1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
/* $Id: sprint.cpp 1941 2013-04-10 16:52:27Z stefan $ */
// Copyright (C) 2003, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include "ClpSimplex.hpp"
#include "CoinSort.hpp"
#include <iomanip>
int main(int argc, const char *argv[])
{
ClpSimplex model;
int status;
// Keep names
if (argc < 2) {
status = model.readMps("small.mps", true);
} else {
status = model.readMps(argv[1], true);
}
if (status)
exit(10);
/*
This driver implements what I called Sprint. Cplex calls it
"sifting" which is just as silly. When I thought of this trivial idea
it reminded me of an LP code of the 60's called sprint which after
every factorization took a subset of the matrix into memory (all
64K words!) and then iterated very fast on that subset. On the
problems of those days it did not work very well, but it worked very
well on aircrew scheduling problems where there were very large numbers
of columns all with the same flavor.
*/
/* The idea works best if you can get feasible easily. To make it
more general we can add in costed slacks */
int originalNumberColumns = model.numberColumns();
int numberRows = model.numberRows();
// We will need arrays to choose variables. These are too big but ..
double * weight = new double [numberRows+originalNumberColumns];
int * sort = new int [numberRows+originalNumberColumns];
int numberSort = 0;
// Say we are going to add slacks - if you can get a feasible
// solution then do that at the comment - Add in your own coding here
bool addSlacks = true;
if (addSlacks) {
// initial list will just be artificials
// first we will set all variables as close to zero as possible
int iColumn;
const double * columnLower = model.columnLower();
const double * columnUpper = model.columnUpper();
double * columnSolution = model.primalColumnSolution();
for (iColumn = 0; iColumn < originalNumberColumns; iColumn++) {
double value = 0.0;
if (columnLower[iColumn] > 0.0)
value = columnLower[iColumn];
else if (columnUpper[iColumn] < 0.0)
value = columnUpper[iColumn];
columnSolution[iColumn] = value;
}
// now see what that does to row solution
double * rowSolution = model.primalRowSolution();
memset(rowSolution, 0, numberRows * sizeof(double));
model.times(1.0, columnSolution, rowSolution);
int * addStarts = new int [numberRows+1];
int * addRow = new int[numberRows];
double * addElement = new double[numberRows];
const double * lower = model.rowLower();
const double * upper = model.rowUpper();
addStarts[0] = 0;
int numberArtificials = 0;
double * addCost = new double [numberRows];
const double penalty = 1.0e8;
int iRow;
for (iRow = 0; iRow < numberRows; iRow++) {
if (lower[iRow] > rowSolution[iRow]) {
addRow[numberArtificials] = iRow;
addElement[numberArtificials] = 1.0;
addCost[numberArtificials] = penalty;
numberArtificials++;
addStarts[numberArtificials] = numberArtificials;
} else if (upper[iRow] < rowSolution[iRow]) {
addRow[numberArtificials] = iRow;
addElement[numberArtificials] = -1.0;
addCost[numberArtificials] = penalty;
numberArtificials++;
addStarts[numberArtificials] = numberArtificials;
}
}
model.addColumns(numberArtificials, NULL, NULL, addCost,
addStarts, addRow, addElement);
delete [] addStarts;
delete [] addRow;
delete [] addElement;
delete [] addCost;
// Set up initial list
numberSort = numberArtificials;
int i;
for (i = 0; i < numberSort; i++)
sort[i] = i + originalNumberColumns;
} else {
// Get initial list in some magical way
// Add in your own coding here
abort();
}
int numberColumns = model.numberColumns();
const double * columnLower = model.columnLower();
const double * columnUpper = model.columnUpper();
double * fullSolution = model.primalColumnSolution();
// Just do this number of passes
int maxPass = 100;
int iPass;
double lastObjective = 1.0e31;
// Just take this number of columns in small problem
int smallNumberColumns = CoinMin(3 * numberRows, numberColumns);
smallNumberColumns = CoinMax(smallNumberColumns, 3000);
// To stop seg faults on unsuitable problems
smallNumberColumns = CoinMin(smallNumberColumns,numberColumns);
// We will be using all rows
int * whichRows = new int [numberRows];
for (int iRow = 0; iRow < numberRows; iRow++)
whichRows[iRow] = iRow;
double originalOffset;
model.getDblParam(ClpObjOffset, originalOffset);
for (iPass = 0; iPass < maxPass; iPass++) {
printf("Start of pass %d\n", iPass);
//printf("Bug until submodel new version\n");
CoinSort_2(sort, sort + numberSort, weight);
// Create small problem
ClpSimplex small(&model, numberRows, whichRows, numberSort, sort);
// now see what variables left out do to row solution
double * rowSolution = model.primalRowSolution();
memset(rowSolution, 0, numberRows * sizeof(double));
int iRow, iColumn;
// zero out ones in small problem
for (iColumn = 0; iColumn < numberSort; iColumn++) {
int kColumn = sort[iColumn];
fullSolution[kColumn] = 0.0;
}
// Get objective offset
double offset = 0.0;
const double * objective = model.objective();
for (iColumn = 0; iColumn < originalNumberColumns; iColumn++)
offset += fullSolution[iColumn] * objective[iColumn];
small.setDblParam(ClpObjOffset, originalOffset - offset);
model.times(1.0, fullSolution, rowSolution);
double * lower = small.rowLower();
double * upper = small.rowUpper();
for (iRow = 0; iRow < numberRows; iRow++) {
if (lower[iRow] > -1.0e50)
lower[iRow] -= rowSolution[iRow];
if (upper[iRow] < 1.0e50)
upper[iRow] -= rowSolution[iRow];
}
/* For some problems a useful variant is to presolve problem.
In this case you need to adjust smallNumberColumns to get
right size problem. Also you can dispense with creating
small problem and fix variables in large problem and do presolve
on that. */
// Solve
small.primal();
// move solution back
const double * solution = small.primalColumnSolution();
for (iColumn = 0; iColumn < numberSort; iColumn++) {
int kColumn = sort[iColumn];
model.setColumnStatus(kColumn, small.getColumnStatus(iColumn));
fullSolution[kColumn] = solution[iColumn];
}
for (iRow = 0; iRow < numberRows; iRow++)
model.setRowStatus(iRow, small.getRowStatus(iRow));
memcpy(model.primalRowSolution(), small.primalRowSolution(),
numberRows * sizeof(double));
if ((small.objectiveValue() > lastObjective - 1.0e-7 && iPass > 5) ||
!small.numberIterations() ||
iPass == maxPass - 1) {
break; // finished
} else {
lastObjective = small.objectiveValue();
// get reduced cost for large problem
// this assumes minimization
memcpy(weight, model.objective(), numberColumns * sizeof(double));
model.transposeTimes(-1.0, small.dualRowSolution(), weight);
// now massage weight so all basic in plus good djs
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
double dj = weight[iColumn];
double value = fullSolution[iColumn];
if (model.getColumnStatus(iColumn) == ClpSimplex::basic)
dj = -1.0e50;
else if (dj < 0.0 && value < columnUpper[iColumn])
dj = dj;
else if (dj > 0.0 && value > columnLower[iColumn])
dj = -dj;
else if (columnUpper[iColumn] > columnLower[iColumn])
dj = fabs(dj);
else
dj = 1.0e50;
weight[iColumn] = dj;
sort[iColumn] = iColumn;
}
// sort
CoinSort_2(weight, weight + numberColumns, sort);
numberSort = smallNumberColumns;
}
}
if (addSlacks) {
int i;
int numberArtificials = numberColumns - originalNumberColumns;
for (i = 0; i < numberArtificials; i++)
sort[i] = i + originalNumberColumns;
model.deleteColumns(numberArtificials, sort);
}
delete [] weight;
delete [] sort;
delete [] whichRows;
model.primal(1);
return 0;
}
|