File: trainer.h

package info (click to toggle)
cloudcompare 2.10.3-4
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 57,516 kB
  • sloc: cpp: 219,980; ansic: 29,944; makefile: 78; sh: 21
file content (424 lines) | stat: -rw-r--r-- 12,176 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
//##########################################################################
//#                                                                        #
//#                     CLOUDCOMPARE PLUGIN: qCANUPO                       #
//#                                                                        #
//#  This program is free software; you can redistribute it and/or modify  #
//#  it under the terms of the GNU General Public License as published by  #
//#  the Free Software Foundation; version 2 or later of the License.      #
//#                                                                        #
//#  This program is distributed in the hope that it will be useful,       #
//#  but WITHOUT ANY WARRANTY; without even the implied warranty of        #
//#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the          #
//#  GNU General Public License for more details.                          #
//#                                                                        #
//#      COPYRIGHT: UEB (UNIVERSITE EUROPEENNE DE BRETAGNE) / CNRS         #
//#                                                                        #
//##########################################################################

/** This file is directly inspired of the suggest_classifier_lda.cpp file in the
original CANUPO project, by N. Brodu and D. Lague.
**/

#ifndef QCANUPO_TRAINER_HEADER
#define QCANUPO_TRAINER_HEADER

//system
#include <vector>

//dlib
#include <dlib/matrix.h>
#include <dlib/svm.h>

class LDATrainer
{
public:

	typedef dlib::matrix<float, 0, 1> sample_type;
	typedef dlib::linear_kernel<sample_type> kernel_type;
	typedef dlib::decision_function<kernel_type> trained_function_type;
	//typedef trained_function_type::mem_manager_type mem_manager_type;

	trained_function_type train(const std::vector<sample_type>& samplesvec, const std::vector<float>& labels) const
	{
		size_t fdim = samplesvec[0].size();
		size_t nsamples = samplesvec.size();

		long ndata_class1 = 0, ndata_class2 = 0;
		for (size_t i = 0; i < nsamples; ++i)
		{
			if (labels[i] > 0)
				++ndata_class1;
			else
				++ndata_class2;
		}

		dlib::matrix<sample_type, 0, 1> samples1, samples2;
		samples1.set_size(ndata_class1);
		samples2.set_size(ndata_class2);
		sample_type mu1; mu1.set_size(fdim);
		sample_type mu2; mu2.set_size(fdim);
		for (size_t i = 0; i < fdim; ++i)
		{
			mu1(i) = 0;
			mu2(i) = 0;
		}

		ndata_class1 = 0; ndata_class2 = 0;
		for (size_t i = 0; i < nsamples; ++i)
		{
			if (labels[i] > 0)
			{
				samples1(ndata_class1) = samplesvec[i];
				++ndata_class1;
				mu1 += samplesvec[i];
			}
			else
			{
				samples2(ndata_class2) = samplesvec[i];
				++ndata_class2;
				mu2 += samplesvec[i];
			}
		}
		mu1 /= ndata_class1;
		mu2 /= ndata_class2;

		// if you get a compilation error coming from here (with templates
		// and a 'visual_studio_sucks_cov_helper' structure involved) then
		// you may have to patch the dlib's file 'matrix_utilities.h":
		// 
		// line 1611, replace
		//	const matrix<double,EXP::type::NR,EXP::type::NC, typename EXP::mem_manager_type> avg = mean(m);
		// by
		//  const typename EXP::type avg = mean(m);
		// 
		dlib::matrix<float> sigma1 = covariance(samples1);
		dlib::matrix<float> sigma2 = covariance(samples2);

		sample_type w_vect = pinv(sigma1 + sigma2) * (mu2 - mu1);

		trained_function_type ret;
		//ret.alpha.set_size(fdim);
		//for (int i=0; i<fdim; ++i) ret.alpha(i) = w_vect(i);
		ret.alpha = w_vect;
		ret.b = dot(w_vect, (mu1 + mu2)*0.5);
		// linear kernel idiocy
		ret.basis_vectors.set_size(fdim);
		for (size_t i = 0; i < fdim; ++i)
		{
			ret.basis_vectors(i).set_size(fdim);
			for (size_t j = 0; j < fdim; ++j)
				ret.basis_vectors(i)(j) = 0;
			ret.basis_vectors(i)(i) = 1;
		}
		return ret;
	}

#if 0
	trained_function_type train(const trained_function_type::sample_vector_type& samplesvec, const trained_function_type::scalar_vector_type& labels) const
	{
		int fdim = samplesvec(0).size();
		int nsamples = samplesvec.size();

		int ndata_class1 = 0, ndata_class2 = 0;
		for (int i=0; i<nsamples; ++i)
		{
			if (labels(i)>0)
				++ndata_class1;
			else
				++ndata_class2;
		}

		dlib::matrix<sample_type,0,1> samples1, samples2;
		samples1.set_size(ndata_class1);
		samples2.set_size(ndata_class2);
		sample_type mu1; mu1.set_size(fdim);
		sample_type mu2; mu2.set_size(fdim);
		for (int i=0; i<fdim; ++i)
		{
			mu1(i)=0;
			mu2(i)=0;
		}

		ndata_class1 = 0; ndata_class2 = 0;
		for (int i=0; i<nsamples; ++i)
		{
			if (labels(i)>0)
			{
				samples1(ndata_class1) = samplesvec(i);
				++ndata_class1;
				mu1 += samplesvec(i);
			}
			else
			{
				samples2(ndata_class2) = samplesvec(i);
				++ndata_class2;
				mu2 += samplesvec(i);
			}
		}
		mu1 /= ndata_class1;
		mu2 /= ndata_class2;
		
		// if you get a compilation error coming from here (with templates
		// and a 'visual_studio_sucks_cov_helper' structure involved) then
		// you may have to patch the dlib's file 'matrix_utilities.h":
		// 
		// line 1611, replace
		//	const matrix<double,EXP::type::NR,EXP::type::NC, typename EXP::mem_manager_type> avg = mean(m);
		// by
		//  const typename EXP::type avg = mean(m);
		// 
		dlib::matrix<float> sigma1 = covariance(samples1);
		dlib::matrix<float> sigma2 = covariance(samples2);

		sample_type w_vect = pinv(sigma1+sigma2) * (mu2 - mu1);

		trained_function_type ret;
		//ret.alpha.set_size(fdim);
		//for (int i=0; i<fdim; ++i) ret.alpha(i) = w_vect(i);
		ret.alpha = w_vect;
		ret.b = dot(w_vect,(mu1+mu2)*0.5);
		// linear kernel idiocy
		ret.basis_vectors.set_size(fdim);
		for (int i=0; i<fdim; ++i)
		{
			ret.basis_vectors(i).set_size(fdim);
			for (int j=0; j<fdim; ++j)
				ret.basis_vectors(i)(j)=0;
			ret.basis_vectors(i)(i) = 1;
		}
		return ret;
		/*LinearPredictor classifier;
		classifier.weights.resize(fdim+1);
		for (int i=0; i<fdim; ++i) classifier.weights[i] = w_vect(i);
		classifier.weights[fdim] = -dot(w_vect,(mu1+mu2)*0.5);
		return classifier;*/
	}
#endif

	void train(int nfolds, const std::vector<sample_type>& samples, const std::vector<float>& labels)
	{
		dlib::probabilistic_decision_function<kernel_type> pdecfun = dlib::train_probabilistic_decision_function(*this, samples, labels, nfolds);
		dlib::decision_function<kernel_type>& decfun = pdecfun.decision_funct;
		int dim = samples.back().size();
		// see comments in linearSVM.hpp
		m_weights.clear();
		m_weights.resize(dim + 1, 0);
		dlib::matrix<float> w(dim, 1);
		w = 0;
		for (int i = 0; i < decfun.alpha.nr(); ++i)
		{
			w += decfun.alpha(i) * decfun.basis_vectors(i);
		}
		for (int i = 0; i < dim; ++i)
			m_weights[i] = w(i);
		m_weights[dim] = -decfun.b;
		for (int i = 0; i <= dim; ++i)
			m_weights[i] *= pdecfun.alpha;
		m_weights[dim] += pdecfun.beta;

		// TODO: check if necessary here
		for (int i = 0; i <= dim; ++i)
			m_weights[i] = -m_weights[i];
	}

	double predict(const sample_type& data) const
	{
		assert(!m_weights.empty());
		double ret = m_weights.back();
		for (size_t d = 0; d < m_weights.size() - 1; ++d)
			ret += static_cast<double>(m_weights[d]) * data(d);
		return ret;
	}

	//! Classifier weights
	std::vector<float> m_weights;

};

//! Gram-Schmidt process to re-orthonormalise the basis
static void GramSchmidt(dlib::matrix<LDATrainer::sample_type,0,1>& basis, LDATrainer::sample_type& newX)
{
	// goal: find a basis so that the given vector is the new X
	// principle: at least one basis vector is not orthogonal with newX (except if newX is null but we suppose this is not the case)
	// => use the max dot product vector, and replace it by newX. this forms a set of
	// linearly independent vectors.
	// then apply the Gram-Schmidt process
	long dim = basis.size();
	double maxabsdp = -1.0;
	long selectedCoord = 0;
	for (long i=0; i<dim; ++i)
	{
		double absdp = fabs(dot(basis(i),newX));
		if (absdp > maxabsdp)
		{
			absdp = maxabsdp;
			selectedCoord = i;
		}
	}
	// swap basis vectors to use the selected coord as the X vector, then replaced by newX
	basis(selectedCoord) = basis(0);
	basis(0) = newX;
	// Gram-Schmidt process to re-orthonormalise the basis.
	// Thanks Wikipedia for the stabilized version
	for (long j = 0; j < dim; ++j)
	{
		for (long i = 0; i < j; ++i)
			basis(j) -= (dot(basis(j),basis(i)) / dot(basis(i),basis(i))) * basis(i);

		basis(j) /= sqrt(dot(basis(j),basis(j)));
	}
}

//! Compute pos. and neg. reference points
static void ComputeReferencePoints(	Classifier::Point2D& refpt_pos,
									Classifier::Point2D& refpt_neg,
									const std::vector<float>& proj1,
									const std::vector<float>& proj2,
									const std::vector<float>& labels,
									unsigned* _npos = 0,
									unsigned* _nneg = 0)
{
	assert(proj1.size() == proj2.size() && proj1.size() == labels.size());
	
	refpt_neg = refpt_pos = Classifier::Point2D(0,0);

	size_t npos = 0;
	size_t nneg = 0;
	for (size_t i=0; i<labels.size(); ++i)
	{
		if (labels[i] < 0)
		{
			refpt_neg += Classifier::Point2D(proj1[i], proj2[i]);
			++nneg;
		}
		else
		{
			refpt_pos += Classifier::Point2D(proj1[i], proj2[i]);
			++npos;
		}
	}
	if (npos)
		refpt_pos /= static_cast<float>(npos);
	if (nneg)
		refpt_neg /= static_cast<float>(nneg);

	if (_npos)
		*_npos = npos;
	if (_nneg)
		*_nneg = nneg;
}

//! Experimental (same as Brodu's code): dilatation to highlight the internal data structure
static bool DilateClassifier(	Classifier& classifier,
								std::vector<float>& proj1,
								std::vector<float>& proj2,
								const std::vector<float>& labels,
								const std::vector<LDATrainer::sample_type>& samples,
								LDATrainer& trainer,
								LDATrainer& orthoTrainer)
{
	//m_app->dispToConsole("[Cloud dilatation]");
	Classifier::Point2D e1 = classifier.refPointPos - classifier.refPointNeg;
	e1.normalize();
	Classifier::Point2D e2(-e1.y, e1.x);
	Classifier::Point2D ori = (classifier.refPointPos + classifier.refPointNeg) / 2;

	float m11=0, m21=0, m12=0, m22=0; // m12, m22 null by construction
	float v11=0, v12=0, v21=0, v22=0;
	size_t nsamples1 = 0;
	size_t nsamples2 = 0;
	size_t nsamples = proj1.size();
	assert(proj1.size() == proj2.size());
	for (size_t i=0; i<nsamples; ++i)
	{
		Classifier::Point2D p(proj1[i], proj2[i]);
		p -= ori;
		float p1 = p.dot(e1);
		float p2 = p.dot(e2);
		if (labels[i] < 0)
		{
			m11 += p1; v11 += p1*p1;
			m12 += p2; v12 += p2*p2;
			++nsamples1;
		}
		else
		{
			m21 += p1; v21 += p1*p1;
			m22 += p2; v22 += p2*p2;
			++nsamples2;
		}
	}
	m11 /= nsamples1;
	v11 = (v11 - m11*m11*nsamples1) / (nsamples1-1);
	m21 /= nsamples2;
	v21 = (v21 - m21*m21*nsamples2) / (nsamples2-1);
	m12 /= nsamples1;
	v12 = (v12 - m12*m12*nsamples1) / (nsamples1-1);
	m22 /= nsamples2;
	v22 = (v22 - m22*m22*nsamples2) / (nsamples2-1);

	float d1 = sqrt(v11/v12);
	float d2 = sqrt(v21/v22);
	classifier.axisScaleRatio = sqrt(d1*d2);

	float bdValues[4] = {e1.x, e1.y, e2.x/classifier.axisScaleRatio, e2.y/classifier.axisScaleRatio};
	dlib::matrix<float,2,2> bd(bdValues);

	float biValues[4] = {e1.x, e2.x, e1.y, e2.y};
	dlib::matrix<float,2,2> bi(biValues);
	dlib::matrix<float,2,2> c = inv(trans(bd)) /* bi * bd */;

	std::vector<float>& w1 = trainer.m_weights;
	std::vector<float>& w2 = orthoTrainer.m_weights;
	assert(w1.size() == w2.size());

	std::vector<float> wn1, wn2;
	try
	{
		wn1.resize(w1.size());
		wn2.resize(w2.size());
	}
	catch (const std::bad_alloc&)
	{
		//not enough memory
		return false;
	}

	// first shift so the center of the figure is at the midpoint
	w1.back() -= ori.x;
	w2.back() -= ori.y;
	// now transform / scale along e2
	{
		for (size_t i=0; i<w1.size(); ++i)
		{
			wn1[i] = c(0,0) * w1[i] + c(0,1) * w2[i];
			wn2[i] = c(1,0) * w1[i] + c(1,1) * w2[i];
		}
	}

	trainer.m_weights = wn1;
	orthoTrainer.m_weights = wn2;

	// reset projections
	{
		for (size_t i=0; i<nsamples; ++i)
		{
			proj1[i] = trainer.predict(samples[i]);
			proj2[i] = orthoTrainer.predict(samples[i]);
		}
	}

	classifier.weightsAxis1 = wn1;
	classifier.weightsAxis2 = wn2;

	//update reference points
	ComputeReferencePoints(	classifier.refPointPos,
							classifier.refPointNeg,
							proj1,
							proj2,
							labels);

	return true;
}

#endif //QCANUPO_CLASSIFIER_HEADER