1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
|
/**
* Author: Mark Larkin
*
* Copyright (c) 2007 Des Higgins, Julie Thompson and Toby Gibson.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "NJTree.h"
namespace clustalw
{
/****************************************************************************
* [ Improvement ideas in fast_nj_tree() ] by DDBJ & FUJITSU Limited.
* written by Tadashi Koike
* (takoike@genes.nig.ac.jp)
*******************
* <IMPROVEMENT 1> : Store the value of sum of the score to temporary array,
* and use again and again.
*
* In the main cycle, these are calculated again and again :
* diq = sum of distMat[n][ii] (n:1 to lastSeq-firstSeq+1),
* djq = sum of distMat[n][jj] (n:1 to lastSeq-firstSeq+1),
* dio = sum of distMat[n][mini] (n:1 to lastSeq-firstSeq+1),
* djq = sum of distMat[n][minj] (n:1 to lastSeq-firstSeq+1)
* // 'lastSeq' and 'firstSeq' are both constant values //
* and the result of above calculations is always same until
* a best pair of neighbour nodes is joined.
*
* So, we change the logic to calculate the sum[i] (=sum of distMat[n][i]
* (n:1 to lastSeq-firstSeq+1)) and store it to array, before
* beginning to find a best pair of neighbour nodes, and after that
* we use them again and again.
*
* tmat[i][j]
* 1 2 3 4 5
* +---+---+---+---+---+
* 1 | | | | | |
* +---+---+---+---+---+
* 2 | | | | | | 1) calculate sum of distMat[n][i]
* +---+---+---+---+---+ (n: 1 to lastSeq-firstSeq+1)
* 3 | | | | | | 2) store that sum value to sum[i]
* +---+---+---+---+---+
* 4 | | | | | | 3) use sum[i] during finding a best
* +---+---+---+---+---+ pair of neibour nodes.
* 5 | | | | | |
* +---+---+---+---+---+
* | | | | |
* V V V V V Calculate sum , and store it to sum[i]
* +---+---+---+---+---+
* sum[i] | | | | | |
* +---+---+---+---+---+
*
* At this time, we thought that we use upper triangle of the matrix
* because distMat[i][j] is equal to distMat[j][i] and distMat[i][i] is equal
* to zero. Therefore, we prepared sum_rows[i] and sum_cols[i] instead
* of sum[i] for storing the sum value.
*
* distMat[i][j]
* 1 2 3 4 5 sum_cols[i]
* +---+---+---+---+---+ +---+
* 1 | # | # | # | # | --> | | ... sum of distMat[1][2..5]
* + - +---+---+---+---+ +---+
* 2 | # | # | # | --> | | ... sum of distMat[2][3..5]
* + - + - +---+---+---+ +---+
* 3 | # | # | --> | | ... sum of distMat[3][4..5]
* + - + - + - +---+---+ +---+
* 4 | # | --> | | ... sum of distMat[4][5]
* + - + - + - + - +---+ +---+
* 5 | --> | | ... zero
* + - + - + - + - + - + +---+
* | | | | |
* V V V V V Calculate sum , sotre to sum[i]
* +---+---+---+---+---+
* sum_rows[i] | | | | | |
* +---+---+---+---+---+
* | | | | |
* | | | | +----- sum of distMat[1..4][5]
* | | | +--------- sum of distMat[1..3][4]
* | | +------------- sum of distMat[1..2][3]
* | +----------------- sum of distMat[1][2]
* +--------------------- zero
*
* And we use (sum_rows[i] + sum_cols[i]) instead of sum[i].
*
*******************
* <IMPROVEMENT 2> : We manage valid nodes with chain list, instead of
* tkill[i] flag array.
*
* In original logic, invalid(killed?) nodes after nodes-joining
* are managed with tkill[i] flag array (set to 1 when killed).
* By this method, it is conspicuous to try next node but skip it
* at the latter of finding a best pair of neighbor nodes.
*
* So, we thought that we managed valid nodes by using a chain list
* as below:
*
* 1) declare the list structure.
* struct {
* sint n; // entry number of node.
* void *prev; // pointer to previous entry.
* void *next; // pointer to next entry.
* }
* 2) construct a valid node list.
*
* +-----+ +-----+ +-----+ +-----+ +-----+
* NULL<-|prev |<---|prev |<---|prev |<---|prev |<- - - -|prev |
* | 0 | | 1 | | 2 | | 3 | | n |
* | next|--->| next|--->| next|--->| next|- - - ->| next|->NULL
* +-----+ +-----+ +-----+ +-----+ +-----+
*
* 3) when finding a best pair of neighbor nodes, we use
* this chain list as loop counter.
*
* 4) If an entry was killed by node-joining, this chain list is
* modified to remove that entry.
*
* EX) remove the entry No 2.
* +-----+ +-----+ +-----+ +-----+
* NULL<-|prev |<---|prev |<--------------|prev |<- - - -|prev |
* | 0 | | 1 | | 3 | | n |
* | next|--->| next|-------------->| next|- - - ->| next|->NULL
* +-----+ +-----+ +-----+ +-----+
* +-----+
* NULL<-|prev |
* | 2 |
* | next|->NULL
* +-----+
*
* By this method, speed is up at the latter of finding a best pair of
* neighbor nodes.
*
*******************
* <IMPROVEMENT 3> : Cut the frequency of division.
*
* At comparison between 'total' and 'tmin' in the main cycle, total is
* divided by (2.0*fnseqs2) before comparison. If N nodes are available,
* that division happen (N*(N-1))/2 order.
*
* We thought that the comparison relation between tmin and total/(2.0*fnseqs2)
* is equal to the comparison relation between (tmin*2.0*fnseqs2) and total.
* Calculation of (tmin*2.0*fnseqs2) is only one time. so we stop dividing
* a total value and multiply tmin and (tmin*2.0*fnseqs2) instead.
*
*******************
* <IMPROVEMENT 4> : some transformation of the equation (to cut operations).
*
* We transform an equation of calculating 'total' in the main cycle.
*
*/
void NJTree::generateTree(clustalw::PhyloTree* phyTree,
clustalw::DistMatrix* distMat,
clustalw::SeqInfo* seqInfo,
ofstream* log)
{
if (log == NULL)
{
verbose = false;
}
register int i;
int l[4], nude, k;
int nc, mini, minj, j, ii, jj;
double fnseqs, fnseqs2 = 0, sumd;
double diq, djq, dij, dio, djo, da;
double tmin, total, dmin;
double bi, bj, b1, b2, b3, branch[4];
int typei, typej; /* 0 = node; 1 = OTU */
int firstSeq = seqInfo->firstSeq;
int lastSeq = seqInfo->lastSeq;
int numSeqs = seqInfo->numSeqs;
/* IMPROVEMENT 1, STEP 0 : declare variables */
double *sumCols, *sumRows, *join;
sumCols = new double[numSeqs + 1];
sumRows = new double[numSeqs + 1];
join = new double[numSeqs + 1];
/* IMPROVEMENT 2, STEP 0 : declare variables */
int loop_limit;
typedef struct _ValidNodeID
{
int n;
struct _ValidNodeID *prev;
struct _ValidNodeID *next;
} ValidNodeID;
ValidNodeID *tvalid, *lpi, *lpj, *lpii, *lpjj, *lp_prev, *lp_next;
/*
* correspondence of the loop counter variables.
* i .. lpi->n, ii .. lpii->n
* j .. lpj->n, jj .. lpjj->n
*/
fnseqs = (double)lastSeq - firstSeq + 1;
/*********************** First initialisation ***************************/
if (verbose)
{
(*log) << "\n\n\t\t\tNeighbor-joining Method\n"
<< "\n Saitou, N. and Nei, M. (1987)" << " The Neighbor-joining Method:"
<< "\n A New Method for Reconstructing Phylogenetic Trees."
<< "\n Mol. Biol. Evol., 4(4), 406-425\n" << "\n\n This is an UNROOTED tree\n"
<< "\n Numbers in parentheses are branch lengths\n\n";
}
if (fnseqs == 2)
{
if (verbose)
{
(*log) << "Cycle 1 = SEQ: 1 (" << setw(9) << setprecision(5)
<< (*distMat)(firstSeq, firstSeq + 1)
<< ") joins SEQ: 2 ("
<< setw(9) << setprecision(5)
<< (*distMat)(firstSeq, firstSeq + 1) << ")";
}
return ;
}
mini = minj = 0;
/* IMPROVEMENT 1, STEP 1 : Allocate memory */
/* IMPROVEMENT 1, STEP 2 : Initialize arrays to 0 */
phyTree->leftBranch.resize(numSeqs + 2, 0.0);
phyTree->rightBranch.resize(numSeqs + 2, 0.0);
tkill.resize(numSeqs + 1, 0);
av.resize(numSeqs + 1, 0.0);
/* IMPROVEMENT 2, STEP 1 : Allocate memory */
tvalid = new ValidNodeID[numSeqs + 1];
/* tvalid[0] is special entry in array. it points a header of valid entry list */
tvalid[0].n = 0;
tvalid[0].prev = NULL;
tvalid[0].next = &tvalid[1];
/* IMPROVEMENT 2, STEP 2 : Construct and initialize the entry chain list */
for (i = 1, loop_limit = lastSeq - firstSeq + 1, lpi = &tvalid[1],
lp_prev = &tvalid[0], lp_next = &tvalid[2]; i <= loop_limit; ++i,
++lpi, ++lp_prev, ++lp_next)
{
(*distMat)(i, i) = av[i] = 0.0;
tkill[i] = 0;
lpi->n = i;
lpi->prev = lp_prev;
lpi->next = lp_next;
}
tvalid[loop_limit].next = NULL;
/*
* IMPROVEMENT 1, STEP 3 : Calculate the sum of score value that
* is sequence[i] to others.
*/
double matValue;
sumd = 0.0;
for (lpj = tvalid[0].next; lpj != NULL; lpj = lpj->next)
{
double tmp_sum = 0.0;
j = lpj->n;
/* calculate sumRows[j] */
for (lpi = tvalid[0].next; lpi->n < j; lpi = lpi->next)
{
i = lpi->n;
matValue = (*distMat)(i, j);
tmp_sum = tmp_sum + matValue;
}
sumRows[j] = tmp_sum;
tmp_sum = 0.0;
/* Set lpi to that lpi->n is greater than j */
if ((lpi != NULL) && (lpi->n == j))
{
lpi = lpi->next;
}
/* calculate sumCols[j] */
for (; lpi != NULL; lpi = lpi->next)
{
i = lpi->n;
tmp_sum += (*distMat)(j, i);
}
sumCols[j] = tmp_sum;
}
/*********************** Enter The Main Cycle ***************************/
for (nc = 1, loop_limit = (lastSeq - firstSeq + 1-3); nc <= loop_limit; ++nc)
{
sumd = 0.0;
/* IMPROVEMENT 1, STEP 4 : use sum value */
for (lpj = tvalid[0].next; lpj != NULL; lpj = lpj->next)
{
sumd += sumCols[lpj->n];
}
/* IMPROVEMENT 3, STEP 0 : multiply tmin and 2*fnseqs2 */
fnseqs2 = fnseqs - 2.0; /* Set fnseqs2 at this point. */
tmin = 99999.0 * 2.0 * fnseqs2;
/*.................compute SMATij values and find the smallest one ........*/
mini = minj = 0;
/* jj must starts at least 2 */
if ((tvalid[0].next != NULL) && (tvalid[0].next->n == 1))
{
lpjj = tvalid[0].next->next;
}
else
{
lpjj = tvalid[0].next;
}
for (; lpjj != NULL; lpjj = lpjj->next)
{
jj = lpjj->n;
for (lpii = tvalid[0].next; lpii->n < jj; lpii = lpii->next)
{
ii = lpii->n;
diq = djq = 0.0;
/* IMPROVEMENT 1, STEP 4 : use sum value */
diq = sumCols[ii] + sumRows[ii];
djq = sumCols[jj] + sumRows[jj];
/*
* always ii < jj in this point. Use upper
* triangle of score matrix.
*/
dij = (*distMat)(ii, jj);
/*
* IMPROVEMENT 3, STEP 1 : fnseqs2 is
* already calculated.
*/
/* fnseqs2 = fnseqs - 2.0 */
/* IMPROVEMENT 4 : transform the equation */
/*-------------------------------------------------------------------*
* OPTIMIZE of expression 'total = d2r + fnseqs2*dij + dr*2.0' *
* total = d2r + fnseq2*dij + 2.0*dr *
* = d2r + fnseq2*dij + 2(sumd - dij - d2r) *
* = d2r + fnseq2*dij + 2*sumd - 2*dij - 2*d2r *
* = fnseq2*dij + 2*sumd - 2*dij - 2*d2r + d2r *
* = fnseq2*dij + 2*sumd - 2*dij - d2r *
* = fnseq2*dij + 2*sumd - 2*dij - (diq + djq - 2*dij) *
* = fnseq2*dij + 2*sumd - 2*dij - diq - djq + 2*dij *
* = fnseq2*dij + 2*sumd - 2*dij + 2*dij - diq - djq *
* = fnseq2*dij + 2*sumd - diq - djq *
*-------------------------------------------------------------------*/
total = fnseqs2 * dij + 2.0 * sumd - diq - djq;
/*
* IMPROVEMENT 3, STEP 2 : abbrevlate
* the division on comparison between
* total and tmin.
*/
/* total = total / (2.0*fnseqs2); */
if (total < tmin)
{
tmin = total;
mini = ii;
minj = jj;
}
}
}
/* MEMO: always ii < jj in avobe loop, so mini < minj */
/*.................compute branch lengths and print the results ........*/
dio = djo = 0.0;
/* IMPROVEMENT 1, STEP 4 : use sum value */
dio = sumCols[mini] + sumRows[mini];
djo = sumCols[minj] + sumRows[minj];
dmin = (*distMat)(mini, minj);
dio = (dio - dmin) / fnseqs2;
djo = (djo - dmin) / fnseqs2;
bi = (dmin + dio - djo) *0.5;
bj = dmin - bi;
bi = bi - av[mini];
bj = bj - av[minj];
#if 0
(*log) << endl << "*** cycle " << nc << endl;
(*log) << "dmin = " << setw(9) << right << setprecision(9) << dmin << endl;
(*log) << "dio = " << setw(9) << right << setprecision(9) << dio << endl;
(*log) << "djo = " << setw(9) << right << setprecision(9) << djo << endl;
(*log) << "bi = " << setw(9) << right << setprecision(9) << bi << endl;
(*log) << "bj = " << setw(9) << right << setprecision(9) << bj << endl;
(*log) << "mini = " << setw(9) << mini << endl;
(*log) << "minj = " << setw(9) << minj << endl;
(*log) << "av[minj] = " << setw(9) << right << setprecision(9) << av[minj] << endl;
(*log) << "av[minj] = " << setw(9) << right << setprecision(9) << av[minj] << endl;
#endif
if (av[mini] > 0.0)
{
typei = 0;
}
else
{
typei = 1;
}
if (av[minj] > 0.0)
{
typej = 0;
}
else
{
typej = 1;
}
if (verbose)
{
(*log) << "\n Cycle" << setw(4) << nc << " = ";
}
/*
set (tiny? (AW&FS)) negative branch lengths to zero. Also set any tiny positive
branch lengths to zero.
*/
if (fabs(bi) < 0.0001)
{
bi = 0.0;
}
if (fabs(bj) < 0.0001)
{
bj = 0.0;
}
if (verbose)
{
if (typei == 0)
{
(*log) << "Node:" << setw(4) << mini << " (" << setw(9) << setprecision(5)
<< bi << ") joins ";
}
else
{
(*log) << " SEQ:" << setw(4) << mini << " (" << setw(9) << setprecision(5)
<< bi << ") joins ";
}
if (typej == 0)
{
(*log) << "Node:" << setw(4) << minj << " (" << setw(9) << setprecision(5)
<< bj << ")";
}
else
{
(*log) << " SEQ:" << setw(4) << minj << " (" << setw(9) << setprecision(5)
<< bj << ")";
}
(*log) << "\n";
}
phyTree->leftBranch[nc] = bi;
phyTree->rightBranch[nc] = bj;
for (i = 1; i <= lastSeq - firstSeq + 1; i++)
{
phyTree->treeDesc[nc][i] = 0;
}
if (typei == 0)
{
for (i = nc - 1; i >= 1; i--)
if (phyTree->treeDesc[i][mini] == 1)
{
for (j = 1; j <= lastSeq - firstSeq + 1; j++)
if (phyTree->treeDesc[i][j] == 1)
{
phyTree->treeDesc[nc][j] = 1;
}
break;
}
}
else
{
phyTree->treeDesc[nc][mini] = 1;
}
if (typej == 0)
{
for (i = nc - 1; i >= 1; i--)
if (phyTree->treeDesc[i][minj] == 1)
{
for (j = 1; j <= lastSeq - firstSeq + 1; j++)
if (phyTree->treeDesc[i][j] == 1)
{
phyTree->treeDesc[nc][j] = 1;
}
break;
}
}
else
{
phyTree->treeDesc[nc][minj] = 1;
}
/*
Here is where the -0.00005 branch lengths come from for 3 or more
identical seqs.
*/
/* if(dmin <= 0.0) dmin = 0.0001; */
if (dmin <= 0.0)
{
dmin = 0.000001;
}
av[mini] = dmin * 0.5;
/*........................Re-initialisation................................*/
fnseqs = fnseqs - 1.0;
tkill[minj] = 1;
/* IMPROVEMENT 2, STEP 3 : Remove tvalid[minj] from chain list. */
/* [ Before ]
* +---------+ +---------+ +---------+
* |prev |<-------|prev |<-------|prev |<---
* | n | | n(=minj)| | n |
* | next|------->| next|------->| next|----
* +---------+ +---------+ +---------+
*
* [ After ]
* +---------+ +---------+
* |prev |<--------------------------|prev |<---
* | n | | n |
* | next|-------------------------->| next|----
* +---------+ +---------+
* +---------+
* NULL---|prev |
* | n(=minj)|
* | next|---NULL
* +---------+
*/
(tvalid[minj].prev)->next = tvalid[minj].next;
if (tvalid[minj].next != NULL)
{
(tvalid[minj].next)->prev = tvalid[minj].prev;
}
tvalid[minj].prev = tvalid[minj].next = NULL;
/* IMPROVEMENT 1, STEP 5 : re-calculate sum values. */
for (lpj = tvalid[0].next; lpj != NULL; lpj = lpj->next)
{
double tmp_di = 0.0;
double tmp_dj = 0.0;
j = lpj->n;
/*
* subtrace a score value related with 'minj' from
* sum arrays .
*/
if (j < minj)
{
tmp_dj = (*distMat)(j, minj);
sumCols[j] -= tmp_dj;
}
else if (j > minj)
{
tmp_dj = (*distMat)(minj, j);
sumRows[j] -= tmp_dj;
} /* nothing to do when j is equal to minj. */
/*
* subtrace a score value related with 'mini' from
* sum arrays .
*/
if (j < mini)
{
tmp_di = (*distMat)(j, mini);
sumCols[j] -= tmp_di;
}
else if (j > mini)
{
tmp_di = (*distMat)(mini, j);
sumRows[j] -= tmp_di;
} /* nothing to do when j is equal to mini. */
/*
* calculate a score value of the new inner node.
* then, store it temporary to join[] array.
*/
join[j] = (tmp_dj + tmp_di) *0.5;
}
/*
* 1)
* Set the score values (stored in join[]) into the matrix,
* row/column position is 'mini'.
* 2)
* Add a score value of the new inner node to sum arrays.
*/
for (lpj = tvalid[0].next; lpj != NULL; lpj = lpj->next)
{
j = lpj->n;
if (j < mini)
{
distMat->SetAt(j, mini, join[j]);
sumCols[j] += join[j];
}
else if (j > mini)
{
distMat->SetAt(mini, j, join[j]);
sumRows[j] += join[j];
} /* nothing to do when j is equal to mini. */
}
/* Re-calculate sumRows[mini],sumCols[mini]. */
sumCols[mini] = sumRows[mini] = 0.0;
/* calculate sumRows[mini] */
da = 0.0;
for (lpj = tvalid[0].next; lpj->n < mini; lpj = lpj->next)
{
da = da + join[lpj->n];
}
sumRows[mini] = da;
/* skip if 'lpj->n' is equal to 'mini' */
if ((lpj != NULL) && (lpj->n == mini))
{
lpj = lpj->next;
}
/* calculate sumCols[mini] */
da = 0.0;
for (; lpj != NULL; lpj = lpj->next)
{
da = da + join[lpj->n];
}
sumCols[mini] = da;
/*
* Clean up sumRows[minj], sumCols[minj] and score matrix
* related with 'minj'.
*/
sumCols[minj] = sumRows[minj] = 0.0;
for (j = 1; j <= lastSeq - firstSeq + 1; ++j)
{
distMat->SetAt(minj, j, 0.0);
distMat->SetAt(j, minj, 0.0);
join[j] = 0.0;
}
} /** end main cycle **/
/******************************Last Cycle (3 Seqs. left)********************/
nude = 1;
for (lpi = tvalid[0].next; lpi != NULL; lpi = lpi->next)
{
l[nude] = lpi->n;
++nude;
}
b1 = ((*distMat)(l[1], l[2]) + (*distMat)(l[1], l[3]) - (*distMat)(l[2], l[3])) *0.5;
b2 = (*distMat)(l[1], l[2]) - b1;
b3 = (*distMat)(l[1], l[3]) - b1;
branch[1] = b1 - av[l[1]];
branch[2] = b2 - av[l[2]];
branch[3] = b3 - av[l[3]];
/* Reset tiny negative and positive branch lengths to zero */
if (fabs(branch[1]) < 0.0001)
{
branch[1] = 0.0;
}
if (fabs(branch[2]) < 0.0001)
{
branch[2] = 0.0;
}
if (fabs(branch[3]) < 0.0001)
{
branch[3] = 0.0;
}
phyTree->leftBranch[lastSeq - firstSeq + 1-2] = branch[1];
phyTree->leftBranch[lastSeq - firstSeq + 1-1] = branch[2];
phyTree->leftBranch[lastSeq - firstSeq + 1] = branch[3];
for (i = 1; i <= lastSeq - firstSeq + 1; i++)
{
phyTree->treeDesc[lastSeq - firstSeq + 1-2][i] = 0;
}
if (verbose)
{
(*log) << "\n Cycle" << setw(4) << nc << " (Last cycle, trichotomy):\n";
}
for (i = 1; i <= 3; ++i)
{
if (av[l[i]] > 0.0)
{
if (verbose)
{
(*log) << "\n\t\t Node:" << setw(4) << l[i] <<" (" << setw(9)
<< setprecision(5) << branch[i] << ") ";
}
for (k = lastSeq - firstSeq + 1-3; k >= 1; k--)
if (phyTree->treeDesc[k][l[i]] == 1)
{
for (j = 1; j <= lastSeq - firstSeq + 1; j++)
if (phyTree->treeDesc[k][j] == 1)
{
phyTree->treeDesc[lastSeq - firstSeq + 1-2][j] = i;
}
break;
}
}
else
{
if (verbose)
{
(*log) << "\n\t\t SEQ:" << setw(4) << l[i] << " (" << setw(9)
<< setprecision(5) << branch[i] << ") ";
}
phyTree->treeDesc[lastSeq - firstSeq + 1-2][l[i]] = i;
}
if (i < 3)
{
if (verbose)
{
(*log) << "joins";
}
}
}
if (verbose)
{
(*log) << "\n";
}
/* IMPROVEMENT 2, STEP 4 : release memory area */
delete [] tvalid;
delete [] sumCols;
delete [] sumRows;
delete [] join;
}
}
|