1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
#### Originally from orphaned package SLmisc
#### (Version: 1.4.1, 2007-04-12, Maintainer: Matthias Kohl <kohl@sirs-lab.com>)
#### License: GPL (version 2 or later)
####
#### which said
#### "function corresponds to function gap in package SAGx"
## MM: SAGx is now in Bioconductor --- 1.10.1{devel} or 1.11.1{release}
## had gap() *corrected* to re-cluster using FUNcluster --> see ./gap-SAGx.R.~orig~
##
## MM: Package 'lga' -- has gap() and lga and robust lga [-> UBC]
## - it uses boot() nicely [2012-01: ORPHANED because Justin Harrington is amiss]
## MM: renamed arguments, and changed almost everything
clusGap <- function (x, FUNcluster, K.max, B = 100, d.power = 1,
spaceH0 = c("scaledPCA", "original"),
verbose = interactive(), ...)
{
stopifnot(is.function(FUNcluster), length(dim(x)) == 2, K.max >= 2,
(n <- nrow(x)) >= 1, ncol(x) >= 1)
if(B != (B. <- as.integer(B)) || (B <- B.) <= 0)
stop("'B' has to be a positive integer")
cl. <- match.call()
if(is.data.frame(x))
x <- as.matrix(x)
ii <- seq_len(n)
W.k <- function(X, kk) {
clus <- if(kk > 1) FUNcluster(X, kk, ...)$cluster else rep.int(1L, nrow(X))
## ---------- = = -------- kmeans() has 'cluster'; pam() 'clustering'
0.5* sum(vapply(split(ii, clus),
function(I) { xs <- X[I,, drop=FALSE]
sum(dist(xs)^d.power/nrow(xs)) }, 0.))
}
logW <- E.logW <- SE.sim <- numeric(K.max)
if(verbose) cat("Clustering k = 1,2,..., K.max (= ",K.max,"): .. ", sep='')
for(k in 1:K.max)
logW[k] <- log(W.k(x, k))
if(verbose) cat("done\n")
spaceH0 <- match.arg(spaceH0)
## Scale 'x' into hypercube -- later fill with H0-generated data
xs <- scale(x, center=TRUE, scale=FALSE)
m.x <- rep(attr(xs,"scaled:center"), each = n) # for back-trafo later
switch(spaceH0,
"scaledPCA" =
{
## (These & (xs,m.x) above basically do stats:::prcomp.default()
V.sx <- svd(xs, nu=0)$v
xs <- xs %*% V.sx # = transformed(x)
},
"original" = {}, # (do nothing, use 'xs')
## otherwise
stop("invalid 'spaceH0':", spaceH0))
rng.x1 <- apply(xs, 2L, range)
logWks <- matrix(0, B, K.max)
if(verbose) cat("Bootstrapping, b = 1,2,..., B (= ", B,
") [one \".\" per sample]:\n", sep="")
for (b in 1:B) {
## Generate "H0"-data as "parametric bootstrap sample" :
z1 <- apply(rng.x1, 2,
function(M, nn) runif(nn, min=M[1], max=M[2]),
nn=n)
z <- switch(spaceH0,
"scaledPCA" = tcrossprod(z1, V.sx), # back transformed
"original" = z1
) + m.x
for(k in 1:K.max) {
logWks[b,k] <- log(W.k(z, k))
}
if(verbose) cat(".", if(b %% 50 == 0) paste(b,"\n"))
}
if(verbose && (B %% 50 != 0)) cat("",B,"\n")
E.logW <- colMeans(logWks)
SE.sim <- sqrt((1 + 1/B) * apply(logWks, 2, var))
structure(class = "clusGap",
list(Tab = cbind(logW, E.logW, gap = E.logW - logW, SE.sim),
## K.max == nrow(T)
call = cl., spaceH0=spaceH0,
n = n, B = B, FUNcluster=FUNcluster))
}
## lga/R/gap.R --- has for Tibshirani et al (2001):
## ElogWks[k,] <- c(mean(BootOutput), sqrt(var(BootOutput)*(1+1/B)))
## GAP[k] <- ElogWks[k,1] - logWks[k]
## if (k > 1)
## if(GAP[k-1] >= GAP[k]-ElogWks[k,2] & !doall)
## finished <- TRUE
## so they effectively only look for the *first* (local) maximum which ..
## MM: <==> diff(GAP) = GAP[k] - GAP[k-1] <= +SE.sim[k]
## criteria.DandF() -- Dudoit and Fridlyand (2002)
## ---------------- looks at the *global* maximum and then to the left..
## y <- x$data
## crit <- diff(y[which.max(y[,"Gap"]), c("Sks", "Gap")])
## nclust <- min(which(y[,"Gap"] > crit))
## return(ifelse(nclust == nrow(y), NA, nclust))
maxSE <- function(f, SE.f,
method = c("firstSEmax", "Tibs2001SEmax",
"globalSEmax", "firstmax", "globalmax"),
SE.factor = 1)
{
method <- match.arg(method)
stopifnot((K <- length(f)) >= 1, K == length(SE.f), SE.f >= 0, SE.factor >= 0)
fSE <- SE.factor * SE.f
switch(method,
"firstmax" = { ## the first local maximum (== firstSEmax with SE.factor == 0)
decr <- diff(f) <= 0 # length K-1
if(any(decr)) which.max(decr) else K # the first TRUE, or K
},
"globalmax" = {
which.max(f)
},
"Tibs2001SEmax" = { ## The one Tibshirani et al (2001) proposed:
## "the smallest k such that f(k) >= f(k+1) - s_{k+1}"
g.s <- f - fSE
if(any(mp <- f[-K] >= g.s[-1])) which.max(mp) else K
},
"firstSEmax" = { ## M.Maechler(2012): rather ..
## look at the first *local* maximum and then to the left ..:
decr <- diff(f) <= 0 # length K-1
nc <- if(any(decr)) which.max(decr) else K # the first TRUE, or K
if(any(mp <- f[seq_len(nc - 1)] >= f[nc] - fSE[nc]))
which(mp)[1]
else nc
},
"globalSEmax" = { ## Dudoit and Fridlyand (2002) *thought* Tibshirani proposed..
## in 'lga', see criteria.DandF():
## looks at the *global* maximum and then to the left..
nc <- which.max(f)
if(any(mp <- f[seq_len(nc - 1)] >= f[nc] - fSE[nc]))
which(mp)[1]
else nc
})
}
print.clusGap <- function(x, method="firstSEmax", SE.factor = 1, ...)
{
method <- match.arg(method, choices = eval(formals(maxSE)$method))
stopifnot((K <- nrow(T <- x$Tab)) >= 1, SE.factor >= 0)
cat("Clustering Gap statistic [\"clusGap\"] from call:\n", deparse1(x$call),
sprintf("\nB=%d simulated reference sets, k = 1..%d; spaceH0=\"%s\"\n",
x$B, K, x$spaceH0), sep="")
nc <- maxSE(f = T[,"gap"], SE.f = T[,"SE.sim"],
method=method, SE.factor=SE.factor)
cat(sprintf(" --> Number of clusters (method '%s'%s): %d\n",
method, if(grepl("SE", method))
sprintf(", SE.factor=%g",SE.factor) else "", nc))
print(T, ...)
invisible(x)
}
plot.clusGap <- function(x, type="b", xlab = "k", ylab = expression(Gap[k]),
main = NULL,
do.arrows = TRUE,
arrowArgs = list(col="red3", length=1/16, angle=90, code=3),
...)
{
stopifnot(is.matrix(Tab <- x$Tab), is.numeric(Tab))
K <- nrow(Tab)
k <- seq_len(K) # == 1,2,... k
if(is.null(main))
main <- paste(strwrap(deparse1(x$call), width = 60, exdent = 7),
collapse="\n")
gap <- Tab[, "gap"]
plot(k, gap, type=type, xlab=xlab, ylab=ylab, main=main, ...)
if(do.arrows)
do.call(arrows,
c(list(k, gap+ Tab[, "SE.sim"], k, gap- Tab[, "SE.sim"]), arrowArgs))
invisible()
}
|