1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
|
R Under development (unstable) (2023-10-19 r85354) -- "Unsuffered Consequences"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(cluster)
>
> ## generate 1500 objects, divided into 2 clusters.
> suppressWarnings(RNGversion("3.5.0")) # << as long as we don't have R >= 3.6.0
> set.seed(144)
> x <- rbind(cbind(rnorm(700, 0,8), rnorm(700, 0,8)),
+ cbind(rnorm(800,50,8), rnorm(800,10,8)))
>
> isEq <- function(x,y, epsF = 100)
+ is.logical(r <- all.equal(x,y, tol = epsF * .Machine$double.eps)) && r
>
> .proctime00 <- proc.time()
>
> ## full size sample {should be = pam()}:
> n0 <- length(iSml <- c(1:70, 701:720))
> summary(clara0 <- clara(x[iSml,], k = 2, sampsize = n0))
Object of class 'clara' from call:
clara(x = x[iSml, ], k = 2, sampsize = n0)
Medoids:
[,1] [,2]
[1,] -1.499522 -1.944452
[2,] 48.629631 12.998515
Objective function: 10.23588
Numerical information per cluster:
size max_diss av_diss isolation
[1,] 70 24.81995 10.25745 0.4744879
[2,] 20 19.07782 10.16040 0.3647145
Average silhouette width per cluster:
[1] 0.7144587 0.7090915
Average silhouette width of best sample: 0.713266
Best sample:
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
[51] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
[76] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
Clustering vector:
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[39] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
[77] 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Silhouette plot information for best sample:
cluster neighbor sil_width
45 1 2 0.8033727
60 1 2 0.8021017
55 1 2 0.8005931
66 1 2 0.8002776
58 1 2 0.7991899
11 1 2 0.7991773
41 1 2 0.7973302
26 1 2 0.7962397
63 1 2 0.7962229
13 1 2 0.7949705
67 1 2 0.7942590
54 1 2 0.7936184
17 1 2 0.7916087
16 1 2 0.7913570
39 1 2 0.7912755
6 1 2 0.7840455
34 1 2 0.7833568
49 1 2 0.7819733
9 1 2 0.7789087
23 1 2 0.7785009
32 1 2 0.7757325
22 1 2 0.7655369
61 1 2 0.7639754
12 1 2 0.7639644
5 1 2 0.7606436
18 1 2 0.7579145
56 1 2 0.7566307
3 1 2 0.7537894
24 1 2 0.7531180
50 1 2 0.7517817
48 1 2 0.7501998
25 1 2 0.7499655
59 1 2 0.7472022
19 1 2 0.7445038
65 1 2 0.7398395
28 1 2 0.7377377
38 1 2 0.7370935
7 1 2 0.7335940
40 1 2 0.7310012
14 1 2 0.7294895
62 1 2 0.7254478
70 1 2 0.7163214
4 1 2 0.7157257
21 1 2 0.7148663
64 1 2 0.7108496
2 1 2 0.7062831
15 1 2 0.7015120
52 1 2 0.6978313
37 1 2 0.6954023
31 1 2 0.6932905
33 1 2 0.6888478
10 1 2 0.6805028
20 1 2 0.6766854
43 1 2 0.6761461
8 1 2 0.6749706
27 1 2 0.6671817
35 1 2 0.6632888
68 1 2 0.6587599
30 1 2 0.6554989
36 1 2 0.6228481
53 1 2 0.6203313
57 1 2 0.6191666
42 1 2 0.6142020
47 1 2 0.6024151
1 1 2 0.5814464
69 1 2 0.5091186
46 1 2 0.4961302
44 1 2 0.4849961
29 1 2 0.4569316
51 1 2 0.4230181
81 2 1 0.7965942
71 2 1 0.7961971
85 2 1 0.7919593
74 2 1 0.7869047
82 2 1 0.7795304
78 2 1 0.7788873
79 2 1 0.7729041
72 2 1 0.7492980
88 2 1 0.7447973
87 2 1 0.7404399
76 2 1 0.7352351
77 2 1 0.7216838
86 2 1 0.7165677
84 2 1 0.6952406
73 2 1 0.6942882
83 2 1 0.6621568
80 2 1 0.6368446
90 2 1 0.5743228
75 2 1 0.5597232
89 2 1 0.4482549
4005 dissimilarities, summarized :
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1865 11.5850 20.0580 27.8150 45.5780 85.2320
Metric : euclidean
Number of objects : 90
Available components:
[1] "sample" "medoids" "i.med" "clustering" "objective"
[6] "clusinfo" "diss" "call" "silinfo" "data"
> pam0 <- pam (x[iSml,], k = 2)
> stopifnot(identical(clara0$clustering, pam0$clustering)
+ , isEq(clara0$objective, unname(pam0$objective[2]))
+ )
>
> summary(clara2 <- clara(x, 2))
Object of class 'clara' from call:
clara(x = x, k = 2)
Medoids:
[,1] [,2]
[1,] 2.012828 -1.896095
[2,] 51.494628 10.274769
Objective function: 10.23445
Numerical information per cluster:
size max_diss av_diss isolation
[1,] 700 36.84408 10.49814 0.7230478
[2,] 800 30.89896 10.00373 0.6063775
Average silhouette width per cluster:
[1] 0.7562366 0.7203254
Average silhouette width of best sample: 0.733384
Best sample:
[1] 21 23 50 97 142 168 191 192 197 224 325 328 433 458 471
[16] 651 712 714 722 797 805 837 909 919 926 999 1006 1018 1019 1049
[31] 1081 1084 1132 1144 1150 1201 1207 1250 1291 1307 1330 1374 1426 1428
Clustering vector:
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
[704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[741] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[778] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[815] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[852] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[889] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[926] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[963] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1000] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1037] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1074] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1111] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1148] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1185] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1222] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1259] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1296] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1333] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1370] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1407] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1444] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[1481] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Silhouette plot information for best sample:
cluster neighbor sil_width
325 1 2 0.8261589
191 1 2 0.8206687
23 1 2 0.8149640
97 1 2 0.8048084
433 1 2 0.8017745
458 1 2 0.8008324
471 1 2 0.7958547
328 1 2 0.7689099
142 1 2 0.7619508
21 1 2 0.7607528
197 1 2 0.7606641
50 1 2 0.7509131
192 1 2 0.7098473
651 1 2 0.7035969
224 1 2 0.6843886
168 1 2 0.5337006
1084 2 1 0.8180447
1081 2 1 0.8171686
1201 2 1 0.8170847
1291 2 1 0.8167148
1307 2 1 0.8166841
1144 2 1 0.8159947
999 2 1 0.8135303
1426 2 1 0.8023538
1049 2 1 0.8022891
1250 2 1 0.8014300
712 2 1 0.7859324
837 2 1 0.7792784
1018 2 1 0.7764837
919 2 1 0.7651939
1374 2 1 0.7648534
1428 2 1 0.7516819
1330 2 1 0.7505861
1006 2 1 0.7368113
714 2 1 0.7237565
1150 2 1 0.7046060
1132 2 1 0.6940608
909 2 1 0.6859682
926 2 1 0.6725631
722 2 1 0.6572791
797 2 1 0.6395698
1019 2 1 0.6083662
805 2 1 0.2814164
1207 2 1 0.2694097
946 dissimilarities, summarized :
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4846 12.3230 26.4990 32.2130 52.3910 77.1750
Metric : euclidean
Number of objects : 44
Available components:
[1] "sample" "medoids" "i.med" "clustering" "objective"
[6] "clusinfo" "diss" "call" "silinfo" "data"
>
> clInd <- c("objective", "i.med", "medoids", "clusinfo")
> clInS <- c(clInd, "sample")
> ## clara() {as original code} always draws the *same* random samples !!!!
> clara(x, 2, samples = 50)[clInd]
$objective
[1] 10.06735
$i.med
[1] 177 1115
$medoids
[,1] [,2]
[1,] -0.2538744 -1.209148
[2,] 50.0372683 9.501125
$clusinfo
size max_diss av_diss isolation
[1,] 700 34.67208 10.193945 0.6743054
[2,] 800 29.51964 9.956571 0.5741003
> for(i in 1:20)
+ print(clara(x[sample(nrow(x)),], 2, samples = 50)[clInd])
$objective
[1] 10.05727
$i.med
[1] 936 192
$medoids
[,1] [,2]
[1,] 50.03726827 9.501124850
[2,] -0.03900399 -0.009078886
$clusinfo
size max_diss av_diss isolation
[1,] 800 29.51964 9.956571 0.5791419
[2,] 700 34.06055 10.172348 0.6682295
$objective
[1] 10.05296
$i.med
[1] 468 1394
$medoids
[,1] [,2]
[1,] -0.3292826 -0.2398794
[2,] 50.0372683 9.5011249
$clusinfo
size max_diss av_diss isolation
[1,] 700 33.98451 10.163128 0.6624677
[2,] 800 29.51964 9.956571 0.5754330
$objective
[1] 10.05852
$i.med
[1] 1171 379
$medoids
[,1] [,2]
[1,] 50.9444060 9.6723175
[2,] -0.3292826 -0.2398794
$clusinfo
size max_diss av_diss isolation
[1,] 800 30.10388 9.966988 0.5764486
[2,] 700 33.98451 10.163128 0.6507574
$objective
[1] 10.07051
$i.med
[1] 75 1254
$medoids
[,1] [,2]
[1,] -0.9493373 0.3552542
[2,] 50.5455985 9.3904972
$clusinfo
size max_diss av_diss isolation
[1,] 700 33.12704 10.191999 0.6336273
[2,] 800 29.66384 9.964205 0.5673860
$objective
[1] 10.0613
$i.med
[1] 199 134
$medoids
[,1] [,2]
[1,] -0.03900399 -0.009078886
[2,] 49.59384120 9.792964832
$clusinfo
size max_diss av_diss isolation
[1,] 700 34.06055 10.172348 0.6732466
[2,] 800 29.57491 9.964138 0.5845827
$objective
[1] 10.06101
$i.med
[1] 1453 1122
$medoids
[,1] [,2]
[1,] 50.0372683 9.50112485
[2,] -0.9691441 0.03342515
$clusinfo
size max_diss av_diss isolation
[1,] 800 29.51964 9.956571 0.5690241
[2,] 700 33.31923 10.180359 0.6422655
$objective
[1] 10.08603
$i.med
[1] 613 318
$medoids
[,1] [,2]
[1,] 50.0627056 9.478225
[2,] -0.2902194 1.026496
$clusinfo
size max_diss av_diss isolation
[1,] 800 29.51131 9.957225 0.5780037
[2,] 700 33.21560 10.233240 0.6505552
$objective
[1] 10.07293
$i.med
[1] 618 406
$medoids
[,1] [,2]
[1,] 50.3621263 9.0207185
[2,] -0.2092816 -0.5916053
$clusinfo
size max_diss av_diss isolation
[1,] 800 29.25143 9.990206 0.5682446
[2,] 700 34.30301 10.167473 0.6663777
$objective
[1] 10.0592
$i.med
[1] 1279 1349
$medoids
[,1] [,2]
[1,] 50.1502433 10.60358224
[2,] -0.9691441 0.03342515
$clusinfo
size max_diss av_diss isolation
[1,] 800 30.54975 9.953191 0.5852356
[2,] 700 33.31923 10.180359 0.6382900
$objective
[1] 10.06241
$i.med
[1] 1293 21
$medoids
[,1] [,2]
[1,] 50.5809098 9.7418386
[2,] -0.9493373 0.3552542
$clusinfo
size max_diss av_diss isolation
[1,] 800 29.98892 9.949013 0.5725461
[2,] 700 33.12704 10.191999 0.6324587
$objective
[1] 10.0592
$i.med
[1] 337 675
$medoids
[,1] [,2]
[1,] -0.9691441 0.03342515
[2,] 50.1502433 10.60358224
$clusinfo
size max_diss av_diss isolation
[1,] 700 33.31923 10.180359 0.6382900
[2,] 800 30.54975 9.953191 0.5852356
$objective
[1] 10.05697
$i.med
[1] 22 574
$medoids
[,1] [,2]
[1,] 50.5809098 9.74183863
[2,] -0.9691441 0.03342515
$clusinfo
size max_diss av_diss isolation
[1,] 800 29.98892 9.949013 0.5716937
[2,] 700 33.31923 10.180359 0.6351809
$objective
[1] 10.05096
$i.med
[1] 739 808
$medoids
[,1] [,2]
[1,] 50.5809098 9.7418386
[2,] -0.2092816 -0.5916053
$clusinfo
size max_diss av_diss isolation
[1,] 800 29.98892 9.949013 0.5785936
[2,] 700 34.30301 10.167473 0.6618278
$objective
[1] 10.06135
$i.med
[1] 1431 485
$medoids
[,1] [,2]
[1,] 50.0627056 9.47822525
[2,] -0.9691441 0.03342515
$clusinfo
size max_diss av_diss isolation
[1,] 800 29.51131 9.957225 0.5686352
[2,] 700 33.31923 10.180359 0.6420076
$objective
[1] 10.05324
$i.med
[1] 10 1221
$medoids
[,1] [,2]
[1,] 50.58090982 9.741838628
[2,] -0.03900399 -0.009078886
$clusinfo
size max_diss av_diss isolation
[1,] 800 29.98892 9.949013 0.5817385
[2,] 700 34.06055 10.172348 0.6607218
$objective
[1] 10.06101
$i.med
[1] 1249 1411
$medoids
[,1] [,2]
[1,] -0.9691441 0.03342515
[2,] 50.0372683 9.50112485
$clusinfo
size max_diss av_diss isolation
[1,] 700 33.31923 10.180359 0.6422655
[2,] 800 29.51964 9.956571 0.5690241
$objective
[1] 10.05296
$i.med
[1] 610 21
$medoids
[,1] [,2]
[1,] -0.3292826 -0.2398794
[2,] 50.0372683 9.5011249
$clusinfo
size max_diss av_diss isolation
[1,] 700 33.98451 10.163128 0.6624677
[2,] 800 29.51964 9.956571 0.5754330
$objective
[1] 10.06486
$i.med
[1] 1101 397
$medoids
[,1] [,2]
[1,] -0.9691441 0.03342515
[2,] 50.1066826 9.35514422
$clusinfo
size max_diss av_diss isolation
[1,] 700 33.31923 10.180359 0.6417479
[2,] 800 29.42336 9.963794 0.5667111
$objective
[1] 10.07521
$i.med
[1] 838 356
$medoids
[,1] [,2]
[1,] 50.36212634 9.020718482
[2,] -0.03900399 -0.009078886
$clusinfo
size max_diss av_diss isolation
[1,] 800 29.25143 9.990206 0.5712766
[2,] 700 34.06055 10.172348 0.6651980
$objective
[1] 10.05906
$i.med
[1] 1270 1024
$medoids
[,1] [,2]
[1,] 50.5455985 9.3904972
[2,] -0.2092816 -0.5916053
$clusinfo
size max_diss av_diss isolation
[1,] 800 29.66384 9.964205 0.5734673
[2,] 700 34.30301 10.167473 0.6631526
>
> clara(x, 2, samples = 101)[clInd]
$objective
[1] 10.05727
$i.med
[1] 286 1115
$medoids
[,1] [,2]
[1,] -0.03900399 -0.009078886
[2,] 50.03726827 9.501124850
$clusinfo
size max_diss av_diss isolation
[1,] 700 34.06055 10.172348 0.6682295
[2,] 800 29.51964 9.956571 0.5791419
> clara(x, 2, samples = 149)[clInd]
$objective
[1] 10.05319
$i.med
[1] 238 1272
$medoids
[,1] [,2]
[1,] -0.2092816 -0.5916053
[2,] 50.1502433 10.6035822
$clusinfo
size max_diss av_diss isolation
[1,] 700 34.30301 10.167473 0.6649301
[2,] 800 30.54975 9.953191 0.5921768
> clara(x, 2, samples = 200)[clInd]
$objective
[1] 10.05319
$i.med
[1] 238 1272
$medoids
[,1] [,2]
[1,] -0.2092816 -0.5916053
[2,] 50.1502433 10.6035822
$clusinfo
size max_diss av_diss isolation
[1,] 700 34.30301 10.167473 0.6649301
[2,] 800 30.54975 9.953191 0.5921768
> ## Note that this last one is practically identical to the slower pam() one
>
> (ii <- sample(length(x), 20))
[1] 249 452 2663 2537 2235 2421 1004 1834 2602 397 717 2805 1575 1281 283
[16] 1657 1749 820 269 519
> ## This was bogous (and lead to seg.faults); now properly gives error.
> ## but for these, now see ./clara-NAs.R
> if(FALSE) { ## ~~~~~~~~~~~~~
+ x[ii] <- NA
+ try( clara(x, 2, samples = 50) )
+ }
>
> ###-- Larger example: 2000 objects, divided into 5 clusters.
> x5 <- rbind(cbind(rnorm(400, 0,4), rnorm(400, 0,4)),
+ cbind(rnorm(400,10,8), rnorm(400,40,6)),
+ cbind(rnorm(400,30,4), rnorm(400, 0,4)),
+ cbind(rnorm(400,40,4), rnorm(400,20,2)),
+ cbind(rnorm(400,50,4), rnorm(400,50,4)))
> ## plus 1 random dimension
> x5 <- cbind(x5, rnorm(nrow(x5)))
>
> clara(x5, 5)
Call: clara(x = x5, k = 5)
Medoids:
[,1] [,2] [,3]
[1,] 0.5850466 -2.222194 -0.63631241
[2,] 8.0131143 42.708122 -0.31693240
[3,] 42.6657812 21.123133 -0.62411426
[4,] 50.6470292 48.480686 -0.09146223
[5,] 28.6470950 -2.544131 -0.22186047
Objective function: 6.100721
Clustering vector: int [1:2000] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
Cluster sizes: 400 396 408 401 395
Best sample:
[1] 23 130 178 202 267 297 338 357 376 387 439 441 638 647 662
[16] 719 723 802 874 880 994 1038 1056 1097 1184 1215 1225 1268 1271 1282
[31] 1346 1442 1446 1474 1496 1515 1585 1590 1605 1641 1680 1687 1696 1728 1742
[46] 1761 1857 1909 1951 1956
Available components:
[1] "sample" "medoids" "i.med" "clustering" "objective"
[6] "clusinfo" "diss" "call" "silinfo" "data"
> summary(clara(x5, 5, samples = 50))
Object of class 'clara' from call:
clara(x = x5, k = 5, samples = 50)
Medoids:
[,1] [,2] [,3]
[1,] -0.8427864 0.1606105 -0.70362181
[2,] 12.0389703 39.0303445 0.19158023
[3,] 39.6341676 20.7182868 0.43978514
[4,] 50.6470292 48.4806864 -0.09146223
[5,] 30.6814242 -0.1072177 -0.25861548
Objective function: 5.743812
Numerical information per cluster:
size max_diss av_diss isolation
[1,] 400 15.20728 5.207177 0.4823345
[2,] 397 24.25898 8.677062 0.7324727
[3,] 406 18.39064 4.369617 0.8109074
[4,] 401 18.28050 5.260543 0.6119680
[5,] 396 12.69653 5.243478 0.5598344
Average silhouette width per cluster:
[1] 0.7433532 0.6956424 0.7315944 0.7336104 0.7079360
Average silhouette width of best sample: 0.7188531
Best sample:
[1] 106 130 145 213 275 316 434 444 486 501 630 693 713 739 773
[16] 804 808 821 823 899 914 948 961 972 980 987 1076 1114 1126 1127
[31] 1169 1175 1203 1225 1228 1242 1269 1397 1405 1421 1595 1606 1658 1703 1777
[46] 1834 1857 1881 1937 1999
Clustering vector:
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
[408] 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[445] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[482] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[519] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[593] 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[630] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[667] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[741] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[778] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[815] 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[852] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[889] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[926] 5 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[963] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[1000] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[1037] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[1074] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[1111] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[1148] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[1185] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1222] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1259] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1296] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1333] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1370] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1407] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1444] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1481] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1518] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1555] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1592] 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[1629] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[1666] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[1703] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[1740] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[1777] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[1814] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[1851] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[1888] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[1925] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[1962] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[1999] 4 4
Silhouette plot information for best sample:
cluster neighbor sil_width
130 1 5 0.8123353
275 1 5 0.7945197
316 1 5 0.7561799
213 1 5 0.7459412
106 1 5 0.6869957
145 1 5 0.6641473
630 2 3 0.7819320
739 2 3 0.7774128
486 2 3 0.7559683
713 2 3 0.7316982
444 2 3 0.7204625
501 2 3 0.7091146
773 2 1 0.6886472
693 2 3 0.5855803
434 2 3 0.5099654
1225 3 5 0.8105776
1203 3 5 0.7965773
1595 3 5 0.7842711
1269 3 5 0.7799931
1242 3 5 0.7625442
1397 3 5 0.7315512
1228 3 5 0.7262025
1421 3 5 0.6011616
1405 3 5 0.5914707
1999 4 3 0.8050046
1857 4 3 0.8030709
1658 4 3 0.7941141
1777 4 3 0.7865209
1937 4 3 0.7831996
1881 4 3 0.7504779
1834 4 3 0.6614223
1606 4 3 0.6373808
1703 4 3 0.5813025
804 5 3 0.8021043
987 5 3 0.7999064
1076 5 3 0.7907769
948 5 3 0.7905304
961 5 3 0.7716289
823 5 3 0.7657693
808 5 3 0.7510670
914 5 3 0.7358231
1175 5 3 0.7337485
1169 5 3 0.7254812
972 5 3 0.7118795
821 5 3 0.7101558
899 5 1 0.6580927
1114 5 3 0.6552887
1127 5 3 0.6292428
1126 5 3 0.5362475
980 5 1 0.4671695
1225 dissimilarities, summarized :
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.6968 19.3160 34.0920 33.0700 46.2540 92.2530
Metric : euclidean
Number of objects : 50
Available components:
[1] "sample" "medoids" "i.med" "clustering" "objective"
[6] "clusinfo" "diss" "call" "silinfo" "data"
> ## 3 "half" samples:
> clara(x5, 5, samples = 999)
Call: clara(x = x5, k = 5, samples = 999)
Medoids:
[,1] [,2] [,3]
[1,] 0.2143499 0.3891695 0.45577894
[2,] 10.9779485 39.6788652 -0.23487762
[3,] 40.2944064 20.2221253 0.21417849
[4,] 50.7170411 49.7645642 -0.43318939
[5,] 29.7257398 -0.5981739 -0.05616701
Objective function: 5.659041
Clustering vector: int [1:2000] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
Cluster sizes: 400 397 407 401 395
Best sample:
[1] 1 2 103 147 155 176 179 247 262 288 365 369 372 470 486
[16] 573 759 779 785 791 797 822 875 883 913 954 1107 1114 1154 1156
[31] 1171 1175 1206 1213 1218 1233 1243 1394 1439 1444 1512 1741 1777 1798 1800
[46] 1818 1845 1946 1948 1973
Available components:
[1] "sample" "medoids" "i.med" "clustering" "objective"
[6] "clusinfo" "diss" "call" "silinfo" "data"
> clara(x5, 5, samples = 1000)
Call: clara(x = x5, k = 5, samples = 1000)
Medoids:
[,1] [,2] [,3]
[1,] 0.2143499 0.3891695 0.45577894
[2,] 10.9779485 39.6788652 -0.23487762
[3,] 40.2944064 20.2221253 0.21417849
[4,] 50.7170411 49.7645642 -0.43318939
[5,] 29.7257398 -0.5981739 -0.05616701
Objective function: 5.659041
Clustering vector: int [1:2000] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
Cluster sizes: 400 397 407 401 395
Best sample:
[1] 1 2 103 147 155 176 179 247 262 288 365 369 372 470 486
[16] 573 759 779 785 791 797 822 875 883 913 954 1107 1114 1154 1156
[31] 1171 1175 1206 1213 1218 1233 1243 1394 1439 1444 1512 1741 1777 1798 1800
[46] 1818 1845 1946 1948 1973
Available components:
[1] "sample" "medoids" "i.med" "clustering" "objective"
[6] "clusinfo" "diss" "call" "silinfo" "data"
> clara(x5, 5, samples = 1001)
Call: clara(x = x5, k = 5, samples = 1001)
Medoids:
[,1] [,2] [,3]
[1,] 0.2143499 0.3891695 0.45577894
[2,] 10.9779485 39.6788652 -0.23487762
[3,] 40.2944064 20.2221253 0.21417849
[4,] 50.7170411 49.7645642 -0.43318939
[5,] 29.7257398 -0.5981739 -0.05616701
Objective function: 5.659041
Clustering vector: int [1:2000] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
Cluster sizes: 400 397 407 401 395
Best sample:
[1] 1 2 103 147 155 176 179 247 262 288 365 369 372 470 486
[16] 573 759 779 785 791 797 822 875 883 913 954 1107 1114 1154 1156
[31] 1171 1175 1206 1213 1218 1233 1243 1394 1439 1444 1512 1741 1777 1798 1800
[46] 1818 1845 1946 1948 1973
Available components:
[1] "sample" "medoids" "i.med" "clustering" "objective"
[6] "clusinfo" "diss" "call" "silinfo" "data"
>
> clara(x5, 5, samples = 2000)#full sample
Call: clara(x = x5, k = 5, samples = 2000)
Medoids:
[,1] [,2] [,3]
[1,] 0.2143499 0.3891695 0.45577894
[2,] 10.5993345 39.8970536 -0.39199265
[3,] 40.3370139 20.3148331 -0.06033818
[4,] 50.7170411 49.7645642 -0.43318939
[5,] 29.7257398 -0.5981739 -0.05616701
Objective function: 5.65785
Clustering vector: int [1:2000] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
Cluster sizes: 400 397 407 401 395
Best sample:
[1] 84 106 164 226 284 288 329 423 430 450 469 593 603 654 742
[16] 887 929 970 974 1035 1043 1096 1171 1187 1192 1302 1307 1327 1371 1431
[31] 1433 1439 1440 1452 1513 1522 1525 1548 1565 1593 1620 1639 1654 1688 1740
[46] 1761 1832 1845 1895 1899
Available components:
[1] "sample" "medoids" "i.med" "clustering" "objective"
[6] "clusinfo" "diss" "call" "silinfo" "data"
>
> ###--- Start a version of example(clara) -------
>
> ## xclara : artificial data with 3 clusters of 1000 bivariate objects each.
> data(xclara)
> (clx3 <- clara(xclara, 3))
Call: clara(x = xclara, k = 3)
Medoids:
V1 V2
[1,] 5.553391 13.306260
[2,] 43.198760 60.360720
[3,] 74.591890 -6.969018
Objective function: 13.225
Clustering vector: int [1:3000] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
Cluster sizes: 900 1148 952
Best sample:
[1] 20 30 46 91 92 169 179 187 209 223 382 450 555 971 1004
[16] 1025 1058 1277 1281 1302 1319 1361 1362 1513 1591 1623 1628 1729 1752 1791
[31] 1907 1917 1946 2064 2089 2498 2527 2537 2545 2591 2672 2722 2729 2790 2797
[46] 2852
Available components:
[1] "sample" "medoids" "i.med" "clustering" "objective"
[6] "clusinfo" "diss" "call" "silinfo" "data"
> ## Plot similar to Figure 5 in Struyf et al (1996)
> plot(clx3)
>
> ## The rngR = TRUE case is currently in the non-strict tests
> ## ./clara-ex.R
> ## ~~~~~~~~~~~~
>
> ###--- End version of example(clara) -------
>
> ## small example(s):
> data(ruspini)
>
> clara(ruspini,4)
Call: clara(x = ruspini, k = 4)
Medoids:
x y
10 19 65
32 44 149
52 99 119
67 66 18
Objective function: 11.51066
Clustering vector: Named int [1:75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "names")= chr [1:75] "1" "2" "3" "4" "5" "6" "7" ...
Cluster sizes: 20 23 17 15
Best sample:
[1] 2 3 4 5 6 7 8 9 10 16 18 19 20 21 22 23 25 29 30 32 34 35 36 37 41
[26] 42 43 44 46 47 49 50 52 53 54 58 59 60 61 63 65 66 67 69 71 72 73 75
Available components:
[1] "sample" "medoids" "i.med" "clustering" "objective"
[6] "clusinfo" "diss" "call" "silinfo" "data"
>
> rus <- data.matrix(ruspini); storage.mode(rus) <- "double"
> ru2 <- rus[c(1:7,21:28, 45:51, 61:69),]
> ru3 <- rus[c(1:4,21:25, 45:48, 61:63),]
> ru4 <- rus[c(1:2,21:22, 45:47),]
> ru5 <- rus[c(1:2,21, 45),]
> daisy(ru5, "manhattan")
Dissimilarities :
1 2 21
2 11
21 118 107
45 143 132 89
Metric : manhattan
Number of objects : 4
> ## Dissimilarities : 11 118 143 107 132 89
>
> ## no problem anymore, since 2002-12-28:
> ## sampsize >= k+1 is now enforced:
> ## clara(ru5, k=3, met="manhattan", sampsize=3,trace=2)[clInS]
> clara(ru5, k=3, met="manhattan", sampsize=4,trace=1)[clInS]
C clara(): (nsam,nran,n) = (4,5,4); 'full_sample',
-> dysta2(); obj= 2.75
resul(), black() and return() from C.
$objective
[1] 2.75
$i.med
[1] 2 3 4
$medoids
x y
2 5 63
21 28 147
45 85 115
$clusinfo
size max_diss av_diss isolation
[1,] 2 11 5.5 0.1028037
[2,] 1 0 0.0 0.0000000
[3,] 1 0 0.0 0.0000000
$sample
[1] "1" "2" "21" "45"
>
> daisy(ru4, "manhattan")
Dissimilarities :
1 2 21 22 45 46
2 11
21 118 107
22 124 113 6
45 143 132 89 87
46 124 113 108 106 19
47 115 104 103 101 28 9
Metric : manhattan
Number of objects : 7
> ## this one (k=3) gave problems, from ss = 6 on ___ still after 2002-12-28 ___ :
> for(ss in 4:nrow(ru4)){
+ cat("---\n\nsample size = ",ss,"\n")
+ print(clara(ru4,k=3,met="manhattan",sampsize=ss)[clInS])
+ }
---
sample size = 4
$objective
[1] 7.714286
$i.med
[1] 1 4 7
$medoids
x y
1 4 53
22 32 149
47 78 94
$clusinfo
size max_diss av_diss isolation
[1,] 2 11 5.50000 0.09565217
[2,] 2 6 3.00000 0.05940594
[3,] 3 28 12.33333 0.27722772
$sample
[1] "1" "22" "45" "47"
---
sample size = 5
$objective
[1] 7.714286
$i.med
[1] 2 3 7
$medoids
x y
2 5 63
21 28 147
47 78 94
$clusinfo
size max_diss av_diss isolation
[1,] 2 11 5.50000 0.10576923
[2,] 2 6 3.00000 0.05825243
[3,] 3 28 12.33333 0.27184466
$sample
[1] "2" "21" "22" "45" "47"
---
sample size = 6
$objective
[1] 6.428571
$i.med
[1] 2 4 6
$medoids
x y
2 5 63
22 32 149
46 85 96
$clusinfo
size max_diss av_diss isolation
[1,] 2 11 5.500000 0.09734513
[2,] 2 6 3.000000 0.05660377
[3,] 3 19 9.333333 0.17924528
$sample
[1] "2" "21" "22" "45" "46" "47"
---
sample size = 7
$objective
[1] 6.428571
$i.med
[1] 2 4 6
$medoids
x y
2 5 63
22 32 149
46 85 96
$clusinfo
size max_diss av_diss isolation
[1,] 2 11 5.500000 0.09734513
[2,] 2 6 3.000000 0.05660377
[3,] 3 19 9.333333 0.17924528
$sample
[1] "1" "2" "21" "22" "45" "46" "47"
> for(ss in 5:nrow(ru3)){
+ cat("---\n\nsample size = ",ss,"\n")
+ print(clara(ru3,k=4,met="manhattan",sampsize=ss)[clInS])
+ }
---
sample size = 5
$objective
[1] 13.625
$i.med
[1] 4 5 10 15
$medoids
x y
4 9 77
21 28 147
45 85 115
62 77 12
$clusinfo
size max_diss av_diss isolation
[1,] 4 29 16.50 0.3258427
[2,] 5 14 9.00 0.1573034
[3,] 4 30 19.25 0.3370787
[4,] 3 15 10.00 0.1351351
$sample
[1] "3" "4" "21" "45" "62"
---
sample size = 6
$objective
[1] 9.0625
$i.med
[1] 3 7 13 15
$medoids
x y
3 10 59
23 35 153
48 74 96
62 77 12
$clusinfo
size max_diss av_diss isolation
[1,] 4 19 10.00 0.1881188
[2,] 5 13 5.60 0.1354167
[3,] 4 30 11.75 0.3448276
[4,] 3 15 10.00 0.1724138
$sample
[1] "3" "21" "23" "45" "48" "62"
---
sample size = 7
$objective
[1] 9.0625
$i.med
[1] 3 7 13 15
$medoids
x y
3 10 59
23 35 153
48 74 96
62 77 12
$clusinfo
size max_diss av_diss isolation
[1,] 4 19 10.00 0.1881188
[2,] 5 13 5.60 0.1354167
[3,] 4 30 11.75 0.3448276
[4,] 3 15 10.00 0.1724138
$sample
[1] "2" "3" "21" "23" "45" "48" "62"
---
sample size = 8
$objective
[1] 8.8125
$i.med
[1] 3 7 12 15
$medoids
x y
3 10 59
23 35 153
47 78 94
62 77 12
$clusinfo
size max_diss av_diss isolation
[1,] 4 19 10.00 0.1844660
[2,] 5 13 5.60 0.1274510
[3,] 4 28 10.75 0.3373494
[4,] 3 15 10.00 0.1807229
$sample
[1] "3" "21" "23" "46" "47" "48" "61" "62"
---
sample size = 9
$objective
[1] 9.3125
$i.med
[1] 2 6 11 16
$medoids
x y
2 5 63
22 32 149
46 85 96
63 83 21
$clusinfo
size max_diss av_diss isolation
[1,] 4 18 9.50 0.1592920
[2,] 5 8 5.40 0.0754717
[3,] 4 19 9.75 0.2467532
[4,] 3 30 15.00 0.3896104
$sample
[1] "2" "21" "22" "23" "45" "46" "47" "61" "63"
---
sample size = 10
$objective
[1] 8.5625
$i.med
[1] 3 7 11 15
$medoids
x y
3 10 59
23 35 153
46 85 96
62 77 12
$clusinfo
size max_diss av_diss isolation
[1,] 4 19 10.00 0.1696429
[2,] 5 13 5.60 0.1214953
[3,] 4 19 9.75 0.2065217
[4,] 3 15 10.00 0.1630435
$sample
[1] "2" "3" "22" "23" "45" "46" "47" "61" "62" "63"
---
sample size = 11
$objective
[1] 8.6875
$i.med
[1] 2 7 12 15
$medoids
x y
2 5 63
23 35 153
47 78 94
62 77 12
$clusinfo
size max_diss av_diss isolation
[1,] 4 18 9.50 0.1730769
[2,] 5 13 5.60 0.1274510
[3,] 4 28 10.75 0.3373494
[4,] 3 15 10.00 0.1807229
$sample
[1] "1" "2" "3" "4" "23" "24" "25" "45" "47" "48" "62"
---
sample size = 12
$objective
[1] 8.8125
$i.med
[1] 3 7 12 15
$medoids
x y
3 10 59
23 35 153
47 78 94
62 77 12
$clusinfo
size max_diss av_diss isolation
[1,] 4 19 10.00 0.1844660
[2,] 5 13 5.60 0.1274510
[3,] 4 28 10.75 0.3373494
[4,] 3 15 10.00 0.1807229
$sample
[1] "2" "3" "22" "23" "24" "25" "46" "47" "48" "61" "62" "63"
---
sample size = 13
$objective
[1] 8.4375
$i.med
[1] 2 7 11 15
$medoids
x y
2 5 63
23 35 153
46 85 96
62 77 12
$clusinfo
size max_diss av_diss isolation
[1,] 4 18 9.50 0.1592920
[2,] 5 13 5.60 0.1214953
[3,] 4 19 9.75 0.2065217
[4,] 3 15 10.00 0.1630435
$sample
[1] "1" "2" "4" "22" "23" "24" "25" "45" "46" "47" "61" "62" "63"
---
sample size = 14
$objective
[1] 8.4375
$i.med
[1] 2 7 11 15
$medoids
x y
2 5 63
23 35 153
46 85 96
62 77 12
$clusinfo
size max_diss av_diss isolation
[1,] 4 18 9.50 0.1592920
[2,] 5 13 5.60 0.1214953
[3,] 4 19 9.75 0.2065217
[4,] 3 15 10.00 0.1630435
$sample
[1] "2" "3" "4" "22" "23" "24" "25" "45" "46" "47" "48" "61" "62" "63"
---
sample size = 15
$objective
[1] 8.375
$i.med
[1] 2 6 11 15
$medoids
x y
2 5 63
22 32 149
46 85 96
62 77 12
$clusinfo
size max_diss av_diss isolation
[1,] 4 18 9.50 0.1592920
[2,] 5 8 5.40 0.0754717
[3,] 4 19 9.75 0.2065217
[4,] 3 15 10.00 0.1630435
$sample
[1] "2" "3" "4" "21" "22" "23" "24" "25" "45" "46" "47" "48" "61" "62" "63"
---
sample size = 16
$objective
[1] 8.375
$i.med
[1] 2 6 11 15
$medoids
x y
2 5 63
22 32 149
46 85 96
62 77 12
$clusinfo
size max_diss av_diss isolation
[1,] 4 18 9.50 0.1592920
[2,] 5 8 5.40 0.0754717
[3,] 4 19 9.75 0.2065217
[4,] 3 15 10.00 0.1630435
$sample
[1] "1" "2" "3" "4" "21" "22" "23" "24" "25" "45" "46" "47" "48" "61" "62"
[16] "63"
>
> ## Last Line:
> cat('Time elapsed: ', proc.time() - .proctime00,'\n')
Time elapsed: 1.4 0.013 1.433 0 0
> ## Lynne (P IV, 1.6 GHz): 18.81; then (no NA; R 1.9.0-alpha): 15.07
> ## nb-mm (P III,700 MHz): 27.97
>
> proc.time()
user system elapsed
1.674 0.102 1.917
|