1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
|
\name{clusplot}
\alias{clusplot}
\alias{clusplot.partition}
\title{Bivariate Cluster Plot (of a Partitioning Object)}
\description{
Draws a 2-dimensional \dQuote{clusplot} (clustering plot) on the
current graphics device.
The generic function has a default and a \code{partition} method.
}
\usage{
clusplot(x, \dots)
\method{clusplot}{partition}(x, main = NULL, dist = NULL, \dots)
}
\arguments{
\item{x}{an \R object, here, specifically an object of class
\code{"partition"}, e.g. created by one of the functions
\code{\link{pam}}, \code{\link{clara}}, or \code{\link{fanny}}.}
\item{main}{title for the plot; when \code{NULL} (by default), a title
is constructed, using \code{x$call}.}
\item{dist}{when \code{x} does not have a \code{diss} nor a
\code{data} component, e.g., for \code{\link{pam}(dist(*),
keep.diss=FALSE)}, \code{dist} must specify the dissimilarity for the
clusplot.}
\item{\dots}{optional arguments passed to methods, notably the
\code{\link{clusplot.default}} method (except for the \code{diss}
one) may also be supplied to this function. Many graphical parameters
(see \code{\link{par}}) may also be supplied as arguments here.}
}
\section{Side Effects}{
a 2-dimensional clusplot is created on the current graphics device.
}
\value{
For the \code{partition} (and \code{default}) method: An invisible
list with components \code{Distances} and \code{Shading}, as for
\code{\link{clusplot.default}}, see there.
}
\details{
The \code{clusplot.partition()} method relies on \code{\link{clusplot.default}}.
If the clustering algorithms \code{pam}, \code{fanny} and \code{clara}
are applied to a data matrix of observations-by-variables then a
clusplot of the resulting clustering can always be drawn. When the
data matrix contains missing values and the clustering is performed
with \code{\link{pam}} or \code{\link{fanny}}, the dissimilarity
matrix will be given as input to \code{clusplot}. When the clustering
algorithm \code{\link{clara}} was applied to a data matrix with \code{\link{NA}}s
then \code{clusplot()} will replace the missing values as described in
\code{\link{clusplot.default}}, because a dissimilarity matrix is not
available.
}
\seealso{\code{\link{clusplot.default}} for references;
\code{\link{partition.object}}, \code{\link{pam}},
\code{\link{pam.object}}, \code{\link{clara}},
\code{\link{clara.object}}, \code{\link{fanny}},
\code{\link{fanny.object}}, \code{\link{par}}.
}
\examples{ ## For more, see ?clusplot.default
## generate 25 objects, divided into 2 clusters.
x <- rbind(cbind(rnorm(10,0,0.5), rnorm(10,0,0.5)),
cbind(rnorm(15,5,0.5), rnorm(15,5,0.5)))
clusplot(pam(x, 2))
## add noise, and try again :
x4 <- cbind(x, rnorm(25), rnorm(25))
clusplot(pam(x4, 2))
}
\keyword{cluster}
\keyword{hplot}
|