1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "UPGMAAlgorithm.h"
#include <cmath>
#include <ctime>
#include <iomanip>
#include <sstream>
#include "../../general/SymMatrix.h"
#include "../../general/debuglogObject.h"
#include "../../general/clustalw.h"
#include "upgmadata.h"
namespace clustalw
{
UPGMAAlgorithm::UPGMAAlgorithm()
: overwriteMatrix(false),
numSeqs(0),
verbose(false),
orderNode1(0),
orderNode2(0),
orderNewNode(0)
{}
auto_ptr<AlignmentSteps> UPGMAAlgorithm::generateTree(RootedGuideTree* phyTree,
DistMatrix* distMat,
SeqInfo* seqInfo, bool overwrite,
ofstream* tree)
{
if (tree == 0 || !tree->is_open())
{
verbose = false;
}
if (verbose)
{
(*tree) << "\n\n\t\t\tUPGMA Method\n"
<< "\n\n This is a ROOTED tree\n"
<< "\n Numbers in parentheses are branch lengths\n\n";
}
progSteps.reset(new AlignmentSteps);
Node** clusters;
Node* root;
numSeqs = seqInfo->numSeqs;
const int sizeDistMat = ((numSeqs + 1) * (numSeqs + 2)) / 2;
double* elements = overwrite ?
distMat->getDistMatrix(seqInfo->firstSeq, seqInfo->numSeqs) :
(double *)memcpy(new double[sizeDistMat],
distMat->getDistMatrix(seqInfo->firstSeq, seqInfo->numSeqs),
sizeDistMat * sizeof(double));
clusters = initialiseNodes(elements, seqInfo->firstSeq);
root = doUPGMA(clusters, tree);
phyTree->setRoot(root);
delete [] clusters;
if(!overwrite)
{
delete [] elements;
}
distMat->clearSubArray();
return progSteps;
}
Node** UPGMAAlgorithm::initialiseNodes(double* distanceMatrix, int fSeq)
{
int firstSeq = fSeq;
Node** nodes = new Node*[numSeqs];
Node** nodeIter = nodes;
*nodes = new Node(firstSeq, 0, 0);
distanceMatrix++;
// Move to first position in distanceMatrix.
for(int elementIndex = 1, e = numSeqs; elementIndex < e;
distanceMatrix += ++elementIndex)
{
Node* newcluster = new Node(elementIndex + firstSeq,
distanceMatrix, elementIndex);
(*nodeIter++)->next = newcluster;
*nodeIter = newcluster;
}
return nodes;
}
void UPGMAAlgorithm::printAllNodes(Node** nodes)
{
int numNodes = 0;
for(Node* nodeIter = *nodes; nodeIter; nodeIter = nodeIter->next)
{
numNodes++;
cout << "Node " << numNodes << "\n";
nodeIter->printElements();
cout << "\n\n";
}
cout << "There are " << numNodes << " nodes\n";
}
Node* UPGMAAlgorithm::doUPGMA(Node** nodes, ofstream* tree)
{
if (tree == 0 || !tree->is_open())
{
verbose = false;
}
string type1, type2;
int step = 0;
while((*nodes)->next) // While there is more than 1 node.
{
step++;
if (verbose)
{
(*tree) << "\n Cycle" << setw(4) << step << " = ";
}
Node** ptrNodeWithMin;
/**
* STEP 1 find node with min distance
*/
ptrNodeWithMin = getNodeWithMinDist(nodes);
Node* nodeToJoin2 = *ptrNodeWithMin;
const int indexToMinDist = nodeToJoin2->indexToMinDist;
Node* const nodeToJoin1 = nodes[indexToMinDist];
orderNode1 = nodeToJoin1->size;
orderNode2 = nodeToJoin2->size;
orderNewNode = orderNode1 + orderNode2;
/**
* STEP 2 Recompute the dist Matrix row for nodeToJoin1
* example: Join nodes 2 and 6
*
* 1 0
* 2 X 0
* 3 0 0 0
* 4 0 0 0 0
* 5 0 0 0 0 0
* 6 0 0 0 0 0 0
* 7 0 0 0 0 0 0 0
*/
double* nodeToJoin2DistIter = nodeToJoin2->ptrToDistMatRow;
if (indexToMinDist != 0)
{
recomputeNodeToJoin1DistMatRow(nodeToJoin1, &nodeToJoin2DistIter);
}
/**
* STEP 3 Recompute all distances in column
* example: Join nodes 2 and 6
*
* 1 0
* 2 C 0
* 3 0 X 0
* 4 0 X 0 0
* 5 0 X 0 0 0
* 6 0 0 0 0 0 0
* 7 0 X 0 0 0 0 0
*/
computeAllOtherDistsToNewNode(nodeToJoin1, nodeToJoin2, &nodeToJoin2DistIter);
/**
* STEP 4 Add the step to the progSteps.
* This creates the multiple alignment steps.
*/
addAlignmentStep(&nodeToJoin1->allElements, &nodeToJoin2->allElements);
double minDistance = (*ptrNodeWithMin)->minDist;
double height = 0.0;
height = minDistance / 2.0;
if(verbose)
{
if(nodeToJoin1->allElements.size() > 1)
{
type1 = "NODE: ";
}
else
{
type1 = "SEQ: ";
}
if(nodeToJoin2->allElements.size() > 1)
{
type2 = "NODE: ";
}
else
{
type2 = "SEQ: ";
}
(*tree) << type1 << nodeToJoin1->allElements[0] << " (" << setw(9)
<< setprecision(5) << height << ") joins " << type2
<< setw(4) << nodeToJoin2->allElements[0] << " ("
<< setw(9) << setprecision(5) << height << ")";
}
/**
* STEP 5 merge 2 nodes
*/
nodeToJoin1->merge(ptrNodeWithMin, height);
}
return *nodes;
}
/**
* This function returns a Node object that has the minimum distance of
* all the nodes left.
*/
Node** UPGMAAlgorithm::getNodeWithMinDist(Node** nodes)
{
Node** ptrMinNode = NULL;
double minDistance = numeric_limits<double>::max();
//Start at node 1, check see if it points to something, then move on the next one.
Node** nodeIter;
for(nodeIter = &((*nodes)->next); *nodeIter;
nodeIter = &(*nodeIter)->next)
{
if ((*nodeIter)->getMinDist() < minDistance)
{
minDistance = (*nodeIter)->getMinDist();
ptrMinNode = nodeIter; // ptrMinNode will hold a ptr to node with sm'st dist
}
}
return ptrMinNode;
}
/**
* This function is used to recompute the nodeToJoin1 dist mat row. Each row in the distance
* matrix has the distances to all nodes before it, not after. For example the dist mat row
* for Node 3 would have the distances to nodes 1 and 2.
* 1 0
* 2 0 0
* 3 X X 0 Dists to node 1 and 2.
* 4 0 0 0 0
* 5 0 0 0 0 0
* 6 0 0 0 0 0 0
* 7 0 0 0 0 0 0 0
*/
void UPGMAAlgorithm::recomputeNodeToJoin1DistMatRow(Node* nodeToJoin1,
double** nodeToJoin2DistIter)
{
double* nodeToJoin1DistIter = nodeToJoin1->ptrToDistMatRow;
// calculate new distance
*nodeToJoin1DistIter = calcNewDist(*nodeToJoin1DistIter, **nodeToJoin2DistIter);
const double* minIndex1 = nodeToJoin1DistIter;
nodeToJoin1DistIter++;
(*nodeToJoin2DistIter)++;
int numDistToUpdate = nodeToJoin1->numDists - 1;
// For each of the distances in nodeToJoin1
while(numDistToUpdate > 0)
{
if (*nodeToJoin1DistIter >= 0)
{
// Calculate the average
*nodeToJoin1DistIter = calcNewDist(*nodeToJoin1DistIter, **nodeToJoin2DistIter);
if (*nodeToJoin1DistIter < *minIndex1)
{
minIndex1 = nodeToJoin1DistIter;
}
}
nodeToJoin1DistIter++;
(*nodeToJoin2DistIter)++;
numDistToUpdate--;
}
// We have found the minimum distance
nodeToJoin1->minDist = *minIndex1;
nodeToJoin1->indexToMinDist = minIndex1 - nodeToJoin1->ptrToDistMatRow;
}
/**
* This function is used to recompute all the other distances. It does this by calling
* two other functions. We first compute all the distances until we get to node 2.
* Then we call another function to do the rest. This is because nodes after node 2 may
* have had EITHER node1 of node2 as their min distance.
*/
void UPGMAAlgorithm::computeAllOtherDistsToNewNode(Node* nodeToJoin1, Node* nodeToJoin2,
double** nodeToJoin2DistIter)
{
computeDistsUpToNodeToJoin2(nodeToJoin1, nodeToJoin2, nodeToJoin2DistIter);
computeDistsForNodesAfterNode2(nodeToJoin2);
}
/**
* STEP 3A:
* This function recomputes the distances in column until we get to nodeToJoin2
* example: Join nodes 2 and 6
*
* 1 0
* 2 C 0
* 3 0 X 0
* 4 0 X 0 0
* 5 0 X 0 0 0
* 6 0 0 0 0 0 0
* 7 0 0 0 0 0 0 0
*
* For each node until we get to nodeToJoin2
* If newdistance is less than the old min distance, set it to this.
* else if its greater than old minDist and indexTominDist is the same, recompute min
* else leave the min the same as it hasnt changed.
*/
void UPGMAAlgorithm::computeDistsUpToNodeToJoin2(Node* nodeToJoin1, Node* nodeToJoin2, double** nodeToJoin2DistIter)
{
const int indexToMinDist = nodeToJoin2->indexToMinDist;
movePtrPastUnusedDistances(nodeToJoin2DistIter);
Node* nodeIter;
// For each node until we get to the second node we are joining
for(nodeIter = nodeToJoin1->next; nodeIter != nodeToJoin2; nodeIter = nodeIter->next)
{
(*nodeToJoin2DistIter)++; // Skip the distance to the node we are joining with
movePtrPastUnusedDistances(nodeToJoin2DistIter);
double distToNode = nodeIter->ptrToDistMatRow[indexToMinDist];
double newDistToNode = calcNewDist(distToNode, **nodeToJoin2DistIter);
nodeIter->ptrToDistMatRow[indexToMinDist] = newDistToNode;
if (newDistToNode < nodeIter->minDist)
{ /** new value is smaller than current min. */
nodeIter->minDist = newDistToNode;
nodeIter->indexToMinDist = indexToMinDist;
}
else if ((newDistToNode > nodeIter->minDist) &&
(nodeIter->indexToMinDist == indexToMinDist))
{ /** indexToMinDist was the min dist, but it is now a larger num, recompute */
nodeIter->findMinDist();
}
}
}
/**
* STEP 3B Recompute distance for nodes after nodeToJoin2
* example: Join nodes 2 and 6
*
* 1 0
* 2 C 0
* 3 0 C 0
* 4 0 C 0 0
* 5 0 C 0 0 0
* 6 0 0 0 0 0 0
* 7 0 X 0 0 0 0 0
*
* For each node until we get to the end.
* if dist is less than minDist, set mindist to new distance, set index to index
* else if dist is greater than mindist and the index was either nodetojoin1 or
* nodetojoin2, recompute distance, set entry for nodetojoin2 to NOTUSED
* else set the distance to unused.
*/
void UPGMAAlgorithm::computeDistsForNodesAfterNode2(Node* nodeToJoin2)
{
int indexToNode2 = nodeToJoin2->numDists;
const int indexToMinDist = nodeToJoin2->indexToMinDist;
Node* nodeIter;
for(nodeIter = nodeToJoin2->next; nodeIter; nodeIter = nodeIter->next)
{
double &distUpdate = nodeIter->ptrToDistMatRow[indexToMinDist];
distUpdate =
((distUpdate * orderNode1) +
(nodeIter->ptrToDistMatRow[indexToNode2] * orderNode2))
/ orderNewNode;
/* The comparison (distUpdate > nodeIter->minDist) is unsafe.
* Specifically, we get different results for 32/64bit machines,
* which leads to different branching in the if/else statement
* and nasty behaviour down the line.
* Using all of Pfam as a benchmark distUpdate can 'wobble' by 40 ULPs
* (Unit of Least Precision) which is difficult to translate into
* a maximum relative error, so we pick COMPARE_REL_EPSILON
* phenomenologically: approx 2E-15 was the biggest we saw in Pfam,
* but suggest 1E-14 (for good measure).
* Using ULPs, eg, *(long long int*)&(distUpdate),
* would be better (more elegant?) but gives problems
* with aliasing and/or performance reduction.
* FS, 2009-04-30
*/
#define COMPARE_REL_EPSILON 1E-14
if ( (distUpdate < nodeIter->minDist) &&
((nodeIter->minDist-distUpdate) /
nodeIter->minDist > COMPARE_REL_EPSILON) )
{ /** new distance is smaller */
nodeIter->minDist = distUpdate;
nodeIter->indexToMinDist = indexToMinDist;
}
else if (((distUpdate > nodeIter->minDist) &&
((distUpdate-nodeIter->minDist) /
distUpdate > COMPARE_REL_EPSILON) &&
(nodeIter->indexToMinDist == indexToMinDist)) ||
(nodeIter->indexToMinDist == indexToNode2))
{ /** if old min dist was to either nodeToJoin1 or nodeToJoin2 */
nodeIter->ptrToDistMatRow[indexToNode2] = BLANKDIST;
nodeIter->findMinDist();
}
else
{
nodeIter->ptrToDistMatRow[indexToNode2] = BLANKDIST;
}
}
}
void UPGMAAlgorithm::addAlignmentStep(vector<int>* group1, vector<int>* group2)
{
int sizeGroup1 = group1->size();
int sizeGroup2 = group2->size();
vector<int> groups;
groups.resize(numSeqs + 1, 0);
int sizeGroup = groups.size();
for(int i = 0; i < sizeGroup1 && (*group1)[i] < sizeGroup; i++)
{
groups[(*group1)[i]] = 1; // Set to be apart of group1
}
for(int i = 0; i < sizeGroup2 && (*group2)[i] < sizeGroup; i++)
{
groups[(*group2)[i]] = 2; // Set to be apart of group1
}
progSteps->saveSet(&groups);
}
/**
* At the moment we are only using average distance, UPGMA, but we can also use this
* function to have different distance measures, min, max etc.
*/
double UPGMAAlgorithm::calcNewDist(double dist1, double dist2)
{
return ((dist1 * orderNode1) + (dist2 * orderNode2)) / orderNewNode;
}
}
|