1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
/* $Id: useVolume.cpp 1941 2013-04-10 16:52:27Z stefan $ */
// Copyright (C) 2003, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include "ClpSimplex.hpp"
#include "ClpFactorization.hpp"
#include "VolVolume.hpp"
//#############################################################################
class lpHook : public VOL_user_hooks {
private:
lpHook(const lpHook&);
lpHook& operator= (const lpHook&);
private:
/// Pointer to dense vector of structural variable upper bounds
double *colupper_;
/// Pointer to dense vector of structural variable lower bounds
double *collower_;
/// Pointer to dense vector of objective coefficients
double *objcoeffs_;
/// Pointer to dense vector of right hand sides
double *rhs_;
/// Pointer to dense vector of senses
char *sense_;
/// The problem matrix in a row ordered form
CoinPackedMatrix rowMatrix_;
/// The problem matrix in a column ordered form
CoinPackedMatrix colMatrix_;
public:
lpHook(const double* clb, const double* cub, const double* obj,
const double* rhs, const char* sense, const CoinPackedMatrix& mat);
virtual ~lpHook();
public:
// for all hooks: return value of -1 means that volume should quit
/** compute reduced costs
@param u (IN) the dual variables
@param rc (OUT) the reduced cost with respect to the dual values
*/
virtual int compute_rc(const VOL_dvector& u, VOL_dvector& rc);
/** Solve the subproblem for the subgradient step.
@param dual (IN) the dual variables
@param rc (IN) the reduced cost with respect to the dual values
@param lcost (OUT) the lagrangean cost with respect to the dual values
@param x (OUT) the primal result of solving the subproblem
@param v (OUT) b-Ax for the relaxed constraints
@param pcost (OUT) the primal objective value of <code>x</code>
*/
virtual int solve_subproblem(const VOL_dvector& dual, const VOL_dvector& rc,
double& lcost, VOL_dvector& x, VOL_dvector& v,
double& pcost);
/** Starting from the primal vector x, run a heuristic to produce
an integer solution
@param x (IN) the primal vector
@param heur_val (OUT) the value of the integer solution (return
<code>DBL_MAX</code> here if no feas sol was found
*/
virtual int heuristics(const VOL_problem& p,
const VOL_dvector& x, double& heur_val) {
return 0;
}
};
//#############################################################################
lpHook::lpHook(const double* clb, const double* cub, const double* obj,
const double* rhs, const char* sense,
const CoinPackedMatrix& mat)
{
const int colnum = mat.getNumCols();
const int rownum = mat.getNumRows();
colupper_ = new double[colnum];
collower_ = new double[colnum];
objcoeffs_ = new double[colnum];
rhs_ = new double[rownum];
sense_ = new char[rownum];
std::copy(clb, clb + colnum, collower_);
std::copy(cub, cub + colnum, colupper_);
std::copy(obj, obj + colnum, objcoeffs_);
std::copy(rhs, rhs + rownum, rhs_);
std::copy(sense, sense + rownum, sense_);
if (mat.isColOrdered()) {
colMatrix_.copyOf(mat);
rowMatrix_.reverseOrderedCopyOf(mat);
} else {
rowMatrix_.copyOf(mat);
colMatrix_.reverseOrderedCopyOf(mat);
}
}
//-----------------------------------------------------------------------------
lpHook::~lpHook()
{
delete[] colupper_;
delete[] collower_;
delete[] objcoeffs_;
delete[] rhs_;
delete[] sense_;
}
//#############################################################################
int
lpHook::compute_rc(const VOL_dvector& u, VOL_dvector& rc)
{
rowMatrix_.transposeTimes(u.v, rc.v);
const int psize = rowMatrix_.getNumCols();
for (int i = 0; i < psize; ++i)
rc[i] = objcoeffs_[i] - rc[i];
return 0;
}
//-----------------------------------------------------------------------------
int
lpHook::solve_subproblem(const VOL_dvector& dual, const VOL_dvector& rc,
double& lcost, VOL_dvector& x, VOL_dvector& v,
double& pcost)
{
int i;
const int psize = x.size();
const int dsize = v.size();
// compute the lagrangean solution corresponding to the reduced costs
for (i = 0; i < psize; ++i)
x[i] = (rc[i] >= 0.0) ? collower_[i] : colupper_[i];
// compute the lagrangean value (rhs*dual + primal*rc)
lcost = 0;
for (i = 0; i < dsize; ++i)
lcost += rhs_[i] * dual[i];
for (i = 0; i < psize; ++i)
lcost += x[i] * rc[i];
// compute the rhs - lhs
colMatrix_.times(x.v, v.v);
for (i = 0; i < dsize; ++i)
v[i] = rhs_[i] - v[i];
// compute the lagrangean primal objective
pcost = 0;
for (i = 0; i < psize; ++i)
pcost += x[i] * objcoeffs_[i];
return 0;
}
//#############################################################################
int main(int argc, const char *argv[])
{
ClpSimplex model;
int status;
if (argc < 2) {
#if defined(SAMPLEDIR)
status = model.readMps(SAMPLEDIR "/p0033.mps", true);
#else
fprintf(stderr, "Do not know where to find sample MPS files.\n");
exit(1);
#endif
} else
status = model.readMps(argv[1], true);
if( status != 0 )
{
printf("Error %d reading MPS file\n", status);
return status;
}
/*
This driver uses volume algorithm
then does dual - after adjusting costs
then solves real problem
*/
// do volume for a bit
VOL_problem volprob;
const CoinPackedMatrix* mat = model.matrix();
const int psize = mat->getNumCols();
const int dsize = mat->getNumRows();
char * sense = new char[dsize];
double * rhs = new double[dsize];
const double * rowLower = model.rowLower();
const double * rowUpper = model.rowUpper();
// Set the lb/ub on the duals
volprob.dsize = dsize;
volprob.psize = psize;
volprob.dual_lb.allocate(dsize);
volprob.dual_ub.allocate(dsize);
volprob.dsol.allocate(dsize);
int i;
for (i = 0; i < dsize; ++i) {
if (rowUpper[i] == rowLower[i]) {
// 'E':
volprob.dual_lb[i] = -1.0e31;
volprob.dual_ub[i] = 1.0e31;
rhs[i] = rowUpper[i];
sense[i] = 'E';
} else if (rowLower[i] < -0.99e10 && rowUpper[i] < 0.99e10) {
// 'L':
volprob.dual_lb[i] = -1.0e31;
volprob.dual_ub[i] = 0.0;
rhs[i] = rowUpper[i];
sense[i] = 'L';
} else if (rowLower[i] > -0.99e10 && rowUpper[i] > 0.99e10) {
// 'G':
volprob.dual_lb[i] = 0.0;
volprob.dual_ub[i] = 1.0e31;
rhs[i] = rowLower[i];
sense[i] = 'G';
} else {
printf("Volume Algorithm can't work if there is a non ELG row\n");
abort();
}
}
// Can't use read_param as private
// anyway I want automatic use - so maybe this is problem
#if 0
FILE* infile = fopen("parameters", "r");
if (!infile) {
printf("Failure to open parameter file\n");
} else {
volprob.read_params("parameters");
}
#endif
#if 0
// should save and restore bounds
model.tightenPrimalBounds();
#else
double * colUpper = model.columnUpper();
for (i = 0; i < psize; i++)
colUpper[i] = 1.0;
#endif
lpHook myHook(model.getColLower(), model.getColUpper(),
model.getObjCoefficients(),
rhs, sense, *mat);
// move duals
double * pi = model.dualRowSolution();
memcpy(volprob.dsol.v, pi, dsize * sizeof(double));
volprob.solve(myHook, false /* not warmstart */);
// For now stop as not doing any good
exit(77);
// create objectives
int numberRows = model.numberRows();
int numberColumns = model.numberColumns();
memcpy(pi, volprob.dsol.v, numberRows * sizeof(double));
#define MODIFYCOSTS
#ifdef MODIFYCOSTS
double * saveObj = new double[numberColumns];
memcpy(saveObj, model.objective(), numberColumns * sizeof(double));
memcpy(model.dualColumnSolution(), model.objective(),
numberColumns * sizeof(double));
model.clpMatrix()->transposeTimes(-1.0, pi, model.dualColumnSolution());
memcpy(model.objective(), model.dualColumnSolution(),
numberColumns * sizeof(double));
const double * rowsol = model.primalRowSolution();
//const double * rowLower = model.rowLower();
//const double * rowUpper = model.rowUpper();
double offset = 0.0;
for (i = 0; i < numberRows; i++) {
offset += pi[i] * rowsol[i];
}
double value2;
model.getDblParam(ClpObjOffset, value2);
printf("Offset %g %g\n", offset, value2);
model.setRowObjective(pi);
// zero out pi
memset(pi, 0, numberRows * sizeof(double));
#endif
// Could put some in basis - only partially tested
model.allSlackBasis();
model.factorization()->maximumPivots(1000);
//model.setLogLevel(63);
// solve
model.dual(1);
//model.primal(1);
#ifdef MODIFYCOSTS
memcpy(model.objective(), saveObj, numberColumns * sizeof(double));
// zero out pi
memset(pi, 0, numberRows * sizeof(double));
model.setRowObjective(pi);
delete [] saveObj;
model.primal();
#endif
return 0;
}
|