File: client.py

package info (click to toggle)
cloudkitty 23.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 3,528 kB
  • sloc: python: 21,803; sh: 528; makefile: 226; pascal: 54
file content (436 lines) | stat: -rw-r--r-- 15,720 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# Copyright 2019 Objectif Libre
#
#    Licensed under the Apache License, Version 2.0 (the "License"); you may
#    not use this file except in compliance with the License. You may obtain
#    a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
#    WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
#    License for the specific language governing permissions and limitations
#    under the License.
#
from datetime import datetime
import itertools

from oslo_log import log
import requests

from cloudkitty.storage.v2 import opensearch
from cloudkitty.storage.v2.opensearch import exceptions
from cloudkitty.utils import json

LOG = log.getLogger(__name__)


class OpenSearchClient(object):
    """Class used to ease interaction with OpenSearch.

    :param autocommit: Defaults to True. Automatically push documents to
                       OpenSearch once chunk_size has been reached.
    :type autocommit: bool
    :param chunk_size: Maximal number of documents to commit/retrieve at once.
    :type chunk_size: int
    :param scroll_duration: Defaults to 60. Duration, in seconds, for which
                            search contexts should be kept alive
    :type scroll_duration: int
    """

    def __init__(self, url, index_name, mapping_name,
                 verify=True,
                 autocommit=True,
                 chunk_size=5000,
                 scroll_duration=60):
        self._url = url.strip('/')
        self._index_name = index_name.strip('/')
        self._mapping_name = mapping_name.strip('/')
        self._autocommit = autocommit
        self._chunk_size = chunk_size
        self._scroll_duration = str(scroll_duration) + 's'
        self._scroll_params = {'scroll': self._scroll_duration}

        self._docs = []
        self._scroll_ids = set()

        self._sess = requests.Session()
        self._verify = self._sess.verify = verify
        self._sess.headers = {'Content-Type': 'application/json'}

    @staticmethod
    def _log_query(url, query, response):
        message = 'Query on {} with body "{}" took {}ms'.format(
            url, query, response['took'])
        if 'hits' in response.keys():
            message += ' for {} hits'.format(response['hits']['total'])
        LOG.debug(message)

    @staticmethod
    def _build_must(start, end, metric_types, filters):
        must = []
        if start:
            must.append({"range": {"start": {"gte": start.isoformat()}}})
        if end:
            must.append({"range": {"end": {"lte": end.isoformat()}}})

        if filters and 'type' in filters.keys():
            must.append({'term': {'type': filters['type']}})

        if metric_types:
            if type(metric_types) is not list:
                metric_types = [metric_types]

            must.append({"terms": {"type": metric_types}})

        return must

    @staticmethod
    def _build_should(filters):
        if not filters:
            return []

        should = []
        for k, v in filters.items():
            if k != 'type':
                should += [{'term': {'groupby.' + k: v}},
                           {'term': {'metadata.' + k: v}}]
        return should

    def _build_composite(self, groupby):
        if not groupby:
            return []
        sources = []
        for elem in groupby:
            if elem == 'type':
                sources.append({'type': {'terms': {'field': 'type.keyword'}}})
            elif elem == 'time':
                # Not doing a date_histogram aggregation because we don't know
                # the period
                sources.append({'begin': {'terms': {'field': 'start'}}})
                sources.append({'end': {'terms': {'field': 'end'}}})
            else:
                field = 'groupby.' + elem + '.keyword'
                sources.append({elem: {'terms': {'field': field}}})

        return {"sources": sources}

    @staticmethod
    def _build_query(must, should, composite):
        query = {}

        if must or should:
            query["query"] = {"bool": {}}

        if must:
            query["query"]["bool"]["must"] = must

        if should:
            query["query"]["bool"]["should"] = should
            # We want each term to match exactly once, and each term introduces
            # two "term" aggregations: one for "groupby" and one for "metadata"
            query["query"]["bool"]["minimum_should_match"] = len(should) // 2

        if composite:
            query["aggs"] = {"sum_and_price": {
                "composite": composite,
                "aggregations": {
                    "sum_price": {"sum": {"field": "price"}},
                    "sum_qty": {"sum": {"field": "qty"}},
                }
            }}

        return query

    def _req(self, method, url, data, params, deserialize=True):
        r = method(url, data=data, params=params)
        if r.status_code < 200 or r.status_code >= 300:
            raise exceptions.InvalidStatusCode(
                200, r.status_code, r.text, data)
        if not deserialize:
            return r
        output = r.json()
        self._log_query(url, data, output)
        return output

    def post_mapping(self, mapping):
        """Does a POST request against OpenSearch's mapping API.

        The POST request will be done against
        `/<index_name>/<mapping_name>`

        :mapping: body of the request
        :type mapping: dict
        :rtype: requests.models.Response
        """
        url = '/'.join(
            (self._url, self._index_name, self._mapping_name))
        return self._req(
            self._sess.post, url, json.dumps(mapping), {}, deserialize=False)

    def get_index(self):
        """Does a GET request against OpenSearch's index API.

        The GET request will be done against `/<index_name>`

        :rtype: requests.models.Response
        """
        url = '/'.join((self._url, self._index_name))
        return self._req(self._sess.get, url, None, None, deserialize=False)

    def search(self, body, scroll=True):
        """Does a GET request against OpenSearch's search API.

        The GET request will be done against `/<index_name>/_search`

        :param body: body of the request
        :type body: dict
        :rtype: dict
        """
        url = '/'.join((self._url, self._index_name, '_search'))
        params = self._scroll_params if scroll else None
        return self._req(
            self._sess.get, url, json.dumps(body), params)

    def scroll(self, body):
        """Does a GET request against OpenSearch's scroll API.

        The GET request will be done against `/_search/scroll`

        :param body: body of the request
        :type body: dict
        :rtype: dict
        """
        url = '/'.join((self._url, '_search/scroll'))
        return self._req(self._sess.get, url, json.dumps(body), None)

    def close_scroll(self, body):
        """Does a DELETE request against OpenSearch's scroll API.

        The DELETE request will be done against `/_search/scroll`

        :param body: body of the request
        :type body: dict
        :rtype: dict
        """
        url = '/'.join((self._url, '_search/scroll'))
        resp = self._req(
            self._sess.delete, url, json.dumps(body), None, deserialize=False)
        body = resp.json()
        LOG.debug('Freed {} scrolls contexts'.format(body['num_freed']))
        return body

    def close_scrolls(self):
        """Closes all scroll contexts opened by this client."""
        ids = list(self._scroll_ids)
        LOG.debug('Closing {} scroll contexts: {}'.format(len(ids), ids))
        self.close_scroll({'scroll_id': ids})
        self._scroll_ids = set()

    def bulk_with_instruction(self, instruction, terms):
        """Does a POST request against OpenSearch's bulk API

        The POST request will be done against
        `/<index_name>/_bulk`

        The instruction will be appended before each term. For example,
        bulk_with_instruction('instr', ['one', 'two']) will produce::

           instr
           one
           instr
           two

        :param instruction: instruction to execute for each term
        :type instruction: dict
        :param terms: list of terms for which instruction should be executed
        :type terms: collections.abc.Iterable
        :rtype: requests.models.Response
        """
        instruction = json.dumps(instruction)
        data = '\n'.join(itertools.chain(
            *[(instruction, json.dumps(term)) for term in terms]
        )) + '\n'
        url = '/'.join((self._url, self._index_name, '_bulk'))
        return self._req(self._sess.post, url, data, None, deserialize=False)

    def bulk_index(self, terms):
        """Indexes each of the documents in 'terms'

        :param terms: list of documents to index
        :type terms: collections.abc.Iterable
        """
        LOG.debug("Indexing {} documents".format(len(terms)))
        if opensearch.CONF.storage_opensearch.use_datastream:
            return self.bulk_with_instruction({"create": {}}, terms)
        else:
            return self.bulk_with_instruction({"index": {}}, terms)

    def commit(self):
        """Index all documents"""
        while self._docs:
            self.bulk_index(self._docs[:self._chunk_size])
            self._docs = self._docs[self._chunk_size:]

    def add_point(self, point, type_, start, end):
        """Append a point to the client.

        :param point: DataPoint to append
        :type point: cloudkitty.dataframe.DataPoint
        :param type_: type of the DataPoint
        :type type_: str
        """
        if opensearch.CONF.storage_opensearch.use_datastream:
            self._docs.append({
                '@timestamp': datetime.now().strftime("%Y-%m-%dT%H:%M:%S"),
                'start': start,
                'end': end,
                'type': type_,
                'unit': point.unit,
                'description': point.description,
                'qty': point.qty,
                'price': point.price,
                'groupby': point.groupby,
                'metadata': point.metadata,
            })
        else:
            self._docs.append({
                'start': start,
                'end': end,
                'type': type_,
                'unit': point.unit,
                'qty': point.qty,
                'price': point.price,
                'groupby': point.groupby,
                'metadata': point.metadata,
            })
        if self._autocommit and len(self._docs) >= self._chunk_size:
            self.commit()

    def _get_chunk_size(self, offset, limit, paginate):
        if paginate and offset + limit < self._chunk_size:
            return offset + limit
        return self._chunk_size

    def retrieve(self, begin, end, filters, metric_types,
                 offset=0, limit=1000, paginate=True):
        """Retrieves a paginated list of documents from OpenSearch."""
        if not paginate:
            offset = 0

        query = self._build_query(
            self._build_must(begin, end, metric_types, filters),
            self._build_should(filters), None)
        query['size'] = self._get_chunk_size(offset, limit, paginate)

        resp = self.search(query)

        scroll_id = resp['_scroll_id']
        self._scroll_ids.add(scroll_id)
        total_hits = resp['hits']['total']

        if isinstance(total_hits, dict):
            LOG.debug("Total hits [%s] is a dict. Therefore, we only extract "
                      "the 'value' attribute as the total option.", total_hits)
            total_hits = total_hits.get("value")

        total = total_hits
        chunk = resp['hits']['hits']

        output = chunk[offset:offset+limit if paginate else len(chunk)]
        offset = 0 if len(chunk) > offset else offset - len(chunk)

        while (not paginate) or len(output) < limit:
            resp = self.scroll({
                'scroll_id': scroll_id,
                'scroll': self._scroll_duration,
            })

            scroll_id, chunk = resp['_scroll_id'], resp['hits']['hits']
            self._scroll_ids.add(scroll_id)
            # Means we've scrolled until the end
            if not chunk:
                break

            output += chunk[offset:offset+limit if paginate else len(chunk)]
            offset = 0 if len(chunk) > offset else offset - len(chunk)

        self.close_scrolls()
        return total, output

    def delete_by_query(self, begin=None, end=None, filters=None):
        """Does a POST request against ES's Delete By Query API.

        The POST request will be done against
        `/<index_name>/_delete_by_query`

        :param filters: Optional filters for documents to delete
        :type filters: list of dicts
        :rtype: requests.models.Response
        """
        url = '/'.join((self._url, self._index_name, '_delete_by_query'))
        must = self._build_must(begin, end, None, filters)
        data = (json.dumps({"query": {"bool": {"must": must}}})
                if must else None)
        return self._req(self._sess.post, url, data, None)

    def total(self, begin, end, metric_types, filters, groupby,
              custom_fields=None, offset=0, limit=1000, paginate=True):

        if custom_fields:
            LOG.warning("'custom_fields' are not implemented yet for "
                        "OpenSearch. Therefore, the custom fields [%s] "
                        "informed by the user will be ignored.", custom_fields)
        if not paginate:
            offset = 0

        metric_types = [metric_types] if metric_types else None

        must = self._build_must(begin, end, metric_types, filters)
        should = self._build_should(filters)
        composite = self._build_composite(groupby) if groupby else None
        if composite:
            composite['size'] = self._chunk_size
        query = self._build_query(must, should, composite)

        if "aggs" not in query.keys():
            query["aggs"] = {
                "sum_price": {"sum": {"field": "price"}},
                "sum_qty": {"sum": {"field": "qty"}},
            }

        query['size'] = 0

        resp = self.search(query, scroll=False)

        # Means we didn't group, so length is 1
        if not composite:
            return 1, [resp["aggregations"]]

        after = resp["aggregations"]["sum_and_price"].get("after_key")
        chunk = resp["aggregations"]["sum_and_price"]["buckets"]

        total = len(chunk)

        output = chunk[offset:offset+limit if paginate else len(chunk)]
        offset = 0 if len(chunk) > offset else offset - len(chunk)

        # FIXME(peschk_l): We have to iterate over ALL buckets in order to get
        # the total length. If there is a way for composite aggregations to get
        # the total amount of buckets, please fix this
        while after:
            composite_query = query["aggs"]["sum_and_price"]["composite"]
            composite_query["size"] = self._chunk_size
            composite_query["after"] = after
            resp = self.search(query, scroll=False)
            after = resp["aggregations"]["sum_and_price"].get("after_key")
            chunk = resp["aggregations"]["sum_and_price"]["buckets"]
            if not chunk:
                break
            output += chunk[offset:offset+limit if paginate else len(chunk)]
            offset = 0 if len(chunk) > offset else offset - len(chunk)
            total += len(chunk)

        if paginate:
            output = output[offset:offset+limit]
        return total, output