1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
library(cluster)
## Compare on these:
nms <- c("clustering", "objective", "isolation", "clusinfo", "silinfo")
nm2 <- c("medoids", "id.med", nms)
nm3 <- nm2[- pmatch("obj", nm2)]
(x <- x0 <- cbind(V1 = (-3:4)^2, V2 = c(0:6,NA), V3 = c(1,2,NA,7,NA,8:9,8)))
(px <- pam(x,2, metric="manhattan"))
stopifnot(identical(x,x0))# DUP=FALSE ..
pd <- pam(dist(x,"manhattan"), 2)
px2 <- pam(x,2, metric="manhattan", keep.diss=FALSE, keep.data=FALSE)
pdC <- pam(x,2, metric="manhattan", cluster.only = TRUE)
p1 <- pam(x,1, metric="manhattan")
stopifnot(identical(px[nms], pd[nms]),
identical(px[nms], px2[nms]),
identical(pdC, px2$clustering),
## and for default dist "euclidean":
identical(pam(x, 2)[nms],
pam(dist(x),2)[nms]),
identical(p1[c("id.med", "objective", "clusinfo")],
list(id.med = 6L, objective = c(build=9.25, swap=9.25),
clusinfo = array(c(8, 18, 9.25, 45, 0), dim = c(1, 5),
dimnames=list(NULL, c("size", "max_diss", "av_diss",
"diameter", "separation"))))),
p1$clustering == 1, is.null(p1$silinfo)
)
set.seed(253)
## generate 250 objects, divided into 2 clusters.
x <- rbind(cbind(rnorm(120, 0,8), rnorm(120, 0,8)),
cbind(rnorm(130,50,8), rnorm(130,10,8)))
.proctime00 <- proc.time()
summary(px2 <- pam(x, 2))
pdx <- pam(dist(x), 2)
all.equal(px2[nms], pdx[nms], tol = 1e-12) ## TRUE
pdxK <- pam(dist(x), 2, keep.diss = TRUE)
stopifnot(identical(pdx[nm2], pdxK[nm2]))
spdx <- silhouette(pdx)
summary(spdx)
spdx
postscript("pam-tst.ps")
if(FALSE)
plot(spdx)# the silhouette
## is now identical :
plot(pdx)# failed in 1.7.0 -- now only does silhouette
par(mfrow = 2:1)
## new 'dist' argument for clusplot():
plot(pdx, dist=dist(x))
## but this should work automagically (via eval()) as well:
plot(pdx)
## or this
clusplot(pdx)
data(ruspini)
summary(pr4 <- pam(ruspini, 4))
(pr3 <- pam(ruspini, 3))
(pr5 <- pam(ruspini, 5))
data(votes.repub)
summary(pv3 <- pam(votes.repub, 3))
(pv4 <- pam(votes.repub, 4))
(pv6 <- pam(votes.repub, 6, trace = 3))
cat('Time elapsed: ', proc.time() - .proctime00,'\n')
## re-starting with medoids from pv6 shouldn't change:
pv6. <- pam(votes.repub, 6, medoids = pv6$id.med, trace = 3)
identical(pv6[nm3], pv6.[nm3])
## This example seg.faulted at some point:
d.st <- data.frame(V1= c(9, 12, 12, 15, 9, 9, 13, 11, 15, 10, 13, 13,
13, 15, 8, 13, 13, 10, 7, 9, 6, 11, 3),
V2= c(5, 9, 3, 5, 1, 1, 2, NA, 10, 1, 4, 7,
4, NA, NA, 5, 2, 4, 3, 3, 6, 1, 1),
V3 = c(63, 41, 59, 50, 290, 226, 60, 36, 32, 121, 70, 51,
79, 32, 42, 39, 76, 60, 56, 88, 57, 309, 254),
V4 = c(146, 43, 78, 88, 314, 149, 78, NA, 238, 153, 159, 222,
203, NA, NA, 74, 100, 111, 9, 180, 50, 256, 107))
dd <- daisy(d.st, stand = TRUE)
(r0 <- pam(dd, 5))# cluster 5 = { 23 } -- on single observation
## pam doing the "daisy" computation internally:
r0s <- pam(d.st, 5, stand=TRUE, keep.diss=FALSE, keep.data=FALSE)
(ii <- which(names(r0) %in% c("call","medoids")))
stopifnot(all.equal(r0[-ii], r0s[-ii], tol=1e-14),
identical(r0s$medoids, data.matrix(d.st)[r0$medoids, ]))
## This gave only 3 different medoids -> and seg.fault:
(r5 <- pam(dd, 5, medoids = c(1,3,20,2,5), trace = 2)) # now "fine"
dev.off()
##------------------------ Testing pam() with new "pamonce" argument:
## This is from "next version of Matrix" test-tools-1.R:
showSys.time <- function(expr) {
## prepend 'Time' for R CMD Rdiff
st <- system.time(expr)
writeLines(paste("Time", capture.output(print(st))))
invisible(st)
}
show6Ratios <- function(...) {
stopifnot(length(rgs <- list(...)) == 6,
nchar(ns <- names(rgs)) > 0)
r <- round(cbind(..1, ..2, ..3, ..4, ..5, ..6)[c(1,5),], 5)
dimnames(r) <- list(paste("Time ", rownames(r)), ns)
r
}
n <- 1000
## If not enough cases, all CPU times equals 0.
n <- 500 # for now, and automatic testing
sd <- 0.5
set.seed(13)
n2 <- as.integer(round(n * 1.5))
x <- rbind(cbind(rnorm( n,0,sd), rnorm( n,0,sd)),
cbind(rnorm(n2,5,sd), rnorm(n2,5,sd)),
cbind(rnorm(n2,7,sd), rnorm(n2,7,sd)),
cbind(rnorm(n2,9,sd), rnorm(n2,9,sd)))
## original algorithm
st0 <- showSys.time(pamx <- pam(x, 4, trace.lev=2))# 8.157 0.024 8.233
## bswapPamOnce algorithm
st1 <- showSys.time(pamxonce <- pam(x, 4, pamonce=TRUE, trace.lev=2))# 6.122 0.024 6.181
## bswapPamOnceDistIndice
st2 <- showSys.time(pamxonce2 <- pam(x, 4, pamonce = 2, trace.lev=2))# 4.101 0.024 4.151
## bswapPamSchubert FastPAM1
st3 <- showSys.time(pamxonce3 <- pam(x, 4, pamonce = 3, trace.lev=2))#
## bswapPamSchubert FastPAM2
st4 <- showSys.time(pamxonce4 <- pam(x, 4, pamonce = 4, trace.lev=2))#
## bswapPamSchubert FastPAM2 with linearized memory access
st5 <- showSys.time(pamxonce5 <- pam(x, 4, pamonce = 5, trace.lev=2))#
## bswapPamSchubert FasterPAM
st6 <- showSys.time(pamxonce6 <- pam(x, 4, pamonce = 6, trace.lev=2))#
show6Ratios('6:orig' = st6/st0, '5:orig' = st5/st0, '4:orig' = st4/st0, '3:orig' = st3/st0, '2:orig' = st2/st0, '1:orig' = st1/st0)
## only call element is not equal
(icall <- which(names(pamx) == "call"))
pamx[[icall]]
stopifnot(all.equal(pamx [-icall], pamxonce [-icall]),
all.equal(pamxonce[-icall], pamxonce2[-icall]),
all.equal(pamxonce[-icall], pamxonce3[-icall]),
all.equal(pamxonce[-icall], pamxonce4[-icall]),
all.equal(pamxonce[-icall], pamxonce5[-icall]),
all.equal(pamxonce[-icall], pamxonce6[-icall]))
## Same using specified medoids
(med0 <- 1 + round(n* c(0,1, 2.5, 4)))# lynne (~ 2010, AMD Phenom II X4 925)
st0 <- showSys.time(pamxst <- pam(x, 4, medoids = med0, trace.lev=2))# 13.071 0.024 13.177
st1 <- showSys.time(pamxoncest <- pam(x, 4, medoids = med0, pamonce=TRUE, trace.lev=2))# 8.503 0.024 8.578
st2 <- showSys.time(pamxonce2st <- pam(x, 4, medoids = med0, pamonce=2, trace.lev=2))# 5.587 0.025 5.647
st3 <- showSys.time(pamxonce3st <- pam(x, 4, medoids = med0, pamonce=3, trace.lev=2))#
st4 <- showSys.time(pamxonce4st <- pam(x, 4, medoids = med0, pamonce=4, trace.lev=2))#
st5 <- showSys.time(pamxonce5st <- pam(x, 4, medoids = med0, pamonce=5, trace.lev=2))#
st6 <- showSys.time(pamxonce6st <- pam(x, 4, medoids = med0, pamonce=6, trace.lev=2))#
show6Ratios('6:orig' = st6/st0, '5:orig' = st5/st0, '4:orig' = st4/st0, '3:orig' = st3/st0, '2:orig' = st2/st0, '1:orig' = st1/st0)
## only call element is not equal
stopifnot(all.equal(pamxst [-icall], pamxoncest [-icall]),
all.equal(pamxoncest[-icall], pamxonce2st[-icall]),
all.equal(pamxoncest[-icall], pamxonce3st[-icall]),
all.equal(pamxoncest[-icall], pamxonce4st[-icall]),
all.equal(pamxoncest[-icall], pamxonce5st[-icall]),
all.equal(pamxoncest[-icall], pamxonce6st[-icall]))
## Different starting values
med0 <- 1:4 # lynne (~ 2010, AMD Phenom II X4 925)
st0 <- showSys.time(pamxst <- pam(x, 4, medoids = med0, trace.lev=2))# 13.416 0.023 13.529
st1 <- showSys.time(pamxoncest <- pam(x, 4, medoids = med0, pamonce=TRUE, trace.lev=2))# 8.384 0.024 8.459
st2 <- showSys.time(pamxonce2st <- pam(x, 4, medoids = med0, pamonce=2, trace.lev=2))# 5.455 0.030 5.520
st3 <- showSys.time(pamxonce3st <- pam(x, 4, medoids = med0, pamonce=3, trace.lev=2))#
st4 <- showSys.time(pamxonce4st <- pam(x, 4, medoids = med0, pamonce=4, trace.lev=2))#
st5 <- showSys.time(pamxonce5st <- pam(x, 4, medoids = med0, pamonce=5, trace.lev=2))#
st6 <- showSys.time(pamxonce6st <- pam(x, 4, medoids = med0, pamonce=6, trace.lev=2))#
show6Ratios('6:orig' = st6/st0, '5:orig' = st5/st0, '4:orig' = st4/st0, '3:orig' = st3/st0, '2:orig' = st2/st0, '1:orig' = st1/st0)
## only call element is not equal
stopifnot(all.equal(pamxst [-icall], pamxoncest [-icall]),
all.equal(pamxoncest[-icall], pamxonce2st[-icall]),
all.equal(pamxoncest[-icall], pamxonce3st[-icall]),
all.equal(pamxoncest[-icall], pamxonce4st[-icall]),
all.equal(pamxoncest[-icall], pamxonce5st[-icall]),
all.equal(pamxoncest[-icall], pamxonce6st[-icall]))
## Medoid bug --- MM: Fixed, well "0L+ hack", in my pam.q, on 2012-01-31
## ----------
med0 <- (1:6)
st0 <- showSys.time(pamxst <- pam(x, 6, medoids = med0 , trace.lev=2))
stopifnot(identical(med0, 1:6))
med0 <- (1:6)
st1 <- showSys.time(pamxst.1 <- pam(x, 6, medoids = med0 , pamonce=1, trace.lev=2))
stopifnot(identical(med0, 1:6))
med0 <- (1:6)
st2 <- showSys.time(pamxst.2 <- pam(x, 6, medoids = med0 , pamonce=2, trace.lev=2))
stopifnot(identical(med0, 1:6))
med0 <- (1:6)
st3 <- showSys.time(pamxst.3 <- pam(x, 6, medoids = med0 , pamonce=3, trace.lev=2))
stopifnot(identical(med0, 1:6))
med0 <- (1:6)
st4 <- showSys.time(pamxst.4 <- pam(x, 6, medoids = med0 , pamonce=4, trace.lev=2))
stopifnot(identical(med0, 1:6))
med0 <- (1:6)
st5 <- showSys.time(pamxst.5 <- pam(x, 6, medoids = med0 , pamonce=5, trace.lev=2))
stopifnot(identical(med0, 1:6))
med0 <- (1:6)
st6 <- showSys.time(pamxst.6 <- pam(x, 6, medoids = med0 , pamonce=6, trace.lev=2))
stopifnot(identical(med0, 1:6))
stopifnot(all.equal(pamxst[-icall], pamxst.1 [-icall]),
all.equal(pamxst[-icall], pamxst.2 [-icall]),
all.equal(pamxst[-icall], pamxst.3 [-icall]),
all.equal(pamxst[-icall], pamxst.4 [-icall]),
all.equal(pamxst[-icall], pamxst.5 [-icall]))
# FasterPAM finds a better solution here, by chance
stopifnot(pamxst$objective >= pamxst.6$objective)
## Last Line:
cat('Time elapsed: ', proc.time() - .proctime00,'\n')
|