File: fanny.object.Rd

package info (click to toggle)
cluster 2.1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,732 kB
  • sloc: ansic: 3,397; sh: 20; makefile: 2
file content (69 lines) | stat: -rw-r--r-- 2,779 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
\name{fanny.object}
\alias{fanny.object}
\title{Fuzzy Analysis (FANNY) Object}
\description{
  The objects of class \code{"fanny"} represent a fuzzy clustering of a
  dataset.
}
\section{GENERATION}{
  These objects are returned from \code{\link{fanny}}.
}
\section{METHODS}{
  The \code{"fanny"} class has methods for the following generic functions:
  \code{print}, \code{summary}.
}
\section{INHERITANCE}{
  The class \code{"fanny"} inherits from \code{"partition"}.
  Therefore, the generic functions \code{plot} and \code{clusplot} can
  be used on a \code{fanny} object.
}
\value{
  A legitimate \code{fanny} object is a list with the following components:
  \item{membership}{
    matrix containing the memberships for each pair consisting of an
    observation and a cluster.
  }
  \item{memb.exp}{the membership exponent used in the fitting criterion.}
  \item{coeff}{
    Dunn's partition coefficient \eqn{F(k)} of the clustering, where
    \eqn{k} is the number of clusters. \eqn{F(k)} is the sum of all
    \emph{squared} membership coefficients, divided by the number of
    observations.  Its value is between \eqn{1/k} and 1.

    The normalized form of the coefficient is also given.  It is defined
    as \eqn{(F(k) - 1/k) / (1 - 1/k)}, and ranges between 0 and 1.
    A low value of Dunn's coefficient indicates a very fuzzy clustering,
    whereas a value close to 1 indicates a near-crisp clustering.
  }
  \item{clustering}{
    the clustering vector of the nearest crisp clustering, see
    \code{\link{partition.object}}.}
  \item{k.crisp}{integer (\eqn{\le k}{<= k}) giving the number of \emph{crisp}
    clusters; can be less than \eqn{k}, where it's recommended to
    decrease \code{memb.exp}.}
  \item{objective}{
    named vector containing the minimal value of the objective function
    reached by the FANNY algorithm and the relative convergence
    tolerance \code{tol} used.% + still has 'iterations' for back-compatibility
  }
  \item{convergence}{
    named vector with \code{iterations}, the number of iterations needed
    and \code{converged} indicating if the algorithm converged (in
    \code{maxit} iterations within convergence tolerance \code{tol}).
  }
  \item{diss}{
    an object of class \code{"dissimilarity"}, see
    \code{\link{partition.object}}.}
  \item{call}{generating call, see \code{\link{partition.object}}.}
  \item{silinfo}{
    list with silhouette information of the nearest crisp clustering, see
    \code{\link{partition.object}}.}
  \item{data}{matrix, possibibly standardized, or NULL, see
    \code{\link{partition.object}}.}
}
\seealso{
  \code{\link{fanny}}, \code{\link{print.fanny}},
  \code{\link{dissimilarity.object}},
  \code{\link{partition.object}}, \code{\link{plot.partition}}.
}
\keyword{cluster}