1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
//##########################################################################
//# #
//# CLOUDCOMPARE #
//# #
//# This program is free software; you can redistribute it and/or modify #
//# it under the terms of the GNU General Public License as published by #
//# the Free Software Foundation; version 2 or later of the License. #
//# #
//# This program is distributed in the hope that it will be useful, #
//# but WITHOUT ANY WARRANTY; without even the implied warranty of #
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
//# GNU General Public License for more details. #
//# #
//# COPYRIGHT: EDF R&D / TELECOM ParisTech (ENST-TSI) #
//# #
//##########################################################################
#include "ccInnerRect2DFinder.h"
//qCC_db
#include <ccLog.h>
//system
#include <assert.h>
ccInnerRect2DFinder::ccInnerRect2DFinder()
: m_maxArea(0)
, m_cloud(0)
, m_X(0)
, m_Y(1)
{}
ccBox* ccInnerRect2DFinder::process( ccGenericPointCloud* cloud, unsigned char zDim/*=2*/ )
{
if (!init(cloud,zDim))
return 0;
//Find the 'biggest' rectangle
m_maxRect = Rect();
m_maxArea = 0;
findBiggestRect(m_boundingRect,0);
ccBox* resultBox = 0;
if (m_maxArea > 0)
{
ccBBox bbox = cloud->getOwnBB();
assert(bbox.isValid());
//box size
CCVector3 boxDim = bbox.getDiagVec();
boxDim.u[m_X] = static_cast<PointCoordinateType>(m_maxRect.width());
boxDim.u[m_Y] = static_cast<PointCoordinateType>(m_maxRect.height());
CCVector3 boxCenter = bbox.getCenter();
boxCenter.u[m_X] = static_cast<PointCoordinateType>((m_maxRect.x0 + m_maxRect.x1)/2);
boxCenter.u[m_Y] = static_cast<PointCoordinateType>((m_maxRect.y0 + m_maxRect.y1)/2);
ccGLMatrix shiftMat;
shiftMat.setTranslation(boxCenter);
resultBox = new ccBox(boxDim,&shiftMat,"Biggest rect");
}
return resultBox;
}
bool ccInnerRect2DFinder::init(ccGenericPointCloud* cloud, unsigned char zDim)
{
if (!cloud || cloud->size() == 0)
{
ccLog::Error("[ccInnerRect2DFinder] Invalid input cloud");
return false;
}
ccBBox bbox = cloud->getOwnBB();
if (!bbox.isValid())
{
ccLog::Error("[ccInnerRect2DFinder] Invalid input cloud");
return false;
}
if (zDim > 2)
{
ccLog::Error("[ccInnerRect2DFinder] Invalid input parameter (zDim)");
return false;
}
unsigned char Z = zDim;
unsigned char X = ((Z+1) % 3);
unsigned char Y = ((X+1) % 3);
m_cloud = cloud;
m_X = X;
m_Y = Y;
//init bounding rectangle
{
const CCVector3* P0 = m_cloud->getPoint(0);
m_boundingRect = Rect(P0->u[m_X],P0->u[m_Y],P0->u[m_X],P0->u[m_Y]);
unsigned pointCloud = m_cloud->size();
for (unsigned i=1; i<pointCloud; ++i)
{
const CCVector3* P = m_cloud->getPoint(i);
if (P->u[m_X] < m_boundingRect.x0)
m_boundingRect.x0 = P->u[m_X];
else if (P->u[m_X] > m_boundingRect.x1)
m_boundingRect.x1 = P->u[m_X];
if (P->u[m_Y] < m_boundingRect.y0)
m_boundingRect.y0 = P->u[m_Y];
else if (P->u[m_Y] > m_boundingRect.y1)
m_boundingRect.y1 = P->u[m_Y];
}
}
return true;
}
void ccInnerRect2DFinder::findBiggestRect(const Rect& rect, unsigned startIndex)
{
assert(m_cloud);
//test if at least one point falls inside the input rectangle
const CCVector3* Pinside = 0;
{
unsigned pointCount = m_cloud->size();
double minSquareDistToCenter = -1.0;
double xc = (rect.x0+rect.x1)/2;
double yc = (rect.y0+rect.y1)/2;
for (unsigned i=startIndex; i<pointCount; ++i)
{
const CCVector3* P = m_cloud->getPoint(i);
if ( P->u[m_X] > rect.x0 && P->u[m_X] < rect.x1 //strict inequalities!
&& P->u[m_Y] > rect.y0 && P->u[m_Y] < rect.y1 )
{
double dist2 = (xc - P->u[m_X])*(xc - P->u[m_X]) + (yc - P->u[m_Y])*(yc - P->u[m_Y]);
if (minSquareDistToCenter < 0)
{
Pinside = P;
minSquareDistToCenter = dist2;
startIndex = i;
}
else if (dist2 < minSquareDistToCenter)
{
Pinside = P;
minSquareDistToCenter = dist2;
}
//break;
}
}
}
//do we have an empty rectangle?
if (!Pinside)
{
//we remember it only if its size is bigger
double surf = rect.area();
if (surf > m_maxArea)
{
m_maxArea = surf;
m_maxRect = rect;
}
}
else //otherwise we test the 4 sub-rectangles
{
//left sub-rectangle
Rect r(rect.x0,rect.y0,Pinside->u[m_X],rect.y1);
if (r.area() > m_maxArea)
findBiggestRect(r,startIndex);
//right sub-rectangle
r = Rect(Pinside->u[m_X],rect.y0,rect.x1,rect.y1);
if (r.area() > m_maxArea)
findBiggestRect(r,startIndex);
//upper sub-rectangle
r = Rect(rect.x0,rect.y0,rect.x1,Pinside->u[m_Y]);
if (r.area() > m_maxArea)
findBiggestRect(r,startIndex);
//lower sub-rectangle
r = Rect(rect.x0,Pinside->u[m_Y],rect.x1,rect.y1);
if (r.area() > m_maxArea)
findBiggestRect(r,startIndex);
}
}
|