1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
|
R version 4.2.0 Patched (2022-05-13 r82353) -- "Vigorous Calisthenics"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ## For different cluster versions
>
> require(cluster)
Loading required package: cluster
>
> if(interactive()) print(packageDescription("cluster"))
>
> ## trivial cases should 'work':
> daisy(cbind(1))
Dissimilarities :
dissimilarity(0)
Metric : euclidean
Number of objects : 1
> (d10 <- daisy(matrix(0., 1,0))); str(d10)
Dissimilarities :
dissimilarity(0)
Metric : euclidean
Number of objects : 1
'dissimilarity' num(0)
- attr(*, "Size")= int 1
- attr(*, "Metric")= chr "euclidean"
> d01 <- daisy(matrix(0., 0,1))
> if(paste(R.version$major, R.version$minor, sep=".") >= "2.1.0")
+ print(d01)
Dissimilarities :
dissimilarity(0)
Metric : euclidean
Number of objects : 0
> str(d01)
'dissimilarity' num(0)
- attr(*, "Size")= int 0
- attr(*, "Metric")= chr "euclidean"
> d32 <- data.frame(eins=c("A"=1,"B"=1,"C"=1), zwei=c(2,2,2))
> daisy(d32)
Dissimilarities :
A B
B 0
C 0 0
Metric : euclidean
Number of objects : 3
> daisy(d32, stand = TRUE)
Dissimilarities :
A B
B 0
C 0 0
Metric : euclidean
Number of objects : 3
Warning message:
In daisy(d32, stand = TRUE) :
'x' has constant columns 1, 2; these are standardized to 0
> daisy(d32, type = list(ordratio="zwei"))
Dissimilarities :
A B
B 0
C 0 0
Metric : mixed ; Types = I, T
Number of objects : 3
>
>
> str(d5 <- data.frame(a= c(0, 0, 0,1,0,0, 0,0,1, 0,NA),
+ b= c(NA,0, 1,1,0,1, 0,1,0, 1,0),
+ c= c(0, 1, 1,0,1,NA,1,0,1, 0,NA),
+ d= c(1, 1, 0,1,0,0, 0,0,0, 1,0),
+ e= c(1, NA,0,1,0,0, 0,0,NA,1,1)))
'data.frame': 11 obs. of 5 variables:
$ a: num 0 0 0 1 0 0 0 0 1 0 ...
$ b: num NA 0 1 1 0 1 0 1 0 1 ...
$ c: num 0 1 1 0 1 NA 1 0 1 0 ...
$ d: num 1 1 0 1 0 0 0 0 0 1 ...
$ e: num 1 NA 0 1 0 0 0 0 NA 1 ...
> (d0 <- daisy(d5))
Dissimilarities :
1 2 3 4 5 6 7 8
2 1.290994
3 1.936492 1.581139
4 1.118034 1.936492 2.000000
5 1.936492 1.118034 1.000000 2.236068
6 1.825742 1.825742 0.000000 1.936492 1.118034
7 1.936492 1.118034 1.000000 2.236068 0.000000 1.118034
8 1.581139 1.936492 1.000000 1.732051 1.414214 0.000000 1.414214
9 2.236068 1.581139 1.581139 1.936492 1.118034 1.825742 1.118034 1.936492
10 0.000000 1.581139 1.732051 1.000000 2.000000 1.581139 2.000000 1.414214
11 1.581139 1.581139 1.825742 1.825742 1.290994 1.825742 1.290994 1.825742
9 10
2
3
4
5
6
7
8
9
10 2.236068
11 0.000000 1.825742
Metric : euclidean
Number of objects : 11
Warning message:
In daisy(d5) : binary variable(s) 1, 2, 3, 4, 5 treated as interval scaled
> (d1 <- daisy(d5, type = list(asymm = 1:5)))
Dissimilarities :
1 2 3 4 5 6 7
2 0.5000000
3 1.0000000 0.6666667
4 0.3333333 0.7500000 0.8000000
5 1.0000000 0.5000000 0.5000000 1.0000000
6 1.0000000 1.0000000 0.0000000 0.7500000 1.0000000
7 1.0000000 0.5000000 0.5000000 1.0000000 0.0000000 1.0000000
8 1.0000000 1.0000000 0.5000000 0.7500000 1.0000000 0.0000000 1.0000000
9 1.0000000 0.6666667 0.6666667 0.7500000 0.5000000 1.0000000 0.5000000
10 0.0000000 0.6666667 0.7500000 0.2500000 1.0000000 0.6666667 1.0000000
11 0.5000000 1.0000000 1.0000000 0.6666667 1.0000000 1.0000000 1.0000000
8 9 10
2
3
4
5
6
7
8
9 1.0000000
10 0.6666667 1.0000000
11 1.0000000 NA 0.6666667
Metric : mixed ; Types = A, A, A, A, A
Number of objects : 11
> (d2 <- daisy(d5, type = list(symm = 1:2, asymm= 3:5)))
Dissimilarities :
1 2 3 4 5 6 7
2 0.3333333
3 0.7500000 0.5000000
4 0.3333333 0.7500000 0.8000000
5 0.7500000 0.2500000 0.3333333 1.0000000
6 0.6666667 0.6666667 0.0000000 0.7500000 0.5000000
7 0.7500000 0.2500000 0.3333333 1.0000000 0.0000000 0.5000000
8 0.6666667 0.7500000 0.3333333 0.7500000 0.6666667 0.0000000 0.6666667
9 1.0000000 0.5000000 0.6666667 0.7500000 0.3333333 1.0000000 0.3333333
10 0.0000000 0.5000000 0.6000000 0.2500000 0.8000000 0.5000000 0.8000000
11 0.5000000 0.5000000 1.0000000 0.6666667 0.5000000 1.0000000 0.5000000
8 9 10
2
3
4
5
6
7
8
9 1.0000000
10 0.5000000 1.0000000
11 1.0000000 0.0000000 0.6666667
Metric : mixed ; Types = S, S, A, A, A
Number of objects : 11
> (d2.<- daisy(d5, type = list( asymm= 3:5)))
Dissimilarities :
1 2 3 4 5 6 7
2 0.3333333
3 0.7500000 0.5000000
4 0.3333333 0.7500000 0.8000000
5 0.7500000 0.2500000 0.3333333 1.0000000
6 0.6666667 0.6666667 0.0000000 0.7500000 0.5000000
7 0.7500000 0.2500000 0.3333333 1.0000000 0.0000000 0.5000000
8 0.6666667 0.7500000 0.3333333 0.7500000 0.6666667 0.0000000 0.6666667
9 1.0000000 0.5000000 0.6666667 0.7500000 0.3333333 1.0000000 0.3333333
10 0.0000000 0.5000000 0.6000000 0.2500000 0.8000000 0.5000000 0.8000000
11 0.5000000 0.5000000 1.0000000 0.6666667 0.5000000 1.0000000 0.5000000
8 9 10
2
3
4
5
6
7
8
9 1.0000000
10 0.5000000 1.0000000
11 1.0000000 0.0000000 0.6666667
Metric : mixed ; Types = I, I, A, A, A
Number of objects : 11
Warning message:
In daisy(d5, type = list(asymm = 3:5)) :
binary variable(s) 1, 2 treated as interval scaled
> stopifnot(identical(c(d2), c(d2.)))
> (dS <- daisy(d5, stand = TRUE))# gave error in some versions
Dissimilarities :
1 2 3 4 5 6 7 8
2 2.614264
3 4.010913 3.291786
4 3.493856 4.725761 4.757684
5 4.010913 2.415752 2.000000 5.160965
6 3.823025 3.801028 0.000000 4.813384 2.236068
7 4.010913 2.415752 2.000000 5.160965 0.000000 2.236068
8 3.310837 3.995202 2.025000 4.305222 2.846160 0.000000 2.846160
9 5.558018 4.247692 4.148136 3.995202 3.493856 4.789855 3.493856 4.725761
10 0.000000 3.182103 3.587469 3.125000 4.107303 3.310837 4.107303 2.961302
11 3.416389 3.416389 3.674376 3.801028 2.614264 3.674376 2.614264 3.674376
9 10
2
3
4
5
6
7
8
9
10 5.307417
11 0.000000 3.801028
Metric : euclidean
Number of objects : 11
Warning message:
In daisy(d5, stand = TRUE) :
binary variable(s) 1, 2, 3, 4, 5 treated as interval scaled
> stopifnot(all.equal(as.vector(summary(c(dS), digits=9)),
+ c(0, 2.6142638, 3.4938562, 3.2933687, 4.0591077, 5.5580177),
+ tol = 1e-7))# 7.88e-9
>
> d5[,4] <- 1 # binary with only one instead of two values
> (d0 <- daisy(d5))
Dissimilarities :
1 2 3 4 5 6 7 8
2 1.290994
3 1.581139 1.118034
4 1.118034 1.936492 1.732051
5 1.581139 0.000000 1.000000 2.000000
6 1.290994 1.290994 0.000000 1.581139 1.118034
7 1.581139 0.000000 1.000000 2.000000 0.000000 1.118034
8 1.118034 1.581139 1.000000 1.414214 1.414214 0.000000 1.414214
9 1.825742 1.118034 1.581139 1.581139 1.118034 1.825742 1.118034 1.936492
10 0.000000 1.581139 1.414214 1.000000 1.732051 1.118034 1.732051 1.000000
11 0.000000 0.000000 1.825742 1.290994 1.290994 1.825742 1.290994 1.825742
9 10
2
3
4
5
6
7
8
9
10 1.936492
11 0.000000 1.290994
Metric : euclidean
Number of objects : 11
Warning message:
In daisy(d5) : binary variable(s) 1, 2, 3, 5 treated as interval scaled
> (d1 <- daisy(d5, type = list(asymm = 1:5)))# 2 NAs
Dissimilarities :
1 2 3 4 5 6 7
2 1.0000000
3 1.0000000 0.5000000
4 0.5000000 1.0000000 0.7500000
5 1.0000000 0.0000000 0.5000000 1.0000000
6 1.0000000 1.0000000 0.0000000 0.6666667 1.0000000
7 1.0000000 0.0000000 0.5000000 1.0000000 0.0000000 1.0000000
8 1.0000000 1.0000000 0.5000000 0.6666667 1.0000000 0.0000000 1.0000000
9 1.0000000 0.5000000 0.6666667 0.6666667 0.5000000 1.0000000 0.5000000
10 0.0000000 1.0000000 0.6666667 0.3333333 1.0000000 0.5000000 1.0000000
11 0.0000000 NA 1.0000000 0.5000000 1.0000000 1.0000000 1.0000000
8 9 10
2
3
4
5
6
7
8
9 1.0000000
10 0.5000000 1.0000000
11 1.0000000 NA 0.5000000
Metric : mixed ; Types = A, A, A, A, A
Number of objects : 11
Warning message:
In daisy(d5, type = list(asymm = 1:5)) :
at least one binary variable has not 2 different levels.
> (d2 <- daisy(d5, type = list(symm = 1:2, asymm= 3:5)))
Dissimilarities :
1 2 3 4 5 6 7
2 0.5000000
3 0.6666667 0.3333333
4 0.5000000 1.0000000 0.7500000
5 0.6666667 0.0000000 0.3333333 1.0000000
6 0.5000000 0.5000000 0.0000000 0.6666667 0.5000000
7 0.6666667 0.0000000 0.3333333 1.0000000 0.0000000 0.5000000
8 0.5000000 0.6666667 0.3333333 0.6666667 0.6666667 0.0000000 0.6666667
9 1.0000000 0.3333333 0.6666667 0.6666667 0.3333333 1.0000000 0.3333333
10 0.0000000 0.6666667 0.5000000 0.3333333 0.7500000 0.3333333 0.7500000
11 0.0000000 0.0000000 1.0000000 0.5000000 0.5000000 1.0000000 0.5000000
8 9 10
2
3
4
5
6
7
8
9 1.0000000
10 0.3333333 1.0000000
11 1.0000000 0.0000000 0.5000000
Metric : mixed ; Types = S, S, A, A, A
Number of objects : 11
Warning message:
In daisy(d5, type = list(symm = 1:2, asymm = 3:5)) :
at least one binary variable has not 2 different levels.
> (d2.<- daisy(d5, type = list( asymm= 3:5)))
Dissimilarities :
1 2 3 4 5 6 7
2 0.5000000
3 0.6666667 0.3333333
4 0.5000000 1.0000000 0.7500000
5 0.6666667 0.0000000 0.3333333 1.0000000
6 0.5000000 0.5000000 0.0000000 0.6666667 0.5000000
7 0.6666667 0.0000000 0.3333333 1.0000000 0.0000000 0.5000000
8 0.5000000 0.6666667 0.3333333 0.6666667 0.6666667 0.0000000 0.6666667
9 1.0000000 0.3333333 0.6666667 0.6666667 0.3333333 1.0000000 0.3333333
10 0.0000000 0.6666667 0.5000000 0.3333333 0.7500000 0.3333333 0.7500000
11 0.0000000 0.0000000 1.0000000 0.5000000 0.5000000 1.0000000 0.5000000
8 9 10
2
3
4
5
6
7
8
9 1.0000000
10 0.3333333 1.0000000
11 1.0000000 0.0000000 0.5000000
Metric : mixed ; Types = I, I, A, A, A
Number of objects : 11
Warning messages:
1: In daisy(d5, type = list(asymm = 3:5)) :
at least one binary variable has not 2 different levels.
2: In daisy(d5, type = list(asymm = 3:5)) :
binary variable(s) 1, 2 treated as interval scaled
> ## better leave away the constant variable: it has no effect:
> stopifnot(identical(c(d1), c(daisy(d5[,-4], type = list(asymm = 1:4)))))
>
> ###---- Trivial "binary only" matrices (not data frames) did fail:
>
> x <- matrix(0, 2, 2)
> dimnames(x)[[2]] <- c("A", "B")## colnames<- is missing in S+
> daisy(x, type = list(symm= "B", asymm="A"))
Dissimilarities :
1
2 0
Metric : mixed ; Types = A, S
Number of objects : 2
Warning message:
In daisy(x, type = list(symm = "B", asymm = "A")) :
at least one binary variable has not 2 different levels.
> daisy(x, type = list(symm= "B"))# 0 too
Dissimilarities :
1
2 0
Metric : mixed ; Types = I, S
Number of objects : 2
Warning message:
In daisy(x, type = list(symm = "B")) :
at least one binary variable has not 2 different levels.
>
> x2 <- x; x2[2,2] <- 1
> daisy(x2, type= list(symm = "B"))# |-> 0.5 (gives 1 in S+)
Dissimilarities :
1
2 0.5
Metric : mixed ; Types = I, S
Number of objects : 2
> daisy(x2, type= list(symm = "B", asymm="A"))# 1
Dissimilarities :
1
2 1
Metric : mixed ; Types = A, S
Number of objects : 2
Warning message:
In daisy(x2, type = list(symm = "B", asymm = "A")) :
at least one binary variable has not 2 different levels.
>
> x3 <- x; x3[] <- diag(2)
> daisy(x3) # warning: both as interval scaled -> sqrt(2)
Dissimilarities :
1
2 1.414214
Metric : euclidean
Number of objects : 2
> daisy(x3, type= list(symm="B", asymm="A"))# 1
Dissimilarities :
1
2 1
Metric : mixed ; Types = A, S
Number of objects : 2
> daisy(x3, type= list(symm =c("B","A"))) # 1, S+: sqrt(2)
Dissimilarities :
1
2 1
Metric : mixed ; Types = S, S
Number of objects : 2
> daisy(x3, type= list(asymm=c("B","A"))) # 1, S+ : sqrt(2)
Dissimilarities :
1
2 1
Metric : mixed ; Types = A, A
Number of objects : 2
>
> x4 <- rbind(x3, 1)
> daisy(x4, type= list(symm="B", asymm="A"))# 1 0.5 0.5
Dissimilarities :
1 2
2 1.0
3 0.5 0.5
Metric : mixed ; Types = A, S
Number of objects : 3
> daisy(x4, type= list(symm=c("B","A"))) # dito; S+ : 1.41 1 1
Dissimilarities :
1 2
2 1.0
3 0.5 0.5
Metric : mixed ; Types = S, S
Number of objects : 3
> daisy(x4, type= list(asymm=c("A","B"))) # dito, dito
Dissimilarities :
1 2
2 1.0
3 0.5 0.5
Metric : mixed ; Types = A, A
Number of objects : 3
>
>
>
> ## ----------- example(daisy) -----------------------
>
> data(flower)
> data(agriculture)
>
> ## Example 1 in ref:
> ## Dissimilarities using Euclidean metric and without standardization
> (d.agr <- daisy(agriculture, metric = "euclidean", stand = FALSE))
Dissimilarities :
B DK D GR E F IRL
DK 5.408327
D 2.061553 3.405877
GR 22.339651 22.570113 22.661200
E 9.818350 11.182576 10.394710 12.567418
F 3.448188 3.512834 2.657066 20.100995 8.060397
IRL 12.747549 13.306014 13.080138 9.604166 3.140064 10.564563
I 5.803447 5.470832 5.423099 17.383325 5.727128 2.773085 7.920859
L 4.275512 2.220360 2.300000 24.035391 12.121056 4.060788 14.569145
NL 1.649242 5.096077 2.435159 20.752349 8.280097 2.202272 11.150785
P 17.236299 17.864490 17.664088 5.162364 7.430343 15.164432 4.601087
UK 2.828427 8.052950 4.850773 21.485344 8.984431 5.303772 12.103718
I L NL P
DK
D
GR
E
F
IRL
I
L 6.660330
NL 4.204759 4.669047
P 12.515990 19.168985 15.670673
UK 6.723095 7.102112 3.124100 16.323296
Metric : euclidean
Number of objects : 12
> (d.agr2 <- daisy(agriculture, metric = "manhattan"))
Dissimilarities :
B DK D GR E F IRL I L NL P
DK 7.5
D 2.7 4.8
GR 30.4 31.9 31.5
E 13.6 15.1 14.7 16.8
F 4.3 3.8 3.4 28.1 11.3
IRL 17.2 18.7 18.3 13.2 3.6 14.9
I 6.0 7.5 7.1 24.4 7.6 3.7 11.2
L 5.0 2.5 2.3 33.8 17.0 5.7 20.6 9.4
NL 2.0 6.3 3.1 28.4 11.6 3.1 15.2 4.4 5.4
P 23.7 25.2 24.8 6.7 10.1 21.4 6.5 17.7 27.1 21.7
UK 3.2 10.7 5.9 28.0 11.2 7.5 14.8 8.8 8.2 4.4 21.3
Metric : manhattan
Number of objects : 12
>
>
> ## Example 2 in ref
> (dfl0 <- daisy(flower))
Dissimilarities :
1 2 3 4 5 6 7
2 0.8875408
3 0.5272467 0.5147059
4 0.3517974 0.5504493 0.5651552
5 0.4115605 0.6226307 0.3726307 0.6383578
6 0.2269199 0.6606209 0.3003268 0.4189951 0.3443627
7 0.2876225 0.5999183 0.4896242 0.3435866 0.4197712 0.1892974
8 0.4234069 0.4641340 0.6038399 0.2960376 0.4673203 0.5714869 0.4107843
9 0.5808824 0.4316585 0.4463644 0.8076797 0.3306781 0.5136846 0.5890931
10 0.6094363 0.4531046 0.4678105 0.5570670 0.3812908 0.4119281 0.5865196
11 0.3278595 0.7096814 0.5993873 0.6518791 0.3864788 0.4828840 0.5652369
12 0.4267565 0.5857843 0.6004902 0.5132761 0.5000817 0.5248366 0.6391340
13 0.5196487 0.5248366 0.5395425 0.7464461 0.2919118 0.4524510 0.5278595
14 0.2926062 0.5949346 0.6096405 0.3680147 0.5203431 0.3656863 0.5049837
15 0.6221814 0.3903595 0.5300654 0.5531454 0.4602124 0.5091503 0.3345588
16 0.6935866 0.3575163 0.6222222 0.3417892 0.7301471 0.5107843 0.4353758
17 0.7765114 0.1904412 0.5801471 0.4247141 0.6880719 0.5937092 0.5183007
18 0.4610294 0.4515114 0.7162173 0.4378268 0.4755310 0.6438317 0.4692402
8 9 10 11 12 13 14
2
3
4
5
6
7
8
9 0.6366422
10 0.6639706 0.4256127
11 0.4955474 0.4308007 0.3948121
12 0.4216503 0.4194036 0.3812092 0.2636029
13 0.5754085 0.2181781 0.3643791 0.3445670 0.2331699
14 0.4558007 0.4396650 0.3609477 0.2838644 0.1591503 0.3784314
15 0.4512255 0.2545343 0.4210784 0.4806781 0.4295752 0.3183007 0.4351307
16 0.6378268 0.6494690 0.3488562 0.7436683 0.6050654 0.5882353 0.4598039
17 0.4707516 0.6073938 0.3067810 0.7015931 0.5629902 0.5461601 0.5427288
18 0.1417892 0.5198529 0.8057598 0.5359477 0.5495507 0.5733252 0.5698121
15 16 17
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 0.3949346
17 0.3528595 0.1670752
18 0.5096814 0.7796160 0.6125408
Metric : mixed ; Types = N, N, N, N, O, O, I, I
Number of objects : 18
> stopifnot(identical(c(dfl0),
+ c(daisy(flower, type = list(symm = 1)))) &&
+ identical(c(dfl0),
+ c(daisy(flower, type = list(symm = 2)))) &&
+ identical(c(dfl0),
+ c(daisy(flower, type = list(symm = 3)))) &&
+ identical(c(dfl0),
+ c(daisy(flower, type = list(symm = c(1,3)))))
+ )
>
> (dfl1 <- daisy(flower, type = list(asymm = 3)))
Dissimilarities :
1 2 3 4 5 6 7
2 0.8875408
3 0.5272467 0.5882353
4 0.3517974 0.5504493 0.5651552
5 0.4115605 0.7115780 0.4258637 0.6383578
6 0.2269199 0.7549953 0.3432306 0.4189951 0.3935574
7 0.2876225 0.6856209 0.5595705 0.3435866 0.4797386 0.2163399
8 0.4234069 0.4641340 0.6038399 0.2960376 0.4673203 0.5714869 0.4107843
9 0.5808824 0.4933240 0.5101307 0.8076797 0.3779178 0.5870682 0.6732493
10 0.6094363 0.5178338 0.5346405 0.5570670 0.4357610 0.4707750 0.6703081
11 0.3278595 0.7096814 0.5993873 0.6518791 0.3864788 0.4828840 0.5652369
12 0.4267565 0.5857843 0.6004902 0.5132761 0.5000817 0.5248366 0.6391340
13 0.5196487 0.5998133 0.6166200 0.7464461 0.3336134 0.5170868 0.6032680
14 0.2926062 0.5949346 0.6096405 0.3680147 0.5203431 0.3656863 0.5049837
15 0.6221814 0.4461251 0.6057890 0.5531454 0.5259570 0.5818861 0.3823529
16 0.6935866 0.4085901 0.7111111 0.3417892 0.8344538 0.5837535 0.4975724
17 0.7765114 0.2176471 0.6630252 0.4247141 0.7863679 0.6785247 0.5923436
18 0.4610294 0.4515114 0.7162173 0.4378268 0.4755310 0.6438317 0.4692402
8 9 10 11 12 13 14
2
3
4
5
6
7
8
9 0.6366422
10 0.6639706 0.4864146
11 0.4955474 0.4308007 0.3948121
12 0.4216503 0.4194036 0.3812092 0.2636029
13 0.5754085 0.2493464 0.4164332 0.3445670 0.2331699
14 0.4558007 0.4396650 0.3609477 0.2838644 0.1591503 0.3784314
15 0.4512255 0.2908964 0.4812325 0.4806781 0.4295752 0.3637722 0.4351307
16 0.6378268 0.7422502 0.3986928 0.7436683 0.6050654 0.6722689 0.4598039
17 0.4707516 0.6941643 0.3506069 0.7015931 0.5629902 0.6241830 0.5427288
18 0.1417892 0.5198529 0.8057598 0.5359477 0.5495507 0.5733252 0.5698121
15 16 17
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 0.4513539
17 0.4032680 0.1909430
18 0.5096814 0.7796160 0.6125408
Metric : mixed ; Types = N, N, A, N, O, O, I, I
Number of objects : 18
> (dfl2 <- daisy(flower, type = list(asymm = c(1, 3), ordratio = 7)))
Dissimilarities :
1 2 3 4 5 6 7
2 0.9007353
3 0.6176471 0.5882353
4 0.4226891 0.5455882 0.6403361
5 0.4806723 0.7369748 0.5264706 0.7605042
6 0.2823529 0.7470588 0.3911765 0.4764706 0.4980392
7 0.3310924 0.6983193 0.6676471 0.4109244 0.5745098 0.2764706
8 0.5100840 0.4544118 0.6789916 0.3327731 0.5705882 0.6563025 0.4932773
9 0.5808824 0.5084034 0.5252101 0.8257353 0.3882353 0.6100840 0.6756303
10 0.6323529 0.5067227 0.5235294 0.5522059 0.4722689 0.4739496 0.6941176
11 0.3389706 0.7117647 0.6014706 0.6588235 0.4066176 0.4919118 0.5742647
12 0.4441176 0.5816176 0.5963235 0.5139706 0.5264706 0.5220588 0.6544118
13 0.5286765 0.6252101 0.6420168 0.7735294 0.3336134 0.5504202 0.6159664
14 0.3044118 0.5963235 0.6110294 0.3742647 0.5411765 0.3573529 0.5147059
15 0.6242647 0.4588235 0.6184874 0.5691176 0.5386555 0.6025210 0.3823529
16 0.6845588 0.3831933 0.6857143 0.3147059 0.8344538 0.5504202 0.4848739
17 0.7897059 0.2176471 0.6630252 0.4198529 0.8117647 0.6705882 0.6050420
18 0.5268908 0.4647059 0.8336134 0.5210084 0.5537815 0.7588235 0.5386555
8 9 10 11 12 13 14
2
3
4
5
6
7
8
9 0.6595588
10 0.6639706 0.5126050
11 0.5073529 0.4419118 0.4066176
12 0.4272059 0.4367647 0.3867647 0.2698529
13 0.6073529 0.2596639 0.4529412 0.3647059 0.2595588
14 0.4669118 0.4514706 0.3720588 0.2845588 0.1647059 0.3992647
15 0.4720588 0.2932773 0.5050420 0.4897059 0.4448529 0.3764706 0.4448529
16 0.6058824 0.7319328 0.3621849 0.7235294 0.5786765 0.6722689 0.4389706
17 0.4610294 0.7092437 0.3394958 0.7036765 0.5588235 0.6495798 0.5441176
18 0.1882353 0.5198529 0.8286765 0.5470588 0.5669118 0.5823529 0.5816176
15 16 17
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 0.4386555
17 0.4159664 0.1655462
18 0.5117647 0.7705882 0.6257353
Metric : mixed ; Types = A, N, A, N, O, O, T, I
Number of objects : 18
> (dfl3 <- daisy(flower, type = list(asymm = 1:3)))
Dissimilarities :
1 2 3 4 5 6 7
2 0.8875408
3 0.6025677 0.5882353
4 0.4020542 0.6290850 0.6458917
5 0.4703548 0.7115780 0.4968410 0.7295518
6 0.2593371 0.7549953 0.4004357 0.4788515 0.4591503
7 0.3287115 0.7998911 0.6528322 0.4581155 0.5596950 0.2523965
8 0.4838936 0.5304388 0.6901027 0.3947168 0.5340803 0.6531279 0.5477124
9 0.5808824 0.4933240 0.5101307 0.8076797 0.3779178 0.5870682 0.6732493
10 0.6094363 0.5178338 0.5346405 0.5570670 0.4357610 0.4707750 0.6703081
11 0.3278595 0.7096814 0.5993873 0.6518791 0.3864788 0.4828840 0.5652369
12 0.4267565 0.5857843 0.6004902 0.5132761 0.5000817 0.5248366 0.6391340
13 0.5196487 0.5998133 0.6166200 0.7464461 0.3336134 0.5170868 0.6032680
14 0.2926062 0.5949346 0.6096405 0.3680147 0.5203431 0.3656863 0.5049837
15 0.6221814 0.5204793 0.6057890 0.6321662 0.5259570 0.5818861 0.4460784
16 0.6935866 0.4766885 0.7111111 0.3906162 0.8344538 0.5837535 0.5805011
17 0.7765114 0.2539216 0.6630252 0.4853875 0.7863679 0.6785247 0.6910675
18 0.5268908 0.5160131 0.8185341 0.5837691 0.5434641 0.7358077 0.6256536
8 9 10 11 12 13 14
2
3
4
5
6
7
8
9 0.6366422
10 0.6639706 0.4864146
11 0.4955474 0.4308007 0.3948121
12 0.4216503 0.4194036 0.3812092 0.2636029
13 0.5754085 0.2493464 0.4164332 0.3445670 0.2331699
14 0.4558007 0.4396650 0.3609477 0.2838644 0.1591503 0.3784314
15 0.5156863 0.2908964 0.4812325 0.4806781 0.4295752 0.3637722 0.4351307
16 0.7289449 0.7422502 0.3986928 0.7436683 0.6050654 0.6722689 0.4598039
17 0.5380019 0.6941643 0.3506069 0.7015931 0.5629902 0.6241830 0.5427288
18 0.1890523 0.5198529 0.8057598 0.5359477 0.5495507 0.5733252 0.5698121
15 16 17
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 0.5265795
17 0.4704793 0.2227669
18 0.5824930 0.8909897 0.7000467
Metric : mixed ; Types = A, A, A, N, O, O, I, I
Number of objects : 18
>
> ## --- animals
> data(animals)
> d0 <- daisy(animals)
Warning message:
In daisy(animals) :
binary variable(s) 1, 2, 3, 4, 5, 6 treated as interval scaled
>
> d1 <- daisy(animals - 1, type=list(asymm=c(2,4)))
Warning message:
In daisy(animals - 1, type = list(asymm = c(2, 4))) :
binary variable(s) 1, 3, 5, 6 treated as interval scaled
> (d2 <- daisy(animals - 1, type=list(symm = c(1,3,5,6), asymm=c(2,4))))
Dissimilarities :
ant bee cat cpl chi cow duc
bee 0.4000000
cat 1.0000000 0.8000000
cpl 0.5000000 0.4000000 0.5000000
chi 0.8000000 0.6666667 0.4000000 0.8000000
cow 0.7500000 0.6000000 0.2500000 0.7500000 0.2000000
duc 0.6000000 0.6000000 0.6000000 1.0000000 0.5000000 0.4000000
eag 0.8333333 0.8333333 0.5000000 0.8333333 0.5000000 0.6666667 0.3333333
ele 0.6000000 0.8333333 0.6000000 1.0000000 0.2000000 0.4000000 0.3333333
fly 0.4000000 0.4000000 0.8000000 0.4000000 1.0000000 1.0000000 0.6000000
fro 0.5000000 0.8000000 0.7500000 0.7500000 0.5000000 0.7500000 0.6000000
her 0.2500000 0.6000000 0.7500000 0.7500000 0.6000000 0.5000000 0.4000000
lio 0.7500000 0.6000000 0.2500000 0.7500000 0.0000000 0.0000000 0.4000000
liz 0.5000000 0.8000000 0.5000000 0.5000000 0.8000000 0.7500000 0.6000000
lob 0.0000000 0.5000000 1.0000000 0.3333333 1.0000000 1.0000000 0.7500000
man 0.8000000 0.6666667 0.4000000 0.8000000 0.0000000 0.2000000 0.5000000
rab 0.7500000 0.6000000 0.2500000 0.7500000 0.2000000 0.0000000 0.4000000
sal 0.3333333 0.7500000 0.6666667 0.6666667 0.7500000 0.6666667 0.5000000
spi 0.5000000 0.4000000 0.5000000 0.0000000 0.7500000 0.7500000 1.0000000
wha 0.6000000 0.8333333 0.6000000 1.0000000 0.2000000 0.4000000 0.3333333
eag ele fly fro her lio liz
bee
cat
cpl
chi
cow
duc
eag
ele 0.3333333
fly 0.5000000 0.8333333
fro 0.4000000 0.2500000 0.6000000
her 0.6666667 0.4000000 0.6000000 0.2500000
lio 0.6000000 0.2500000 1.0000000 0.6666667 0.5000000
liz 0.5000000 0.6000000 0.4000000 0.2500000 0.2500000 0.7500000
lob 0.8000000 0.7500000 0.2500000 0.5000000 0.3333333 1.0000000 0.3333333
man 0.5000000 0.2000000 1.0000000 0.5000000 0.6000000 0.0000000 0.8000000
rab 0.6666667 0.4000000 1.0000000 0.7500000 0.5000000 0.0000000 0.7500000
sal 0.6000000 0.5000000 0.5000000 0.2500000 0.0000000 0.6666667 0.0000000
spi 0.8000000 1.0000000 0.4000000 0.6666667 0.7500000 0.7500000 0.5000000
wha 0.3333333 0.0000000 0.8333333 0.2500000 0.4000000 0.2500000 0.6000000
lob man rab sal spi
bee
cat
cpl
chi
cow
duc
eag
ele
fly
fro
her
lio
liz
lob
man 1.0000000
rab 1.0000000 0.2000000
sal 0.3333333 0.7500000 0.6666667
spi 0.3333333 0.7500000 0.7500000 0.6666667
wha 0.7500000 0.2000000 0.4000000 0.5000000 1.0000000
Metric : mixed ; Types = S, A, S, A, S, S
Number of objects : 20
> stopifnot(c(d1) == c(d2))
>
> d3 <- daisy(2 - animals, type=list(asymm=c(2,4)))
Warning message:
In daisy(2 - animals, type = list(asymm = c(2, 4))) :
binary variable(s) 1, 3, 5, 6 treated as interval scaled
> (d4 <- daisy(2 - animals, type=list(symm = c(1,3,5,6), asymm=c(2,4))))
Dissimilarities :
ant bee cat cpl chi cow duc
bee 0.3333333
cat 0.6666667 0.6666667
cpl 0.3333333 0.3333333 0.3333333
chi 0.6666667 0.6666667 0.3333333 0.6666667
cow 0.5000000 0.5000000 0.1666667 0.5000000 0.1666667
duc 0.5000000 0.6000000 0.5000000 0.8333333 0.5000000 0.3333333
eag 0.8333333 1.0000000 0.5000000 0.8333333 0.6000000 0.6666667 0.4000000
ele 0.5000000 0.8333333 0.5000000 0.8333333 0.2000000 0.3333333 0.3333333
fly 0.3333333 0.4000000 0.6666667 0.3333333 1.0000000 0.8333333 0.6000000
fro 0.4000000 0.8000000 0.6000000 0.6000000 0.5000000 0.6000000 0.6000000
her 0.1666667 0.5000000 0.5000000 0.5000000 0.5000000 0.3333333 0.3333333
lio 0.6000000 0.6000000 0.2000000 0.6000000 0.0000000 0.0000000 0.4000000
liz 0.3333333 0.6666667 0.3333333 0.3333333 0.6666667 0.5000000 0.5000000
lob 0.0000000 0.4000000 0.6000000 0.2000000 0.8000000 0.6000000 0.6000000
man 0.6666667 0.6666667 0.3333333 0.6666667 0.0000000 0.1666667 0.5000000
rab 0.5000000 0.5000000 0.1666667 0.5000000 0.1666667 0.0000000 0.3333333
sal 0.2000000 0.6000000 0.4000000 0.4000000 0.6000000 0.4000000 0.4000000
spi 0.4000000 0.4000000 0.4000000 0.0000000 0.6000000 0.6000000 1.0000000
wha 0.5000000 0.8333333 0.5000000 0.8333333 0.2000000 0.3333333 0.3333333
eag ele fly fro her lio liz
bee
cat
cpl
chi
cow
duc
eag
ele 0.4000000
fly 0.6000000 0.8333333
fro 0.5000000 0.2500000 0.6000000
her 0.6666667 0.3333333 0.5000000 0.2000000
lio 0.6000000 0.2000000 1.0000000 0.5000000 0.4000000
liz 0.5000000 0.5000000 0.3333333 0.2000000 0.1666667 0.6000000
lob 0.8000000 0.6000000 0.2000000 0.4000000 0.2000000 0.7500000 0.2000000
man 0.6000000 0.2000000 1.0000000 0.5000000 0.5000000 0.0000000 0.6666667
rab 0.6666667 0.3333333 0.8333333 0.6000000 0.3333333 0.0000000 0.5000000
sal 0.6000000 0.4000000 0.4000000 0.2000000 0.0000000 0.5000000 0.0000000
spi 0.8000000 0.8000000 0.4000000 0.5000000 0.6000000 0.6000000 0.4000000
wha 0.4000000 0.0000000 0.8333333 0.2500000 0.3333333 0.2000000 0.5000000
lob man rab sal spi
bee
cat
cpl
chi
cow
duc
eag
ele
fly
fro
her
lio
liz
lob
man 0.8000000
rab 0.6000000 0.1666667
sal 0.2000000 0.6000000 0.4000000
spi 0.2500000 0.6000000 0.6000000 0.5000000
wha 0.6000000 0.2000000 0.3333333 0.4000000 0.8000000
Metric : mixed ; Types = S, A, S, A, S, S
Number of objects : 20
> stopifnot(c(d3) == c(d4))
>
> pairs(cbind(d0,d2,d4),
+ main = "Animals -- symmetric and asymm. dissimilarities")
>
> proc.time()
user system elapsed
0.518 0.113 0.905
|