1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
|
#ifndef ISOLINES_HEADER
#define ISOLINES_HEADER
/**
* Transcription of FindIsolines.java for C++
*
* Fast implementation of marching squares
*
* AUTHOR: Murphy Stein, Greg Borenstein
* New York University
* CREATED: Jan-Sept 2012
* MODIFIED: Dec 2014 (DGM)
*
* LICENSE: BSD
*
* Copyright (c) 2012 New York University.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such
* distribution and use acknowledge that the software was developed
* by New York Univserity. The name of the
* University may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*/
/**
* This is a fast implementation of the marching squares algorithm for finding isolines (lines of equal color) in an image.
*
*/
//qCC_db
#include <ccLog.h>
//system
#include <assert.h>
#include <cmath>
#include <vector>
template< typename T > class Isolines
{
protected:
std::vector<double> m_minx;
std::vector<double> m_miny;
std::vector<double> m_maxx;
std::vector<double> m_maxy;
std::vector<int> m_cd;
std::vector<double> m_contourX;
std::vector<double> m_contourY;
std::vector<int> m_contourLength;
std::vector<int> m_contourOrigin;
std::vector<int> m_contourIndexes;
std::vector<bool> m_contourClosed;
int m_w;
int m_h;
int m_numContours;
T m_threshold;
public:
//! Default constructor
Isolines(int w, int h)
: m_w(w)
, m_h(h)
, m_numContours(0)
, m_threshold(0)
{
//DGM: as this is done in the constructor,
//we don't catch the exception (so that the
//caller can properly handle the error!)
//try
{
m_cd.resize(w*h,0);
}
//catch (const std::bad_alloc&)
//{
// //not enough memory!
//}
}
//! Sets isoline value to trace
inline void setThreshold(T t) { m_threshold = t; }
//! Find isolines
int find(const T* in)
{
//createOnePixelBorder(in, m_threshold + 1); //DGM: modifies 'in', the user will have to do it himself :(
preCodeImage(in);
return findIsolines(in);
}
//! Returns the number of found contours
inline int getNumContours() const { return m_numContours; }
//! Returns the length of a given contour
inline int getContourLength(int contour) const { return m_contourLength[contour]; }
//! Returns whether a given contour is closed or not
inline bool isContourClosed(int contour) const { return m_contourClosed[contour]; }
//! Returns the given point (x,y) of a given contour
void getContourPoint(int contour, size_t index, double& x, double& y) const
{
assert(static_cast<int>(index) < getContourLength(contour));
x = getContourX(contour, index);
y = getContourY(contour, index);
}
//! Measures the area delineated by a given contour
inline double measureArea(int contour) const { return measureArea(contour, 0, getContourLength(contour)); }
//! Measures the perimeter of a given contour
inline double measurePerimeter(int contour) const { return measurePerimeter(contour, 0, getContourLength(contour)); }
//! Creates a single pixel, 0-valued border around the grid
void createOnePixelBorder(T* in, T borderval) const
{
//rows
{
int shift = (m_h-1) * m_w;
for (int i=0; i<m_w; i++)
{
in[i] = in[i+shift] = borderval;
}
}
//columns
{
for (int j=0; j<m_h; j++)
{
in[j*m_w] = in[(j+1)*m_w-1] = borderval;
}
}
}
protected:
//! Computes a code for each group of 4x4 cells
/** The code depends only on whether each of four corners is
above or below threshold.
**/
void preCodeImage(const T* in)
{
for (int x = 0; x < m_w-1; x++)
{
for (int y = 0; y < m_h-1; y++)
{
int b0(in[ixy(x + 0, y + 1)] < m_threshold ? 1 : 0); //bottom-left is below threshold
int b1(in[ixy(x + 1, y + 1)] < m_threshold ? 2 : 0); //bottom-right is below threshold
int b2(in[ixy(x + 1, y + 0)] < m_threshold ? 4 : 0); //top-right is below threshold
int b3(in[ixy(x + 0, y + 0)] < m_threshold ? 8 : 0); //top-left is below threshold
m_cd[ixy(x, y)] = b0 | b1 | b2 | b3;
}
}
}
//! 2x2 cell configuration codes
enum ConfigurationCodes
{
CASE0 = 0,
CASE1 = 1,
CASE2 = 2,
CASE3 = 3,
CASE4 = 4,
CASE5 = 5,
CASE6 = 6,
CASE7 = 7,
CASE8 = 8,
CASE9 = 9,
CASE10 = 10,
CASE11 = 11,
CASE12 = 12,
CASE13 = 13,
CASE14 = 14,
CASE15 = 15,
VISITED = 16
};
//! Entry/exit edges
enum Edges
{
NONE = -1,
TOP = 0,
RIGHT = 1,
BOTTOM = 2,
LEFT = 3
};
void endContour(bool closed, bool alternatePath)
{
if (alternatePath)
{
//we have to merge this path with the previous one!
//try //will be taken care of by 'findIsolines'
//{
size_t length = m_contourLength.back();
size_t firstIndex = m_contourOrigin.back();
m_contourLength.pop_back();
m_contourOrigin.pop_back();
m_contourClosed.pop_back();
//backup the alternate part of the contour
std::vector<double> subContourX(length), subContourY(length);
std::vector<int> subContourIndexes(length);
{
for (size_t i=0; i<length; ++i)
{
subContourX[i] = m_contourX[firstIndex+i];
subContourY[i] = m_contourY[firstIndex+i];
subContourIndexes[i] = m_contourIndexes[firstIndex+i];
}
}
assert(!m_contourLength.empty() && !m_contourOrigin.empty());
size_t length0 = m_contourLength.back();
size_t firstIndex0 = m_contourOrigin.back();
//shift the first part values
{
for (int i=static_cast<int>(length0); i>=0; --i) //we start by end so as to not overwrite values!
{
m_contourX[firstIndex0+length+i] = m_contourX[firstIndex0+i];
m_contourX[firstIndex0+length+i] = m_contourY[firstIndex0+i];
m_contourIndexes[firstIndex0+length+i] = m_contourIndexes[firstIndex0+i];
}
}
//now copy the second part values
{
for (size_t i=0; i<length; ++i)
{
m_contourX[firstIndex0+i] = subContourX[i];
m_contourY[firstIndex0+i] = subContourY[i];
m_contourIndexes[firstIndex0+i] = subContourIndexes[i];
}
}
//even though we are merging contours, if we are here it
//means that the contour was not a proper loop!
closed = false;
assert(!m_contourClosed.empty());
m_contourClosed.back() = false;
//}
//catch (const std::bad_alloc&)
//{
// return false;
//}
}
//simply update the closed state (just to be sure)
assert(!m_contourClosed.empty());
assert(!closed || m_contourLength.back() > 2);
m_contourClosed.back() = closed;
//return true;
}
//! Searches image for contours from topleft to bottomright corners
int findIsolines(const T* in)
{
//traversal case
static const int TRAVERSAL[4] = { /*TOP=*/BOTTOM, /*RIGHT=*/LEFT, /*BOTTOM=*/TOP, /*LEFT=*/RIGHT };
//disambiguation cases (CASES 5 and 10)
static const int DISAMBIGUATION_UP [4] = { /*TOP=*/LEFT, /*RIGHT=*/BOTTOM, /*BOTTOM=*/RIGHT, /*LEFT=*/TOP };
static const int DISAMBIGUATION_DOWN[4] = { /*TOP=*/RIGHT, /*RIGHT=*/TOP, /*BOTTOM=*/LEFT, /*LEFT=*/BOTTOM };
m_contourX.clear();
m_contourY.clear();
m_contourLength.clear();
m_contourOrigin.clear();
m_contourIndexes.clear();
m_contourClosed.clear();
try
{
int toEdge = NONE;
int cellIndex = -1;
int x = 0, y = 0;
//mechanism for merging two parts of a non-closed contour
int altToEdge = NONE;
int altStartIndex = 0;
bool alternatePath = false;
const int maxCellIndex = m_w * (m_h-1); //DGM: last line is only 0!
while (cellIndex < maxCellIndex)
{
//entry edge
int fromEdge = (toEdge == NONE ? NONE : TRAVERSAL[toEdge]);
//exit edge
toEdge = NONE;
//alternative exit edge (when starting a new contour)
if (fromEdge == NONE)
altToEdge = NONE;
int currentCellIndex = -1;
//last isoline is 'finished'
if (fromEdge == NONE)
{
//do we have an alternate path?
if (altToEdge != NONE && !alternatePath)
{
//we know that we are coming from the TOP (case 2 or 13)
fromEdge = TOP;
currentCellIndex = altStartIndex + m_w; //same coumn, next row
alternatePath = true;
//we start a new (temporary) contour
m_contourLength.push_back(0);
m_contourClosed.push_back(false);
m_contourOrigin.push_back(static_cast<int>(m_contourX.size())+1);
}
else
{
// we have to look for a new starting point
alternatePath = false;
altToEdge = NONE;
//skip empty cells
while ( ++cellIndex < maxCellIndex
&& (m_cd[cellIndex] == CASE0 || m_cd[cellIndex] == CASE15) )
{
}
if (cellIndex == maxCellIndex)
break;
currentCellIndex = cellIndex;
}
x = currentCellIndex % m_w;
y = currentCellIndex / m_w;
}
//we have reached a border (bottom or right)
if (x < 0 || x >= m_w-1 || y < 0 || y >= m_h-1)
{
//if an isoline was underway, it won't be closed!
if (fromEdge != NONE)
{
endContour(false,alternatePath);
}
//toEdge = NONE;
continue;
}
else if (fromEdge != NONE)
{
//isoline underway: we have to re-evaluate the
//current position in the grid
currentCellIndex = ixy(x,y);
}
assert(currentCellIndex >= 0);
int& currentCode = m_cd[currentCellIndex];
switch (currentCode)
{
case CASE0: // CASE 0
//we have reached a border!
//if an isoline was underway, it won't be closed!
if (fromEdge != NONE)
{
endContour(false,alternatePath);
}
//toEdge = NONE;
continue;
case CASE1: // CASE 1
case CASE14: // CASE 14
toEdge = (fromEdge == NONE || fromEdge == LEFT ? BOTTOM : LEFT);
currentCode |= VISITED;
break;
case CASE2: // CASE 2
case CASE13: // CASE 13
//if it's a new contour, we have 2 options (RIGHT and BOTTOM)
if (fromEdge == NONE)
{
if (x >= m_w-2) //can't go on the right!
{
if (y >= m_h-2) //can't go lower
{
//toEdge = NONE;
continue;
}
else
{
toEdge = BOTTOM;
}
}
else
{
//go right by default
toEdge = RIGHT;
if (y < m_h-2)
{
//if we can go lower, rembemr this as an alternate rout
altToEdge = BOTTOM;
altStartIndex = currentCellIndex;
}
}
}
else
{
toEdge = (fromEdge == BOTTOM ? RIGHT : BOTTOM);
}
currentCode |= VISITED;
break;
case CASE3: // CASE 3
case CASE12: // CASE 12
toEdge = (fromEdge == NONE || fromEdge == LEFT ? RIGHT : LEFT);
currentCode |= VISITED;
break;
case CASE11: // CASE 11
//assert(fromEdge != NONE);
case CASE4: // CASE 4
toEdge = (fromEdge == NONE || fromEdge == TOP ? RIGHT : TOP);
currentCode |= VISITED;
break;
case CASE5: // CASE 5, saddle
case CASE10: // CASE 10, saddle
{
if (fromEdge != NONE)
{
//check if we are not looping as the saddle points can't be flagged as VISITED!
assert(!m_contourOrigin.empty() && !m_contourIndexes.empty());
if (m_contourIndexes[m_contourOrigin.back()] == currentCellIndex)
{
//isoline loop is closed!
assert(!alternatePath);
endContour(true,false);
//no need to look at the alternate path!
altToEdge = NONE;
//toEdge = NONE;
continue;
}
}
double avg = ( in[ixy(x + 0, y + 0)]
+ in[ixy(x + 1, y + 0)]
+ in[ixy(x + 0, y + 1)]
+ in[ixy(x + 1, y + 1)] ) / 4.0;
//see http://en.wikipedia.org/wiki/Marching_squares for the disambiguation cases
bool down = ( (currentCode == CASE5 && avg < m_threshold)
|| (currentCode == CASE10 && avg >= m_threshold) );
if (down)
{
if (fromEdge == NONE)
{
//if we start here, we know that some routes have already been taken (the ones coming from UP or LEFT)
//we can ignore the cell
continue;
}
else
{
toEdge = DISAMBIGUATION_DOWN[fromEdge];
}
}
else
{
if (fromEdge == NONE)
{
//if we start here, we know that some routes have already been taken (the ones coming from UP or LEFT)
//it can only be on the right
if (x < m_w-2)
{
if (m_cd[currentCellIndex+1] < VISITED)
toEdge = RIGHT;
else
//we can ignore the cell
continue;
}
else
{
//we can ignore the cell
continue;
}
}
else
{
toEdge = DISAMBIGUATION_UP[fromEdge];
}
}
}
break;
case CASE6: // CASE 6
//assert(fromEdge != NONE);
case CASE9: // CASE 9
toEdge = (fromEdge == NONE || fromEdge == TOP ? BOTTOM : TOP);
currentCode |= VISITED;
break;
case CASE7: // CASE 7
//assert(fromEdge != NONE);
case CASE8: // CASE 8
toEdge = (fromEdge == NONE || fromEdge == LEFT ? TOP : LEFT);
currentCode |= VISITED;
break;
case CASE15: // CASE 15
//assert(fromEdge == NONE); //apart at the very beginning!
//toEdge = NONE;
continue;
default:
assert(currentCode > 0 && ((currentCode & VISITED) == VISITED));
if (fromEdge != NONE)
{
//check that we are indeed coming back to the start
assert(!m_contourOrigin.empty() && !m_contourIndexes.empty());
if (m_contourIndexes[m_contourOrigin.back()] == currentCellIndex)
{
//isoline loop is closed!
assert(!alternatePath);
endContour(true,false);
//no need to look at the alternate path!
altToEdge = NONE;
}
else
{
//have we reached a kind of tri-point? (DGM: not sure it's possible)
endContour(false,alternatePath);
}
}
//toEdge = NONE;
continue;
}
assert(toEdge != NONE);
if (fromEdge == NONE)
{
// starting a new contour
m_contourLength.push_back(0);
m_contourClosed.push_back(false);
m_contourOrigin.push_back(static_cast<int>(m_contourX.size()));
//ccLog::Print(QString("New contour: #%1 - origin = %2 - (x=%3, y=%4)").arg(m_contourLength.size()).arg(m_contourOrigin.back()).arg(x).arg(y));
}
double x2 = 0.0, y2 = 0.0;
switch (toEdge)
{
case TOP:
x2 = x + LERP(in[ixy(x + 0, y + 0)], in[ixy(x + 1, y + 0)]);
y2 = y;
y--;
break;
case RIGHT:
x2 = x + 1;
y2 = y + LERP(in[ixy(x + 1, y + 0)], in[ixy(x + 1, y + 1)]);
x++;
break;
case BOTTOM:
x2 = x + LERP(in[ixy(x + 0, y + 1)], in[ixy(x + 1, y + 1)]);
y2 = y + 1;
y++;
break;
case LEFT:
x2 = x;
y2 = y + LERP(in[ixy(x + 0, y + 0)], in[ixy(x + 0, y + 1)]);
x--;
break;
default:
assert(false);
continue;
}
//if (m_contourLength.back() > 1)
//{
// size_t vertCount = m_contourX.size();
// const double& x0 = m_contourX[vertCount - 2];
// const double& y0 = m_contourY[vertCount - 2];
// double& x1 = m_contourX.back();
// double& y1 = m_contourY.back();
// double ux = x1 - x0;
// double uy = y1 - y0;
// double vx = x2 - x0;
// double vy = y2 - y0;
// //test colinearity so as to merge both segments if possible
// double dotprod = (ux*vx + uy*vy) / sqrt((vx*vx + vy*vy) * (ux*ux + uy*uy));
// if (fabsl(dotprod - 1.0) < 1.0e-6)
// {
// //merge: we replace the last vertex by this one
// x1 = x2;
// y1 = y2;
// m_contourIndexes.back() = currentCellIndex;
// }
// else
// {
// //new vertex
// m_contourX.push_back(x2);
// m_contourY.push_back(y2);
// m_contourIndexes.push_back(currentCellIndex);
// m_contourLength.back()++;
// }
//}
//else
{
//new vertex
m_contourX.push_back(x2);
m_contourY.push_back(y2);
m_contourIndexes.push_back(currentCellIndex);
m_contourLength.back()++;
}
}
}
catch (const std::bad_alloc&)
{
//not enough memory
m_contourX.clear();
m_contourY.clear();
m_contourLength.clear();
m_contourIndexes.clear();
return -1;
}
m_numContours = static_cast<int>(m_contourLength.size());
computeBoundingBoxes();
return m_numContours;
}
//! LERP between two values
inline double LERP(T A, T B) const
{
T AB = A-B;
return AB == 0 ? 0 : static_cast<double>(A - m_threshold) / AB;
}
inline int getLastIndex() const
{
int nc = getNumContours();
return nc > 0 ? m_contourOrigin[nc - 1] + m_contourLength[nc - 1] : 0;
}
inline void setContourX(int contour, int v, double x)
{
int o = m_contourOrigin[contour];
m_contourX[wrap(o + v, o, o + m_contourLength[contour])] = x;
}
inline void setContourY(int contour, int v, double y)
{
int o = m_contourOrigin[contour];
m_contourY[wrap(o + v, o, o + m_contourLength[contour])] = y;
}
inline int getValidIndex(int contour, int v) const
{
int o = m_contourOrigin[contour];
return wrap(o + v, o, o + m_contourLength[contour]);
}
double measureArea(int contour, int first, int last) const
{
double area = 0;
if (getValidIndex(contour, first) == getValidIndex(contour, last))
last = last - 1;
double w = 0, h = 0;
for (int i = first; i < last ; i++)
{
w = getContourX(contour, i + 1) - getContourX(contour, i);
h = (getContourY(contour, i + 1) + getContourY(contour, i)) / 2.0;
area += w * h;
}
w = getContourX(contour, first) - getContourX(contour, last);
h = (getContourY(contour, first) + getContourY(contour, last)) / 2.0;
area += w * h;
return area;
}
double measureMeanX(int contour) const
{
double mean = 0.0;
int l = getContourLength(contour);
for (int i = 0; i < l; i++)
mean += getContourX(contour, i);
return (l == 0 ? 0 : mean / l);
}
double measureMeanY(int contour) const
{
double mean = 0.0;
int l = getContourLength(contour);
for (int i = 0; i < l; i++)
mean += getContourY(contour, i);
return (l == 0 ? 0 : mean / l);
}
double measurePerimeter(int contour, int first, int last) const
{
if (getValidIndex(contour, first) == getValidIndex(contour, last))
last = last - 1;
double perim = 0;
for (int i = first; i < last ; i++)
perim += measureLength(contour, i);
perim += measureDistance(contour,first,last);
return perim;
}
double measureNormalX(int contour, int i) const
{
double ret = getContourY(contour, i) - getContourY(contour, i + 1);
ret = ret / measureLength(contour, i);
return ret;
}
double measureNormalY(int contour, int i) const
{
double ret = getContourX(contour, i + 1) - getContourX(contour, i);
ret = ret / measureLength(contour, i);
return ret;
}
double measureNormalY(int contour, int first, int last) const
{
double ret = 0;
for (int i = first; i < last ; i++)
ret += measureNormalY(contour, i);
return ret;
}
double measureNormalX(int contour, int first, int last) const
{
double ret = 0;
for (int i = first; i < last ; i++)
ret += measureNormalX(contour, i);
return ret;
}
double measureAngleChange(int contour, int first, int last) const
{
double sum = 0;
for (int i = first; i <= last; i++)
sum += measureAngle(contour, i);
return sum;
}
static int wrap(int i, int lo, int hi)
{
int l = hi - lo;
int d = i - lo;
int w = 0;
if (d < 0)
w = hi - ((-d) % l);
else
w = lo + (d % l);
if (w == hi)
w = lo;
if (w < lo)
{
assert(false);
printf("went below lo\n");
}
else if (w >= hi)
{
assert(false);
printf("went above hi\n");
}
return w;
}
inline int ixy(int x, int y) const { return x + y * m_w; }
inline double measureDistance(int contour, int first, int second) const
{
double dx = getContourX(contour, first) - getContourX(contour, second);
double dy = getContourY(contour, first) - getContourY(contour, second);
return std::sqrt(dx * dx + dy * dy);
}
// return length from i to i + 1
double measureLength(int contour, int i) const
{
int lo = m_contourOrigin[contour];
int n = m_contourLength[contour];
int hi = lo + n;
int v1 = wrap(lo + i+0, lo, hi);
int v2 = wrap(lo + i+1, lo, hi);
double aftx = m_contourX[v2] - m_contourX[v1];
double afty = m_contourY[v2] - m_contourY[v1];
return std::sqrt(aftx * aftx + afty * afty);
}
// return the relative angle change in radians
// about the point i (assuming ccw is positive)
double measureAngle(int contour, int i) const
{
double befx = getContourX(contour, i + 0) - getContourX(contour, i - 1);
double befy = getContourY(contour, i + 0) - getContourY(contour, i - 1);
double aftx = getContourX(contour, i + 1) - getContourX(contour, i + 0);
double afty = getContourY(contour, i + 1) - getContourY(contour, i + 0);
double befl = std::sqrt(befx * befx + befy * befy);
befx /= befl;
befy /= befl;
double aftl = std::sqrt(aftx * aftx + afty * afty);
aftx /= aftl;
afty /= aftl;
double dot = befx * aftx + befy * afty;
if (dot > 1.0)
dot = 1.0;
else if (dot < 0)
dot = 0;
double rads = std::acos(dot);
assert(rads == rads); //otherwise it means that rads is NaN!!!
if (aftx * befy - afty * befx < 0)
rads = -rads;
return rads;
}
public:
inline double getContourX(int contour, int v) const
{
int o = m_contourOrigin[contour];
return m_contourX[wrap(o + v, o, o + m_contourLength[contour])];
}
inline double getContourY(int contour, int v) const
{
int o = m_contourOrigin[contour];
return m_contourY[wrap(o + v, o, o + m_contourLength[contour])];
}
inline double measureCurvature(int contour, int i) const
{
return measureAngle(contour, i) / measureLength(contour, i);
}
void findAreas(int window, std::vector<double>& tips)
{
tips.resize(m_w * m_h);
for (int k = 0; k < m_numContours; k++)
{
int l = getContourLength(k);
for (int i = 0; i < l; i++)
{
int lo = i - window;
int hi = i + window;
tips[getValidIndex(k, i)] = measureArea(k, lo, hi);
}
}
}
void findRoundedCorners(int window, std::vector<double>& tips)
{
tips.resize(m_w * m_h);
for (int k = 0; k < m_numContours; k++)
{
int l = getContourLength(k);
for (int i = 0; i < l; i++)
{
int lo = i - window;
int hi = i + window;
tips[getValidIndex(k, i)] = measureArea(k, lo, hi) / measurePerimeter(k, lo, hi);
}
}
}
int getMaxContour() const
{
int maxlength = 0;
int idx = 0;
for (int k = 0; k < m_numContours; k++)
{
int l = getContourLength(k);
if (l > maxlength)
{
maxlength = l;
idx = k;
}
}
return idx;
}
// POLYGON HIT TESTING ROUTINES
bool computeBoundingBoxes()
{
int numContours = getNumContours();
if (numContours == 0)
{
m_minx.clear();
m_miny.clear();
m_maxx.clear();
m_maxy.clear();
return true;
}
try
{
m_minx.resize(numContours);
m_miny.resize(numContours);
m_maxx.resize(numContours);
m_maxy.resize(numContours);
}
catch (const std::bad_alloc&)
{
//not enough memory!
return false;
}
for (int k = 0; k < numContours; k++)
{
int o = m_contourOrigin[k];
m_minx[k] = m_contourX[o];
m_miny[k] = m_contourY[o];
m_maxx[k] = m_contourX[o];
m_maxy[k] = m_contourY[o];
for (int i = 1; i < getContourLength(k); i++)
{
int j = o + i;
if (m_contourX[j] < m_minx[k])
m_minx[k] = m_contourX[j];
else if (m_contourX[j] > m_maxx[k])
m_maxx[k] = m_contourX[j];
if (m_contourY[j] < m_miny[k])
m_miny[k] = m_contourY[j];
else if (m_contourY[j] > m_maxy[k])
m_maxy[k] = m_contourY[j];
}
}
return true;
}
inline double getBBMinX(int contour) const { return m_minx[contour]; }
inline double getBBMaxX(int contour) const { return m_maxx[contour]; }
inline double getBBMinY(int contour) const { return m_miny[contour]; }
inline double getBBMaxY(int contour) const { return m_maxy[contour]; }
bool contains(int k, double x, double y) const
{
bool inside = false;
int l = getContourLength(k);
for (int i = 0, j = -1; i < l; j = i++)
{
double yi = getContourY(k, i);
double yj = getContourY(k, j);
if ((yj > y) != (yi > y))
{
double xi = getContourX(k, i);
double xj = getContourX(k, j);
if (yi == yj)
{
if (x < xi)
inside = !inside;
}
else if (x < xi + (y - yi) * (xi - xj) / (yi - yj))
{
inside = !inside;
}
}
}
return inside;
}
bool containsContour(int k1, int k2)
{
if (!bbIntersect(k1, k2))
return false;
double minx = getBBMinX(k2);
double maxx = getBBMaxX(k2);
double miny = getBBMinY(k2);
double maxy = getBBMaxY(k2);
return ( contains(k1, minx, miny)
&& contains(k1, maxx, miny)
&& contains(k1, maxx, maxy)
&& contains(k1, minx, maxy) );
}
inline bool containsBoundingBox(int k, double minx, double miny, double maxx, double maxy) const
{
return ( contains(k, minx, miny)
&& contains(k, maxx, miny)
&& contains(k, maxx, maxy)
&& contains(k, minx, maxy) );
}
bool contains(const std::vector<double>& polyx, const std::vector<double>& polyy, double x, double y) const
{
bool inside = false;
size_t l = polyx.size();
if (l < 1)
return false;
for (size_t i = 0, j = l - 1; i < l; j = i++)
{
double yi = polyy[i];
double yj = polyy[j];
if ((yj > y) != (yi > y))
{
double xi = polyx[i];
double xj = polyx[j];
if (yi == yj)
{
if (x < xi)
inside = !inside;
}
else if (x < xi + (y - yi) * (xi - xj) / (yi - yj))
{
inside = !inside;
}
}
}
return inside;
}
// intersects contour k1 with contour k2
bool bbIntersect(int k1, int k2) const
{
double minx1 = getBBMinX(k1);
double maxx1 = getBBMaxX(k1);
double miny1 = getBBMinY(k1);
double maxy1 = getBBMaxY(k1);
double minx2 = getBBMinX(k2);
double maxx2 = getBBMaxX(k2);
double miny2 = getBBMinY(k2);
double maxy2 = getBBMaxY(k2);
double lt = minx1 > minx2 ? minx1 : minx2;
double rt = maxx1 < maxx2 ? maxx1 : maxx2;
double tp = miny1 > miny2 ? miny1 : miny2;
double bt = maxy1 < maxy2 ? maxy1 : maxy2;
return (lt < rt && tp < bt);
}
bool bbContainsBB(int k1, int k2) const
{
double minx1 = getBBMinX(k1);
double maxx1 = getBBMaxX(k1);
double miny1 = getBBMinY(k1);
double maxy1 = getBBMaxY(k1);
double minx2 = getBBMinX(k2);
double maxx2 = getBBMaxX(k2);
double miny2 = getBBMinY(k2);
double maxy2 = getBBMaxY(k2);
return (minx1 <= minx2 && maxx1 >= maxx2 && miny1 <= miny2 && maxy1 >= maxy2);
}
inline double bbArea(int k) const
{
double w = getBBMaxX(k) - getBBMinX(k);
double h = getBBMaxY(k) - getBBMinY(k);
return w * h;
}
inline double getBBCenterX(int k) const { return (getBBMinX(k) + getBBMaxX(k)) / 2.0; }
inline double getBBCenterY(int k) const { return (getBBMinY(k) + getBBMaxY(k)) / 2.0; }
};
#endif //ISOLINES_HEADER
|