1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
#### PAM : Partitioning Around Medoids
#### --- $Id: pam.q 8260 2023-08-11 20:10:20Z maechler $
pam <- function(x, k, diss = inherits(x, "dist"),
metric = c("euclidean", "manhattan"), ## FIXME: add "jaccard"
medoids = if(is.numeric(nstart)) "random",
nstart = if(variant == "faster") 1L else NA,
stand = FALSE, cluster.only = FALSE, do.swap = TRUE,
keep.diss = !diss && !cluster.only && n < 100,
keep.data = !diss && !cluster.only,
variant = c("original", "o_1", "o_2", "f_3", "f_4", "f_5", "faster"),
pamonce = FALSE, trace.lev = 0)
{
stopifnot(length(cluster.only) == 1, length(trace.lev) == 1)
nMax <- 65536 # 2^16 (as 1+ n(n-1)/2 must be < max_int = 2^31-1)
if((diss <- as.logical(diss))) {
## check type of input vector
if(anyNA(x)) stop("NA values in the dissimilarity matrix not allowed.")
if(keep.data) stop("Cannot keep data when 'x' is a dissimilarity!")
if(!inherits(x, "dissimilarity")) { # try to convert to
if(!is.null(dim(x))) {
x <- as.dist(x) # or give an error
} else {
## possibly convert input *vector*
if(!is.numeric(x) || is.na(n <- sizeDiss(x)))
stop("'x' is not and cannot be converted to class \"dissimilarity\"")
attr(x, "Size") <- n
}
class(x) <- dissiCl
if(is.null(attr(x,"Metric"))) attr(x, "Metric") <- "unspecified"
}
## adapt S dissimilarities to Fortran:
## convert upper matrix, read by rows, to lower matrix, read by rows.
n <- attr(x, "Size")
if(n > nMax)
stop(gettextf("have %d observations, but not more than %d are allowed",
n, nMax))
dv <- x[lower.to.upper.tri.inds(n)]
## prepare arguments for the Fortran call
dv <- c(0, dv) ## <- internally needed {FIXME! memory hog!}
storage.mode(dv) <- "double"
jp <- 1
mdata <- FALSE
ndyst <- 0
}
else {
## check input matrix and standardize, if necessary
x <- data.matrix(x)# dropping "automatic rownames" compatibly with daisy()
if(!(is.numeric(x) || is.logical(x))) stop("x is not a numeric dataframe or matrix.")
x2 <- x ; dimnames(x2) <- NULL
n <- nrow(x2)
if(n > nMax)
stop(gettextf("have %d observations, but not more than %d are allowed",
n, nMax))
if(stand) x2 <- scale(x2, scale = apply(x2, 2, meanabsdev))
## put info about metric, size and NAs in arguments for the Fortran call
metric <- match.arg(metric)
ndyst <- c("euclidean" = 1L, "manhattan" = 2L)[[metric]]
jp <- ncol(x2)
if((mdata <- any(inax <- is.na(x2)))) { # TRUE if x[] has any NAs
jtmd <- integer(jp)
jtmd[apply(inax, 2L, any)] <- -1L
## VALue for MISsing DATa
valmisdat <- 1.1* max(abs(range(x2, na.rm=TRUE)))
x2[inax] <- valmisdat
}
storage.mode(x2) <- "double"
}
if((k <- as.integer(k)) < 1 || k >= n)
stop("Number of clusters 'k' must be in {1,2, .., n-1}; hence n >= 2")
missVari <- missing(variant)
variant <- match.arg(variant) # incl. validity check
if(!missVari) {
if(!missing(pamonce))
stop("Set either 'variant' or 'pamonce', but not both")
pamonce <- -1L + ## 0 1 2 3 4 5 6
match(variant, c("original", "o_1", "o_2", "f_3", "f_4", "f_5", "faster"))
if(missing(medoids) && variant == "faster")
medoids <- "random"
} ## else if(!missing(pamonce)) Deprecated("use 'variant' instead")
if(randIni <- identical("random", medoids))
medoids <- sample.int(n, k)
else if(!is.null(medoids)) { # non-default: check provided medoids
## 'fixme': consider sort(medoids) {and rely on it in ../src/pam.c }
if(!is.integer(medoids))
medoids <- as.integer(medoids)
if(length(medoids) != k || any(medoids < 1L) || any(medoids > n) ||
any(duplicated(medoids)))
stop(gettextf(
"'medoids' must be NULL or vector of %d distinct indices in {1,2, .., n}, n=%d",
k, n))
## use observation numbers 'medoids' as starting medoids for 'swap' only
}
nisol <- integer(if(cluster.only) 1 else k)
if(do.swap) nisol[1] <- 1L
pamDo <- function(medoids) {
.Call(cl_Pam, k, n,
!diss, # == do_diss: compute d[i,j] them from x2[] and allocate in C
if(diss) dv else x2,
!cluster.only, ## == all_stats == "old" obj[1+ 0] == 0
medoids,
do.swap, trace.lev, keep.diss, pamonce,
## only needed if(!diss) [ <=> if(do_diss) ] :
if(mdata) rep(valmisdat, jp) else double(1), # valmd
if(mdata) jtmd else integer(jp), # jtmd
ndyst) # dist_kind
}
res <- pamDo(medoids)
## Error if have NA's in diss:
if(!diss && is.integer(res))
stop("No clustering performed, NAs in the computed dissimilarity matrix.")
if(randIni && nstart >= 2) {
it <- 0L
for(it in 2:nstart) {
r <- pamDo(medoids = sample.int(n, k))
if(r$obj[2] < res$obj[2]) {
if(trace.lev)
cat(sprintf("Found better objective, %g < %g (it=%d)\n",
r$obj[2], res$obj[2], it))
res <- r
}
}
} ## else just once
xLab <- if(diss) attr(x, "Labels") else dimnames(x)[[1]]
r.clu <- res$clu
if(length(xLab) > 0)
names(r.clu) <- xLab
if(cluster.only)
return(r.clu)
## Else, usually
medID <- res$med
if(any(medID <= 0))
stop("error from .C(cl_pam, *): invalid medID's")
sildim <- res$silinf[, 4]
if(diss) {
## add labels to Fortran output
r.med <- if(length(xLab) > 0) {
sildim <- xLab[sildim]
xLab[medID]
} else medID
}
else {
if(keep.diss) {
## adapt Fortran output to S:
## convert lower matrix, read by rows, to upper matrix, read by rows.
disv <- res$dys[-1]
disv[disv == -1] <- NA
disv <- disv[upper.to.lower.tri.inds(n)]
class(disv) <- dissiCl
attr(disv, "Size") <- nrow(x)
attr(disv, "Metric") <- metric
attr(disv, "Labels") <- dimnames(x)[[1]]
}
## add labels to Fortran output
r.med <- x[medID, , drop=FALSE]
if(length(xLab) > 0)
sildim <- xLab[sildim]
}
## add names & dimnames to Fortran output
r.obj <- structure(res$obj, .Names = c("build", "swap"))
r.isol <- factor(res$isol, levels = 0:2, labels = c("no", "L", "L*"))
names(r.isol) <- 1:k
r.clusinf <- res$clusinf
dimnames(r.clusinf) <- list(NULL, c("size", "max_diss", "av_diss",
"diameter", "separation"))
## construct S object
r <-
list(medoids = r.med, id.med = medID, clustering = r.clu,
objective = r.obj, isolation = r.isol,
clusinfo = r.clusinf,
silinfo = if(k != 1) {
silinf <- res$silinf[, -4, drop=FALSE]
dimnames(silinf) <-
list(sildim, c("cluster", "neighbor", "sil_width"))
list(widths = silinf,
clus.avg.widths = res$avsil[1:k],
avg.width = res$ttsil)
},
diss = if(keep.diss) { if(diss) x else disv },
call = match.call())
if(keep.data) { ## have !diss
if(mdata) x2[x2 == valmisdat] <- NA
r$data <- structure(x2, dimnames = dimnames(x))
}
class(r) <- c("pam", "partition")
r
}
### From Schubert, Dec 2020 --- but MM decides to rather implement pam(*, variant = "faster")
if(FALSE) ## FasterPAM : Faster Partitioning Around Medoids
fasterpam <- function(x, k, diss = inherits(x, "dist"),
metric = c("euclidean", "manhattan"), ## FIXME: add "jaccard"
medoids = NULL,
stand = FALSE, cluster.only = FALSE, # do.swap = TRUE, ## (not here)
keep.diss = !diss && !cluster.only && n < 100,
keep.data = !diss && !cluster.only,
## pamonce = FALSE, ## (not here)
trace.lev = 0)
{
if((diss <- as.logical(diss))) {
n <- attr(x, "Size")
} else {
n <- nrow(x)
}
if (is.null(medoids)) {
medoids = sample.int(n, k)
}
pam(x = x, k = k, diss = diss, metric = metric, medoids = medoids,
stand = stand, cluster.only = cluster.only, do.swap = TRUE,
keep.diss = keep.diss, keep.data = keep.data, pamonce = 6, trace.lev = trace.lev)
}
## non-exported:
.print.pam <- function(x, ...) {
cat("Medoids:\n"); print(cbind(ID = x$id.med, x$medoids), ...)
cat("Clustering vector:\n"); print(x$clustering, ...)
cat("Objective function:\n"); print(x$objective, ...)
}
print.pam <- function(x, ...)
{
.print.pam(x, ...)
cat("\nAvailable components:\n")
print(names(x), ...)
invisible(x)
}
summary.pam <- function(object, ...)
{
class(object) <- "summary.pam"
object
}
print.summary.pam <- function(x, ...)
{
.print.pam(x, ...)
cat("\nNumerical information per cluster:\n"); print(x$clusinfo, ...)
cat("\nIsolated clusters:\n L-clusters: ")
print(names(x$isolation[x$isolation == "L"]), quote = FALSE, ...)
cat(" L*-clusters: ")
print(names(x$isolation[x$isolation == "L*"]), quote = FALSE, ...)
if(length(x$silinfo) != 0) {
cat("\nSilhouette plot information:\n")
print(x$silinfo[[1]], ...)
cat("Average silhouette width per cluster:\n")
print(x$silinfo[[2]], ...)
cat("Average silhouette width of total data set:\n")
print(x$silinfo[[3]], ...)
}
if(!is.null(x$diss)) { ## Dissimilarities:
cat("\n"); print(summary(x$diss, ...))
}
cat("\nAvailable components:\n"); print(names(x), ...)
invisible(x)
}
|