1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
/* $Id: sprint2.cpp 1941 2013-04-10 16:52:27Z stefan $ */
// Copyright (C) 2003, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include "ClpSimplex.hpp"
#include "ClpPresolve.hpp"
#include "CoinSort.hpp"
#include <iomanip>
int main(int argc, const char *argv[])
{
ClpSimplex model;
int status;
// Keep names
if (argc < 2) {
status = model.readMps("small.mps", true);
} else {
status = model.readMps(argv[1], true);
}
if (status)
exit(10);
/*
This driver implements the presolve variation of Sprint.
This assumes we can get feasible easily
*/
int numberRows = model.numberRows();
int numberColumns = model.numberColumns();
// We will need arrays to choose variables. These are too big but ..
double * weight = new double [numberRows+numberColumns];
int * sort = new int [numberRows+numberColumns];
double * columnLower = model.columnLower();
double * columnUpper = model.columnUpper();
double * saveLower = new double [numberColumns];
memcpy(saveLower, columnLower, numberColumns * sizeof(double));
double * saveUpper = new double [numberColumns];
memcpy(saveUpper, columnUpper, numberColumns * sizeof(double));
double * solution = model.primalColumnSolution();
// Fix in some magical way so remaining problem is easy
#if 0
// This is from a real-world problem
for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
char firstCharacter = model.columnName(iColumn)[0];
if (firstCharacter == 'F' || firstCharacter == 'P'
|| firstCharacter == 'L' || firstCharacter == 'T') {
columnUpper[iColumn] = columnLower[iColumn];
}
}
#else
double * obj = model.objective();
double * saveObj = new double [numberColumns];
memcpy(saveObj, obj, numberColumns * sizeof(double));
memset(obj, 0, numberColumns * sizeof(double));
model.dual();
memcpy(obj, saveObj, numberColumns * sizeof(double));
delete [] saveObj;
for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
if (solution[iColumn]<columnLower[iColumn]+1.0e-8) {
columnUpper[iColumn] = columnLower[iColumn];
}
}
#endif
// Just do this number of passes
int maxPass = 100;
int iPass;
double lastObjective = 1.0e31;
// Just take this number of columns in small problem
int smallNumberColumns = 3 * numberRows;
// To stop seg faults on unsuitable problems
smallNumberColumns = CoinMin(smallNumberColumns,numberColumns);
// And we want number of rows to be this
int smallNumberRows = numberRows / 4;
for (iPass = 0; iPass < maxPass; iPass++) {
printf("Start of pass %d\n", iPass);
ClpSimplex * model2;
ClpPresolve pinfo;
int numberPasses = 1; // can change this
model2 = pinfo.presolvedModel(model, 1.0e-8, false, numberPasses, false);
if (!model2) {
fprintf(stdout, "ClpPresolve says %s is infeasible with tolerance of %g\n",
argv[1], 1.0e-8);
// model was infeasible - maybe try again with looser tolerances
model2 = pinfo.presolvedModel(model, 1.0e-7, false, numberPasses, false);
if (!model2) {
fprintf(stdout, "ClpPresolve says %s is infeasible with tolerance of %g\n",
argv[1], 1.0e-7);
exit(2);
}
}
// change factorization frequency from 200
model2->setFactorizationFrequency(100 + model2->numberRows() / 50);
model2->primal();
pinfo.postsolve(true);
// adjust smallNumberColumns if necessary
if (iPass) {
double ratio = ((double) smallNumberRows) / ((double) model2->numberRows());
smallNumberColumns = (int)(smallNumberColumns * ratio);
// deal with pathological case
smallNumberColumns = CoinMax(smallNumberColumns,0);
}
delete model2;
/* After this postsolve model should be optimal.
We can use checkSolution and test feasibility */
model.checkSolution();
if (model.numberDualInfeasibilities() ||
model.numberPrimalInfeasibilities())
printf("%g dual %g(%d) Primal %g(%d)\n",
model.objectiveValue(),
model.sumDualInfeasibilities(),
model.numberDualInfeasibilities(),
model.sumPrimalInfeasibilities(),
model.numberPrimalInfeasibilities());
// Put back true bounds
memcpy(columnLower, saveLower, numberColumns * sizeof(double));
memcpy(columnUpper, saveUpper, numberColumns * sizeof(double));
if ((model.objectiveValue() > lastObjective - 1.0e-7 && iPass > 5) ||
iPass == maxPass - 1) {
break; // finished
} else {
lastObjective = model.objectiveValue();
// now massage weight so all basic in plus good djs
const double * djs = model.dualColumnSolution();
for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
double dj = djs[iColumn];
double value = solution[iColumn];
if (model.getStatus(iColumn) == ClpSimplex::basic)
dj = -1.0e50;
else if (dj < 0.0 && value < columnUpper[iColumn])
dj = dj;
else if (dj > 0.0 && value > columnLower[iColumn])
dj = -dj;
else if (columnUpper[iColumn] > columnLower[iColumn])
dj = fabs(dj);
else
dj = 1.0e50;
weight[iColumn] = dj;
sort[iColumn] = iColumn;
}
// sort
CoinSort_2(weight, weight + numberColumns, sort);
// and fix others
for (int iColumn = smallNumberColumns; iColumn < numberColumns; iColumn++) {
int kColumn = sort[iColumn];
double value = solution[kColumn];
columnLower[kColumn] = value;
columnUpper[kColumn] = value;
}
}
}
delete [] weight;
delete [] sort;
delete [] saveLower;
delete [] saveUpper;
model.primal(1);
return 0;
}
|