {
return; //bail!
}
//get values
int dipSF = cld->getScalarFieldIndexByName(dipCombo.currentText().toStdString().c_str());
int dipDirSF = cld->getScalarFieldIndexByName(dipDirCombo.currentText().toStdString().c_str());
double size = planeSize.text().toDouble();
if (dipSF == dipDirSF)
{
m_app->dispToConsole("Error: Trend and plunge scalar fields must be different!", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
//loop through points
for (unsigned p = 0; p < cld->size(); p++)
{
float trend = cld->getScalarField(dipSF)->at(p);
float plunge = cld->getScalarField(dipDirSF)->at(p);
CCVector3 Cd = *cld->getPoint(p);
//build lineation vector
CCVector3 l(sin(trend * CC_DEG_TO_RAD) * cos(plunge * CC_DEG_TO_RAD), cos(trend * CC_DEG_TO_RAD)*cos(plunge * CC_DEG_TO_RAD), -sin(plunge * CC_DEG_TO_RAD));
//create new point cloud to associate with lineation graphic
ccPointCloud* points = new ccPointCloud();
points->setGlobalScale(cld->getGlobalScale()); //copy global shift & scale onto new point cloud
points->setGlobalShift(cld->getGlobalShift());
points->reserve(2);
points->addPoint(Cd);
points->addPoint(Cd + l*size);
points->setName("verts");
//create lineation graphic
ccLineation* lineation = new ccLineation(points);
lineation->addChild(points);
lineation->addPointIndex(0);
lineation->addPointIndex(1);
lineation->updateMetadata();
lineation->setName(QStringLiteral("%1->%2").arg( qRound( plunge ) ).arg( qRound( trend ) ));
cld->addChild(lineation);
m_app->addToDB(lineation, false, true, false, false);
}
}
//save the current view to an SVG file
void ccCompass::exportToSVG()
{
float zoom = 2.0f; //TODO: create popup box
//get filename for the svg file
QString filename = QFileDialog::getSaveFileName(m_dlg, tr("SVG Output file"), "", tr("SVG files (*.svg)"));
if (filename.isEmpty())
{
//process cancelled by the user
return;
}
if (QFileInfo(filename).suffix() != "svg")
{
filename += ".svg";
}
//set all objects except the point clouds invisible
std::vector<ccHObject*> hidden; //store objects we hide so we can turn them back on after!
ccHObject::Container objects;
m_app->dbRootObject()->filterChildren(objects, true, CC_TYPES::OBJECT, false); //get list of all children!
for (ccHObject* o : objects)
{
if (!o->isA(CC_TYPES::POINT_CLOUD))
{
if (o->isVisible())
{
hidden.push_back(o);
o->setVisible(false);
}
}
}
//render the scene
QImage img = m_app->getActiveGLWindow()->renderToImage(zoom);
//restore visibility
for (ccHObject* o : hidden)
{
o->setVisible(true);
}
//convert image to base64 (png format) to write in svg file
QByteArray ba;
QBuffer bu(&ba);
bu.open(QIODevice::WriteOnly);
img.save(&bu, "PNG");
bu.close();
//create .svg file
QFile svg_file(filename);
//open file & create text stream
if (svg_file.open(QIODevice::WriteOnly))
{
QTextStream svg_stream(&svg_file);
int width = std::abs(static_cast<int>(m_app->getActiveGLWindow()->glWidth() * zoom)); //glWidth and glHeight are negative on some machines??
int height = std::abs(static_cast<int>(m_app->getActiveGLWindow()->glHeight() * zoom));
//write svg header
svg_stream << QString::asprintf("<svg width=\"%d\" height=\"%d\">", width, height) << endl;
//write the image
svg_stream << QString::asprintf("<image height = \"%d\" width = \"%d\" xlink:href = \"data:image/png;base64,", height, width) << ba.toBase64() << "\"/>" << endl;
//recursively write traces
int count = writeTracesSVG(m_app->dbRootObject(), &svg_stream, height,zoom);
//TODO: write scale bar
//write end tag for svg file
svg_stream << "</svg>" << endl;
//close file
svg_stream.flush();
svg_file.close();
if (count > 0)
{
m_app->dispToConsole(QString::asprintf("[ccCompass] Successfully saved %d polylines to .svg file.", count));
}
else
{
//remove file
svg_file.remove();
m_app->dispToConsole("[ccCompass] Could not write polylines to .svg - no polylines found!",ccMainAppInterface::WRN_CONSOLE_MESSAGE);
}
}
}
int ccCompass::writeTracesSVG(ccHObject* object, QTextStream* out, int height, float zoom)
{
int n = 0;
//is this a drawable polyline?
if (object->isA(CC_TYPES::POLY_LINE) || ccTrace::isTrace(object))
{
//get polyline object
ccPolyline* line = static_cast<ccPolyline*>(object);
if (!line->isVisible())
{
return 0; //as soon as something is not visible we bail
}
//write polyline header
*out << "<polyline fill=\"none\" stroke=\"black\" points=\"";
//get projection params
ccGLCameraParameters params;
m_app->getActiveGLWindow()->getGLCameraParameters(params);
if (params.perspective)
{
m_app->getActiveGLWindow()->setPerspectiveState(false, true);
//m_app->getActiveGLWindow()->redraw(false, false); //not sure if this is needed or not?
m_app->getActiveGLWindow()->getGLCameraParameters(params); //get updated params
}
//write point string
for (unsigned i = 0; i < line->size(); i++)
{
//get point in world coordinates
CCVector3 P = *line->getPoint(i);
//project 3D point into 2D
CCVector3d coords2D;
params.project(P, coords2D);
//write point
*out << QString::asprintf("%.3f,%.3f ", coords2D.x*zoom, height - (coords2D.y*zoom)); //n.b. we need to flip y-axis
}
//end polyline
*out << "\"/>" << endl;
n++; //a polyline has been written
}
//recurse on children
for (unsigned i = 0; i < object->getChildrenNumber(); i++)
{
n += writeTracesSVG(object->getChild(i), out, height, zoom);
}
return n;
}
//export interpretations to csv or xml
void ccCompass::onSave()
{
//get output file path
QString filename = QFileDialog::getSaveFileName(m_dlg, tr("Output file"), "", tr("CSV files (*.csv *.txt);;XML (*.xml)"));
if (filename.isEmpty())
{
//process cancelled by the user
return;
}
//is this an xml file?
QFileInfo fi(filename);
if (fi.suffix() == "xml")
{
writeToXML(filename); //write xml file
return;
}
//otherwise write a whole bunch of .csv files
int planes = 0; //keep track of how many objects are being written (used to delete empty files)
int traces = 0;
int lineations = 0;
int thicknesses = 0;
/*
QString filename = QFileDialog::getSaveFileName(m_dlg, tr("Output file"), "", tr("XML files (*.xml *.txt)"));
*/
//build filenames
QString baseName = fi.absolutePath() + "/" + fi.completeBaseName();
QString ext = fi.suffix();
if (!ext.isEmpty())
{
ext.prepend('.');
}
QString plane_fn = baseName + "_planes" + ext;
QString trace_fn = baseName + "_traces" + ext;
QString lineation_fn = baseName + "_lineations" + ext;
QString thickness_fn = baseName + "_thickness" + ext;
//create files
QFile plane_file(plane_fn);
QFile trace_file(trace_fn);
QFile lineation_file(lineation_fn);
QFile thickness_file(thickness_fn);
//open files
if (plane_file.open(QIODevice::WriteOnly) && trace_file.open(QIODevice::WriteOnly) && lineation_file.open(QIODevice::WriteOnly) && thickness_file.open(QIODevice::WriteOnly))
{
//create text streams for each file
QTextStream plane_stream(&plane_file);
QTextStream trace_stream(&trace_file);
QTextStream lineation_stream(&lineation_file);
QTextStream thickness_stream(&thickness_file);
//write headers
plane_stream << "Name,Strike,Dip,Dip_Dir,Cx,Cy,Cz,Nx,Ny,Nz,Sample_Radius,RMS,Gx,Gy,Gz,Length" << endl;
trace_stream << "Name,Trace_id,Point_id,Start_x,Start_y,Start_z,End_x,End_y,End_z,Cost,Cost_Mode" << endl;
lineation_stream << "Name,Sx,Sy,Sz,Ex,Ey,Ez,Trend,Plunge,Length" << endl;
thickness_stream << "Name,Sx,Sy,Sz,Ex,Ey,Ez,Trend,Plunge,Thickness" << endl;
//write data for all objects in the db tree (n.b. we loop through the dbRoots children rathern than just passing db_root so the naming is correct)
for (unsigned i = 0; i < m_app->dbRootObject()->getChildrenNumber(); i++)
{
ccHObject* o = m_app->dbRootObject()->getChild(i);
planes += writePlanes(o, &plane_stream);
traces += writeTraces(o, &trace_stream);
lineations += writeLineations(o, &lineation_stream, QString(), false);
thicknesses += writeLineations(o, &thickness_stream, QString(), true);
}
//cleanup
plane_stream.flush();
plane_file.close();
trace_stream.flush();
trace_file.close();
lineation_stream.flush();
lineation_file.close();
thickness_stream.flush();
thickness_file.close();
//ensure data has been written (and if not, delete the file)
if (planes)
{
m_app->dispToConsole("[ccCompass] Successfully exported plane data.", ccMainAppInterface::STD_CONSOLE_MESSAGE);
}
else
{
m_app->dispToConsole("[ccCompass] No plane data found.", ccMainAppInterface::WRN_CONSOLE_MESSAGE);
plane_file.remove();
}
if (traces)
{
m_app->dispToConsole("[ccCompass] Successfully exported trace data.", ccMainAppInterface::STD_CONSOLE_MESSAGE);
}
else
{
m_app->dispToConsole("[ccCompass] No trace data found.", ccMainAppInterface::WRN_CONSOLE_MESSAGE);
trace_file.remove();
}
if (lineations)
{
m_app->dispToConsole("[ccCompass] Successfully exported lineation data.", ccMainAppInterface::STD_CONSOLE_MESSAGE);
}
else
{
m_app->dispToConsole("[ccCompass] No lineation data found.", ccMainAppInterface::WRN_CONSOLE_MESSAGE);
lineation_file.remove();
}
if (thicknesses)
{
m_app->dispToConsole("[ccCompass] Successfully exported thickness data.", ccMainAppInterface::STD_CONSOLE_MESSAGE);
}
else
{
m_app->dispToConsole("[ccCompass] No thickness data found.", ccMainAppInterface::WRN_CONSOLE_MESSAGE);
thickness_file.remove();
}
}
else
{
m_app->dispToConsole("[ccCompass] Could not open output files... ensure CC has write access to this location.", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
}
}
//write plane data
int ccCompass::writePlanes(ccHObject* object, QTextStream* out, const QString &parentName)
{
//get object name
QString name;
if (parentName.isEmpty())
{
name = QString("%1").arg(object->getName());
}
else
{
name = QString("%1.%2").arg(parentName, object->getName());
}
//find point cloud (biggest in project) to pull global shift & scale from
//n.b. ccPlanes do not store a global shift/scale like point clouds do, hence this hack.
//Will only cause issues if CC is being used with multiple point clouds that have different underlying
//coordinate systems (and hence shift and scales) - which I can't see happening too often.
//(in any case, 99% of the time the biggest point cloud in the project will be the model being interpreted)
ccPointCloud* ss = nullptr;
if (object->isKindOf(CC_TYPES::PLANE) | ccFitPlane::isFitPlane(object))
{
std::vector<ccHObject*> clouds;
m_app->dbRootObject()->filterChildren(clouds, true, CC_TYPES::POINT_CLOUD, false);
unsigned int npoints = 0;
for (ccHObject* o : clouds)
{
ccPointCloud* p = static_cast<ccPointCloud*>(o);
if (npoints <= p->size())
{
npoints = p->size();
ss = p;
}
}
}
//is object a plane made by ccCompass?
int n = 0;
if (ccFitPlane::isFitPlane(object))
{
//write global position
ccPlane* P = static_cast<ccPlane*>(object);
//Write object as Name,Strike,Dip,Dip_Dir,Cx,Cy,Cz,Nx,Ny,Nz,Radius,RMS,Gx,Gy,Gz,Length
*out << name << ",";
*out << object->getMetaData("Strike").toString() << "," << object->getMetaData("Dip").toString() << "," << object->getMetaData("DipDir").toString() << ",";
*out << object->getMetaData("Cx").toString() << "," << object->getMetaData("Cy").toString() << "," << object->getMetaData("Cz").toString() << ",";
*out << object->getMetaData("Nx").toString() << "," << object->getMetaData("Ny").toString() << "," << object->getMetaData("Nz").toString() << ",";
*out << object->getMetaData("Radius").toString() << "," << object->getMetaData("RMS").toString() << ",";
if (ss != nullptr)
{
CCVector3 L = P->getTransformation().getTranslationAsVec3D();
CCVector3d G = ss->toGlobal3d(L);
*out << G.x << "," << G.y << "," << G.z << ",";
}
//write length of trace associated with this plane
*out << std::max(P->getXWidth(), P->getYWidth()) << endl;
n++;
}
else if (object->isKindOf(CC_TYPES::PLANE)) //not one of our planes, but a plane anyway (so we'll export it)
{
//calculate plane orientation
//get plane normal vector
ccPlane* P = static_cast<ccPlane*>(object);
CCVector3 N(P->getNormal());
CCVector3 L = P->getTransformation().getTranslationAsVec3D();
//We always consider the normal with a positive 'Z' by default!
if (N.z < 0.0)
N *= -1.0;
//calculate strike/dip/dip direction
float strike, dip, dipdir;
ccNormalVectors::ConvertNormalToDipAndDipDir(N, dip, dipdir);
ccNormalVectors::ConvertNormalToStrikeAndDip(N, strike, dip);
//export
*out << name << ",";
*out << strike << "," << dip << "," << dipdir << ","; //write orientation
*out << L.x << "," << L.y << "," << L.z << ","; //write location
*out << N.x << "," << N.y << "," << N.z << ","; //write normal
*out << "NA" << "," << "UNK" << ","; //the "radius" and "RMS" are unknown
//write global position
if (ss != nullptr)
{
CCVector3d G = ss->toGlobal3d(L);
*out << G.x << "," << G.y << "," << G.z << endl;
}
else
{
*out << endl;
}
n++;
}
//write all children
for (unsigned i = 0; i < object->getChildrenNumber(); i++)
{
ccHObject* o = object->getChild(i);
n += writePlanes(o, out, name);
}
return n;
}
//write trace data
int ccCompass::writeTraces(ccHObject* object, QTextStream* out, const QString &parentName)
{
//get object name
QString name;
if (parentName.isEmpty())
{
name = QString("%1").arg(object->getName());
}
else
{
name = QString("%1.%2").arg(parentName, object->getName());
}
//is object a polyline
int n = 0;
if (ccTrace::isTrace(object)) //ensure this is a trace
{
ccTrace* p = static_cast<ccTrace*>(object);
//loop through points
CCVector3 start, end;
int cost;
int tID = object->getUniqueID();
if (p->size() >= 2)
{
//set cost function
ccTrace::COST_MODE = p->getMetaData("cost_function").toInt();
//loop through segments
for (unsigned i = 1; i < p->size(); i++)
{
//get points
p->getPoint(i - 1, start);
p->getPoint(i, end);
//calculate segment cost
cost = p->getSegmentCost(p->getPointGlobalIndex(i - 1), p->getPointGlobalIndex(i));
//write data
//n.b. csv columns are name,trace_id,seg_id,start_x,start_y,start_z,end_x,end_y,end_z, cost, cost_mode
*out << name << ","; //name
*out << tID << ",";
*out << i - 1 << ",";
*out << p->toGlobal3d(start).x << ",";
*out << p->toGlobal3d(start).y << ",";
*out << p->toGlobal3d(start).z << ",";
*out << p->toGlobal3d(end).x << ",";
*out << p->toGlobal3d(end).y << ",";
*out << p->toGlobal3d(end).z << ",";
*out << cost << ",";
*out << ccTrace::COST_MODE << endl;
}
}
n++;
}
//write all children
for (unsigned i = 0; i < object->getChildrenNumber(); i++)
{
ccHObject* o = object->getChild(i);
n += writeTraces(o, out, name);
}
return n;
}
//write lineation data
int ccCompass::writeLineations(ccHObject* object, QTextStream* out, const QString &parentName, bool thicknesses)
{
//get object name
QString name;
if (parentName.isEmpty())
{
name = QString("%1").arg(object->getName());
}
else
{
name = QString("%1.%2").arg(parentName, object->getName());
}
//is object a lineation made by ccCompass?
int n = 0;
if (((thicknesses==false) && ccLineation::isLineation(object)) | //lineation measurement
((thicknesses==true) && ccThickness::isThickness(object))) //or thickness measurement
{
//Write object as Name,Sx,Sy,Sz,Ex,Ey,Ez,Trend,Plunge
*out << name << ",";
*out << object->getMetaData("Sx").toString() << "," << object->getMetaData("Sy").toString() << "," << object->getMetaData("Sz").toString() << ",";
*out << object->getMetaData("Ex").toString() << "," << object->getMetaData("Ey").toString() << "," << object->getMetaData("Ez").toString() << ",";
*out << object->getMetaData("Trend").toString() << "," << object->getMetaData("Plunge").toString() << "," << object->getMetaData("Length").toString() << endl;
n++;
}
//write all children
for (unsigned i = 0; i < object->getChildrenNumber(); i++)
{
ccHObject* o = object->getChild(i);
n += writeLineations(o, out, name, thicknesses);
}
return n;
}
int ccCompass::writeToXML(const QString &filename)
{
int n = 0;
//open output stream
QFile file(filename);
if (file.open(QIODevice::WriteOnly)) //open the file
{
//QTextStream plane_stream(&plane_file);
QXmlStreamWriter xmlWriter(&file); //open xml stream;
xmlWriter.setAutoFormatting(true);
xmlWriter.writeStartDocument();
//find root node
ccHObject* root = m_app->dbRootObject();
if (root->getChildrenNumber() == 1)
{
root = root->getChild(0); //HACK - often the root only has one child (a .bin file); if so, move down a level
}
/*ccHObject::Container pointClouds;
m_app->dbRootObject()->filterChildren(&pointClouds, true, CC_TYPES::POINT_CLOUD, true);*/
//write data tree
n += writeObjectXML(root, &xmlWriter);
//write end of document
xmlWriter.writeEndDocument();
//close
file.flush();
file.close();
m_app->dispToConsole("[ccCompass] Successfully exported data-tree to xml.", ccMainAppInterface::STD_CONSOLE_MESSAGE);
}
else
{
m_app->dispToConsole("[ccCompass] Could not open output files... ensure CC has write access to this location.", ccMainAppInterface::ERR_CONSOLE_MESSAGE);
}
return n;
}
//recursively write the provided ccHObject and its children
int ccCompass::writeObjectXML(ccHObject* object, QXmlStreamWriter* out)
{
int n = 1;
//write object header based on type
if (ccGeoObject::isGeoObject(object))
{
//write GeoObject
out->writeStartElement("GEO_OBJECT");
}
else if (object->isA(CC_TYPES::PLANE))
{
//write fitPlane
out->writeStartElement("PLANE");
}
else if (ccTrace::isTrace(object))
{
//write trace
out->writeStartElement("TRACE");
}
else if (ccThickness::isThickness(object))
{
//write thickness
out->writeStartElement("THICKNESS");
}
else if (ccSNECloud::isSNECloud(object))
{
out->writeStartElement("SNE");
}
else if (ccLineation::isLineation(object))
{
//write lineation
out->writeStartElement("LINEATION");
}
else if (object->isA(CC_TYPES::POINT_CLOUD))
{
out->writeStartElement("CLOUD");
}
else if (object->isA(CC_TYPES::POLY_LINE))
{
//write polyline (note that this will ignore "trace" polylines as they have been grabbed earlier)
out->writeStartElement("POLYLINE");
}
else if (object->isA(CC_TYPES::HIERARCHY_OBJECT))
{
//write container
out->writeStartElement("CONTAINER"); //QString::asprintf("CONTAINER name = '%s' id = %d", object->getName(), object->getUniqueID())
}
else //we don't care about this object
{
return 0;
}
//write name and oid attributes
out->writeAttribute("name", object->getName());
out->writeAttribute("id", QString::asprintf("%d", object->getUniqueID()));
//write metadata tags (these contain the data)
for (QMap<QString, QVariant>::const_iterator it = object->metaData().begin(); it != object->metaData().end(); it++)
{
out->writeTextElement(it.key(), it.value().toString());
}
//special case - we can calculate all metadata from a plane
if (object->isA(CC_TYPES::PLANE))
{
ccPlane* P = static_cast<ccPlane*> (object);
//write length
out->writeTextElement("Length", QString::asprintf("%f", std::max(P->getXWidth(), P->getYWidth())));
//if this is just an ordinary plane, make a corresponding fitplane object and then steal metadata
if (!ccFitPlane::isFitPlane(P))
{
//build fitplane object
ccFitPlane* temp = new ccFitPlane(P);
//write metadata
for (QMap<QString, QVariant>::const_iterator it = temp->metaData().begin(); it != temp->metaData().end(); it++)
{
out->writeTextElement(it.key(), it.value().toString());
}
//cleanup
delete temp;
}
}
//if object is a polyline object (or a trace) write trace points and normals
if (object->isA(CC_TYPES::POLY_LINE))
{
ccPolyline* poly = static_cast<ccPolyline*>(object);
ccTrace* trace = nullptr;
if (ccTrace::isTrace(object))
{
trace = static_cast<ccTrace*>(object);
}
QString x, y, z, nx, ny, nz, cost, wIDs,w_local_ids;
//loop through points
CCVector3 p1, p2; //position
CCVector3 n1, n2; //normal vector (if defined)
//becomes true if any valid normals are recieved
bool hasNormals = false;
if (poly->size() >= 2)
{
//loop through segments
for (unsigned i = 1; i < poly->size(); i++)
{
//get points
poly->getPoint(i - 1, p1); //segment start point
poly->getPoint(i, p2); //segment end point
//store data to buffers
x += QString::asprintf("%f,", p1.x);
y += QString::asprintf("%f,", p1.y);
z += QString::asprintf("%f,", p1.z);
//write data specific to traces
if (trace)
{
int c = trace->getSegmentCost(trace->getPointGlobalIndex(i - 1), trace->getPointGlobalIndex(i));
cost += QString::asprintf("%d,", c);
//write point normals (if this is a trace)
n2 = trace->getPointNormal(i);
nx += QString::asprintf("%f,", n1.x);
ny += QString::asprintf("%f,", n1.y);
nz += QString::asprintf("%f,", n1.z);
if (!hasNormals && !(n1.x == 0 && n1.y == 0 && n1.z == 0))
{
hasNormals = true; //this was a non-null normal estimate - we will write normals now
}
}
}
//store last point
x += QString::asprintf("%f", p2.x);
y += QString::asprintf("%f", p2.y);
z += QString::asprintf("%f", p2.z);
if (hasNormals) //normal
{
nx += QString::asprintf("%f", n2.x);
ny += QString::asprintf("%f", n2.y);
nz += QString::asprintf("%f", n2.z);
}
if (trace) //cost
{
cost += "0";
}
//if this is a trace also write the waypoints
if (trace)
{
//get ids (on the cloud) for waypoints
for (int w = 0; w < trace->waypoint_count(); w++)
{
wIDs += QString::asprintf("%d,", trace->getWaypoint(w));
}
//get ids (vertex # in polyline) for waypoints
for (int w = 0; w < trace->waypoint_count(); w++)
{
//get id of waypoint in cloud
int globalID = trace->getWaypoint(w);
//find corresponding point in trace
unsigned i = 0;
for (; i < trace->size(); i++)
{
if (trace->getPointGlobalIndex(i) == globalID)
{
break; //found it!;
}
}
//write this points local index
w_local_ids += QString::asprintf("%d,", i);
}
}
//write points
out->writeStartElement("POINTS");
out->writeAttribute("count", QString::asprintf("%d", poly->size()));
if (hasNormals)
{
out->writeAttribute("normals", "True");
}
else
{
out->writeAttribute("normals", "False");
}
out->writeTextElement("x", x);
out->writeTextElement("y", y);
out->writeTextElement("z", z);
if (hasNormals)
{
out->writeTextElement("nx", nx);
out->writeTextElement("ny", ny);
out->writeTextElement("nz", nz);
}
if (trace)
{
//write waypoints
out->writeTextElement("cost", cost);
out->writeTextElement("control_point_cloud_ids", wIDs);
out->writeTextElement("control_point_local_ids", w_local_ids);
}
//fin!
out->writeEndElement();
}
}
//if object is a point cloud write global shift and scale
if (object->isA(CC_TYPES::POINT_CLOUD))
{
ccPointCloud* cloud = static_cast<ccPointCloud*>(object);
out->writeTextElement("GLOBAL_SCALE", QString::asprintf("%f", cloud->getGlobalScale()));
out->writeTextElement("GLOBAL_X", QString::asprintf("%f", cloud->getGlobalShift().x));
out->writeTextElement("GLOBAL_Y", QString::asprintf("%f", cloud->getGlobalShift().y));
out->writeTextElement("GLOBAL_Z", QString::asprintf("%f", cloud->getGlobalShift().z));
//for SNE clouds write all points, point normals and scalar fields
if (ccSNECloud::isSNECloud(object))
{
//write header for point data
out->writeStartElement("POINTS");
out->writeAttribute("count", QString::asprintf("%d", cloud->size()));
//gather data strings
QString x, y, z, nx, ny, nz, thickness, weight, trend, plunge;
CCLib::ScalarField* wSF = cloud->getScalarField(cloud->getScalarFieldIndexByName("Weight"));
CCLib::ScalarField* trendSF = cloud->getScalarField(cloud->getScalarFieldIndexByName("Trend"));
CCLib::ScalarField* plungeSF = cloud->getScalarField(cloud->getScalarFieldIndexByName("Plunge"));
CCLib::ScalarField* tSF = cloud->getScalarField(cloud->getScalarFieldIndexByName("Thickness"));
for (unsigned p = 0; p < cloud->size(); p++)
{
x += QString::asprintf("%f,", cloud->getPoint(p)->x);
y += QString::asprintf("%f,", cloud->getPoint(p)->y);
z += QString::asprintf("%f,", cloud->getPoint(p)->z);
nx += QString::asprintf("%f,", cloud->getPointNormal(p).x);
ny += QString::asprintf("%f,", cloud->getPointNormal(p).y);
nz += QString::asprintf("%f,", cloud->getPointNormal(p).z);
weight += QString::asprintf("%f,", wSF->getValue(p));
trend += QString::asprintf("%f,", trendSF->getValue(p));
plunge += QString::asprintf("%f,", plungeSF->getValue(p));
if (tSF != nullptr) //can be null if no thickness was estimated!
{
thickness += QString::asprintf("%f,", tSF->getValue(p));
}
}
//write
out->writeTextElement("x", x);
out->writeTextElement("y", y);
out->writeTextElement("z", z);
out->writeTextElement("nx", nx);
out->writeTextElement("ny", ny);
out->writeTextElement("nz", nz);
out->writeTextElement("weight", weight);
out->writeTextElement("trend", trend);
out->writeTextElement("plunge", plunge);
if (tSF != nullptr)
{
out->writeTextElement("thickness", thickness);
}
//fin
out->writeEndElement();
}
}
//write children
for (unsigned i = 0; i < object->getChildrenNumber(); i++)
{
n += writeObjectXML(object->getChild(i), out);
}
//close this object
out->writeEndElement();
return n;
}
|