1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<chapter id="basicmodelclasses">
<title>
Basic Model Classes
</title>
<section id="hierarchy">
<title>
Hierarchy
</title>
<para>
The basic CLP model class hierarchy is simple. The top three levels of the
hierarchy are depicted in the figure below. The first two levels (i.e.
<classname>ClpModel</classname>, <classname>ClpSimplex</classname>,
<classname>ClpInterior</classname>) contain all the problem data which define
a model (that is, a problem instance). The third level contains most of the
algorithmic aspects of CLP. There is a fourth level (for models with more general
objectives than linear ones), but a description of it is beyond the current scope
of this document.
</para>
<mediaobject>
<!-- Caption doesn't line-up nicely in HTML, leave out for now
<caption align="top">
<para>
CLP Basic Classes
</para>
</caption>
-->
<imageobject>
<imagedata fileref="figures/clpbasicmodelhier.gif" format="GIF"/>
</imageobject>
</mediaobject>
<!-- Not appropriate here and not entirely correct as worded!
<para>
The class <classname>ClpModel</classname> contains most of the problem data.
There may be a few pieces of data which could be elsewhere but which are
permanent and so they are here. The main example of this is a status array:
it makes the most sense for Simplex but has use for crossing over from any
solution.
</para>
<para>
<classname>ClpSimplex</classname> inherits from
<classname>ClpModel</classname>, as does <classname>ClpInterior</classname>.
Extra data is specific to the Simplex Algorithm and can be transient, e.g.
scaling arrays. Normally a user will just be dealing with the
<classname>ClpSimplex</classname> class and not with the
<classname>ClpModel</classname> class.
</para>
-->
<para>
Most Simplex users need only concern themselves with the classes
<classname>ClpModel</classname> and <classname>ClpSimplex</classname>. There
are algorithm-specific classes which inherit from
<classname>ClpSimplex</classname> (e.g. <classname>ClpSimplexDual</classname>
and <classname>ClpSimplexPrimal</classname>), but they have no member data and
rarely need be visible to the user. These classes are cast at algorithm
time. So, for example, after instantiating an object
<userinput>model</userinput> of type <classname>ClpSimplex</classname>,
a user only need call <userinput>model.dual()</userinput> to invoke the dual
simplex method.
</para>
</section>
<section id="firstexample">
<title>
First Example
</title>
<para>
Below is our first CLP sample program. It is short enough to present in full
(this code can be found in the CLP Samples directory, see
<xref linkend="moreexamples"/>). Most of the remaining examples in this Guide
will take the form of small code fragments.
</para>
<example>
<title>minimum.cpp</title>
<programlisting>
<![CDATA[
// Copyright (C) 2002, International Business Machines
// Corporation and others. All Rights Reserved.
#include "ClpSimplex.hpp"
int main (int argc, const char *argv[])
{
ClpSimplex model;
int status;
if (argc<2)
status=model.readMps("../../Mps/Sample/p0033.mps");
else
status=model.readMps(argv[1]);
if (!status) {
model.primal();
}
return 0;
}
]]>
</programlisting>
</example>
<para>
This sample program creates a <classname>ClpSimplex</classname> model,
reads an MPS file, and if there are no errors, solves it using the primal
algorithm. The program is easy to follow, but it is not terribly useful:
it does not attempt to inspect the results of the solve. There are two main
kinds of results: a "status" describing what happened to the model
during the solve, and arrays filled with solution values. Both will be
addressed in this chapter.
</para>
</section>
<section id="gettingsolution">
<title>
Getting at the Solution
</title>
<para>
It is often the case with CLP that there is more than one way to do something.
This is a consequence of CLP's mixed heritage as a child of
<ulink url="http://www-306.ibm.com/software/data/bi/osl/">OSL</ulink>
and a cousin of <ulink url="http://www.coin-or.org/faqs.html#OSI">OSI</ulink>.
Finding the status of a model exemplifies this situation.
</para>
<para>
The OSI way to check for optimality is to call model.isProvenOptimal(). Also
available are <function>isProvenPrimalInfeasible()</function>,
<function>isProvenDualInfeasible()</function>,
<function>isPrimalObjectiveLimitReached()</function>,
<function>isDualObjectiveLimitReached()</function>,
<function>isIterationLimitReached()</function> or the feared
<function>isAbandoned()</function>. Should one prefer the OSL way of doing
things, model.status() returns as it would in OSL, so 0 means optimal,
1 means primal infeasible etc.
</para>
<para>
Similarly, to pick up the solution values, one could inhabit the virtuous
world of OSI, or the not-quite-so-virtuous world of OSL and "pure"
CLP. By this it is meant that const and non-const forms of arrays are used,
respectively. It is easier to deal with the non-const versions, so most of
the elaborate algorithms in CLP and its
<link linkend="moresamples">Samples</link> use them.
</para>
<table frame="none">
<title>
Methods for getting solution information
</title>
<tgroup cols="3">
<thead>
<row>
<entry>
Purpose
</entry>
<entry>
OSI-style (virtuous)
</entry>
<entry>
CLP-style (less virtuous)
</entry>
</row>
</thead>
<tbody>
<row>
<entry align="left" valign="top">
Primal column solution
</entry>
<entry align="left" valign="top">
<function>const double * getColSolution()</function>
</entry>
<entry align="left" valign="top">
<function>double * primalColumnSolution()</function>
</entry>
</row>
<row>
<entry align="left" valign="top">
Dual row solution
</entry>
<entry align="left" valign="top">
<function>const double * getRowPrice()</function>
</entry>
<entry align="left" valign="top">
<function>double * dualColumnSolution()</function>
</entry>
</row>
<row>
<entry align="left" valign="top">
Primal row solution
</entry>
<entry align="left" valign="top">
<function>const double * getRowActivity()</function>
</entry>
<entry align="left" valign="top">
<function>double * primalRowSolution()</function>
</entry>
</row>
<row>
<entry align="left" valign="top">
Dual row solution
</entry>
<entry align="left" valign="top">
<function>const double * getReducedCost()</function>
</entry>
<entry align="left" valign="top">
<function>double * dualColumnSolution()</function>
</entry>
</row>
<row>
<entry align="left" valign="top">
Number of rows in model
</entry>
<entry align="left" valign="top">
<function>int getNumRows()</function>
</entry>
<entry align="left" valign="top">
<function>int numberRows()</function>
</entry>
</row>
<row>
<entry align="left" valign="top">
Number of columns in model
</entry>
<entry align="left" valign="top">
<function>int getNumCols()</function>
</entry>
<entry align="left" valign="top">
<function>int numberColumns()</function>
</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
The reader may have noted a preference for "number" over
"num" and "column" over "col". This may be a
reaction to when one of the authors was young and 5 or 6 letters was the
maximum in FORTRAN for any name or to early days with OSL when seven characters
were allowed but the first three had to be "ekk"!
</para>
<para>
Using the above-listed functions, our
<link linkend="firstexample">initial example</link> might be continued as follows:
</para>
<example>
<title>
Possible extension of minimum.cpp
</title>
<programlisting>
<![CDATA[
int numberRows = model.numberRows();
double * rowPrimal = model.primalRowSolution();
double * rowDual = model.dualRowSolution();
int iRow;
for (iRow=0;iRow<numberRows;iRow++)
printf("Row %d, primal %g, dual %g\n",iRow,
rowPrimal[iRow],rowDual[iRow]);
int numberColumns = model.numberColumns();
double * columnPrimal = model.primalColumnSolution();
double * columnDual = model.dualColumnSolution();
int iColumn;
for (iColumn=0;iColumn<numberColumns;iColumn++)
printf("Column %d, primal %g, dual %g\n",iColumn,
columnPrimal[iColumn],columnDual[iColumn]);
]]>
</programlisting>
</example>
<para>
This code sample would pretty-print information about the model's primal and
dual solutions. How to additionally print row and column names is
illustrated in the <filename>defaults.cpp</filename> file in the
"Samples" directory (the Samples are properly addressed
in <xref linkend="moreexamples" />). This sample is also useful as it
explicitly performs default actions (e.g. it sets the primal feasiblility
tolerance value to the default value).
</para>
<para>
The remainder of this chapter will show more of the basic CLP tasks a user
might wish to perform. Apart from presolve we will only be looking at actions
which can be performed when including the single header file
<filename>COIN/Clp/include/ClpSimplex.hpp</filename>.
</para>
</section>
<section id="buildandmodify">
<title>
Building and Modifying a Model
</title>
<para>
Rather than reading a model from an MPS file we can load a model from arrays
in memory. There are various <function>loadProblem</function> methods which
are similar to those in OSI. It is easy to add more such methods to CLP if the need arises.
</para>
<para>We can copy in integer information by
<function>copyInIntegerInformation(const char * array)</function> where array
is 0 or 1 to say integer and we can drop existing information by
<function>deleteIntegerInformation()</function>. There are various ways of
changing the size of a model. The simplest is by the use of the method
<function>resize(newNumberRows,newNumberColumns)</function> - this will either
truncate the model or add "default" rows or columns - a default row
has lower bound of -infinity and upper bound of +infinity, while a default
column has zero cost, zero lower bound and an upper bound of +infinity.
</para>
<para>
Normally we would use <function>deleteRows</function>,
<function>addRows</function>, <function>deleteColumns</function> and
<function>addColumns</function>, where the <function>add</function> methods
will also add in the elements. A potentially very useful way of modifying a model is strictly a
constructor. Given a large model and a list of rows and a list of columns it
constructs the model as a subset of the large model. It is possible to change
the order of the columns/rows and to duplicate columns/rows. So a list of
columns 4,4,1,0 will create a new model where the first two columns are copies
of column 4 in original model and the next two are the first two of original
model in reverse order. This can be useful to form a model with piecewise
linear costs by duplicating columns and then modifying bounds and costs.
</para>
</section>
<section id="tolerances">
<title>Tolerances</title>
<para>
There are set and get methods for tolerances, for example,
<function>double primalTolerance()</function> and
<function>setPrimalTolerance(double)</function>. Assuming that one has a
minimization problem, an individual variable is deemed primal feasible if it
is less than the tolerance referred to by these methods below its lower bound
and less than it above its upper bound. Similarly for dual tolerances, a
variable is deemed to be dual feasible if its reduced cost is greater than
minus the tolerance or its distance to the upper bound is less than primal
tolerance and the reduced cost is less than plus the tolerance or the distance
to lower bound is less than primal tolerance. In short, this is complementarity
conditions adadpted for tolerances and simple lower and upper bounds.(Note
that the above was stated as for minimization; signs are reversed for
maximization.)
</para>
</section>
<section id="setsandgets">
<title>Some Useful Set and Get Methods</title>
<table frame="none">
<title>Some Useful Set and Get Methods</title>
<tgroup cols="2">
<thead>
<row>
<entry>
Method(s)
</entry>
<entry>
Description
</entry>
</row>
</thead>
<tbody>
<row>
<entry align="left" valign="top">
<function>setMaximumIterations(int value)</function><sbr/>
<function>int maximumIterations()</function><sbr/>
<function>setMaximumSeconds(double value)</function><sbr/>
<function>double maximumIterations()</function>
</entry>
<entry align="left" valign="top">
These methods tell CLP to stop after a given number of iterations or
seconds (and returns these values).
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>double objectiveValue()</function>
</entry>
<entry align="left" valign="top">
This method returns the objective value.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>const double * getObjCoefficients()</function><sbr/>
<function>double * objective()</function>
</entry>
<entry align="left" valign="top">
These methods return the objective coefficients.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>const double * getRowLower()</function><sbr/>
<function>double * rowLower()</function><sbr/>
<function>const double * getRowUpper()</function><sbr/>
<function>double * rowUpper()</function><sbr/>
<function>const double * getColLower()</function><sbr/>
<function>double * columnLower()</function><sbr/>
<function>const double * getColUpper()</function><sbr/>
<function>double * columnUpper()</function>
</entry>
<entry align="left" valign="top">
These methods give lower and upper bounds on row and column activities.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>double * infeasibilityRay()</function><sbr/>
<function>double * unboundedRay()</function>
</entry>
<entry align="left" valign="top">
If the problem was primal or dual infeasible, these methods will give a
pointer to a ray proving infeasibility.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>CoinPackMatrix * matrix()</function>
</entry>
<entry align="left" valign="top">
There are more options as the user has great flexibility in how the problem
matrix is stored, but the default matrix class is
<classname>CoinPackedMatrix</classname> (see
<xref linkend="matrixclasses"/>).
So we have that this method returns a pointer to a
<classname>CoinPackedMatrix</classname> which can be further manipulated.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>CoinBigIndex getNumElements()</function>
<footnote>
<para>
<type>CoinBigIndex</type> is a <function>typedef</function> which in
most cases is the same as <type>int</type>.
</para>
</footnote>
</entry>
<entry align="left" valign="top">
Returns the number of elements in the problem matrix.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>void setOptimizationDirection(double value)</function><sbr/>
<function>double optimizationDirection()</function>
</entry>
<entry align="left" valign="top">
These methods set and get the objective sense. The parameter
<parameter>value</parameter> should be +1 to minimize, -1 to maximize,
and 0 to ignore.
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="simplexspecific">
<title>
Simplex-specific Methods
</title>
<para>
Some of the most commonly-used methods when working with Simplex are listed in
the table below.
</para>
<table frame="none">
<title>Common Simplex-specific methods</title>
<tgroup cols="2">
<thead>
<row>
<entry>
Method(s)
</entry>
<entry>
Description
</entry>
</row>
</thead>
<tbody>
<row>
<entry align="left" valign="top">
<function>primal(int mode=0)</function>
</entry>
<entry align="left" valign="top">
This applies the primal algorithm. If <parameter>mode</parameter> is
set to the default of 0, then the method uses the status variables to
determine basis and solution. If <parameter>mode</parameter> is 1 then
the method does a values pass so variables not in basis are given their
current values and one pass of variables is done to clean up the basis
with an equal or better objective value.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>dual(int mode=0)</function>
</entry>
<entry align="left" valign="top">
This applies the dual algorithm. if <parameter>mode</parameter> is set
to the default of 0, then the method uses the status variables to
determine basis and solution. If <parameter>mode</parameter> is 1 then
the method uses input duals and does a values pass so one pass of basic
variables is done to clean up the duals with an equal or better objective
value.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>scaling(int mode=1)</function>
</entry>
<entry align="left" valign="top">
This method toggles scaling on (<parameter>mode</parameter> set to 1)
and off (<parameter>mode</parameter> set to 0).
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>int crash(double gap,int mode)</function>
</entry>
<entry align="left" valign="top">
This method attemps to improve on an all slack basis.
For dual this will move variables to the dual feasible bound
if the gap between bounds is less than <parameter>gap</parameter>. Setting
<parameter>mode</parameter> to 0 guesses which algorithm is better, while
a value of 1 or 2 will result in more work being done. The return code is
0 if the basis was not slacks in first case, it is negative if dual is
preferred or positive if primal. ±1 means an all slack basis seemed
best, while ±2 means some work was done.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>perturb(int mode)</function>
</entry>
<entry align="left" valign="top">
This method toggles perturbation on (<parameter>mode</parameter> set to 1)
and off (<parameter>mode</parameter> set to 0). It should be considered
a work in progress, although on some problems it gives very good results.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>factorizationFrequency()</function><sbr/>
<function>setFactorizationFrequency(int value)</function>
</entry>
<entry align="left" valign="top">
These are "get" and "set" methods for the basis matrix
factorization frequency. The default is to refactor every 200 iterations,
but it may make more sense to use something such as 100 + the number of
rows divided by 50.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>dualBound()</function><sbr/>
<function>setDualBound(double value)</function>
</entry>
<entry align="left" valign="top">
These are "get" and "set" methods for the
"dual bound". The CLP dual algorithm declares all problems
to be dual feasible by putting non-basic variables to correct bounds for
the reduced cost. If the gap between the bounds is too big then it
pretends the gap is only the value specified by this set method.
In essence, this gives a composite dual rather than a pure
Phase I- Phase II method.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>infeasibilityCost()</function><sbr/>
<function>setInfeasibilityCost(double value)</function>
</entry>
<entry align="left" valign="top">
These are the primal analogs to the "dual bound" methods.
</entry>
</row>
<row>
<entry align="left" valign="top">
<function>numberPrimalInfeasibilities()</function><sbr/>
<function>sumPrimalInfeasibilities()</function>
</entry>
<entry align="left" valign="top">
After a solve, there may be infeasibilities. These methods serve to
check for said infeasibilities. One could check the solution explicitly
as well. For a code fragement illustrating this, see
<xref linkend="presolveexample"/>.
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="presolve">
<title>
Presolve
</title>
<para>
The header file for the use of CLP's presolve functionality is
<filename>COIN/Clp/include/Presolve.hpp</filename>. The sample program below
illustrates some of the possibilities offered by CLP's presolve:
</para>
<example id="presolveexample">
<title>Presolve code fragment</title>
<programlisting>
#include "ClpSimplex.hpp"
#include "ClpPresolve.hpp"
int main (int argc, const char *argv[])
{
ClpSimplex model;
model.readMps("../../Mps/Sample/p0033.mps"); // initialized by readMps or whatever
ClpPresolve presolveInfo;
ClpSimplex * presolvedModel = presolveInfo.presolvedModel(model);
// at this point we have original model and a new model. The information
// on the operations done is in presolveInfo
if (presolvedModel) {
// was not found to be infeasible - so lets solve
// if presolvedModel was NULL then it was primal infeasible and ...
presolvedModel->dual(); // or whatever else we wish to do
presolveInfo.postsolve(true); // the true updates status arrays in original
/* If the presolved model was optimal then so should the
original be.
We can use checkSolution and test feasibility */
model.checkSolution();
if (model.numberDualInfeasibilities()||
model.numberPrimalInfeasibilities())
printf("%g dual %g(%d) Primal %g(%d)\n",
model.objectiveValue(),
model.sumDualInfeasibilities(),
model.numberDualInfeasibilities(),
model.sumPrimalInfeasibilities(),
model.numberPrimalInfeasibilities());
// Due to tolerances we can not guarantee that so you may wish to throw in
model.primal(1);
}
}
</programlisting>
</example>
<para>
Presolve has a few more options which can be found in the header file, for
example whether to treat as an integer problem or whether to keep row and
column names.
</para>
</section>
<section id="statusarray">
<title>Status Array</title>
<para>
The astute reader may have noticed that the status array has been mentioned
once or twice. The beginning user will not need to look at it Nevertheless,
for completeness the status of a variable can be found and set as shown below.
The possible state of a variable are listed in the following table (each may
have to be preceded by ClpSimplex::):
</para>
<table frame="none">
<title>Possible states of a variable</title>
<tgroup cols="2">
<thead>
<row>
<entry>
<type>Status</type><footnote><para><type>Status</type>
is an enumeration.</para></footnote>
</entry>
<entry>
Description
</entry>
</row>
</thead>
<tbody>
<row>
<entry align="left" valign="top">
<constant>basic</constant>
</entry>
<entry align="left" valign="top">
In basis
</entry>
</row>
<row>
<entry align="left" valign="top">
<constant>isFree</constant>
</entry>
<entry align="left" valign="top">
Not in basis, has infinite bounds
</entry>
</row>
<row>
<entry align="left" valign="top">
<constant>isFixed</constant>
</entry>
<entry align="left" valign="top">
Not in basis, bounds are equal
</entry>
</row>
<row>
<entry align="left" valign="top">
<constant>atUpperBound</constant>
</entry>
<entry align="left" valign="top">
At upper bound, not in basis
</entry>
</row>
<row>
<entry align="left" valign="top">
<constant>atLowerBound</constant>
</entry>
<entry align="left" valign="top">
At lower bound, not in basis
</entry>
</row>
<row>
<entry align="left" valign="top">
<constant>superBasic</constant>
</entry>
<entry align="left" valign="top">
Between bounds, but not basic or free
</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
To get or set the status of a variable is a simple task:
</para>
<programlisting>
// Get row status...
Status status=model.getRowStatus(sequenceNumber)
// ... or get column status.
Status status=model.getColumnStatus(sequenceNumber)
// Set row status to basic (for example)...
model.setRowStatus(sequenceNumber,ClpSimplex::basic)
// ... or column status to basic.
model.setColumnStatus(sequenceNumber,ClpSimplex::basic)
</programlisting>
</section>
</chapter>
|