File: pam.Rout.save

package info (click to toggle)
cluster 2.1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,732 kB
  • sloc: ansic: 3,397; sh: 20; makefile: 2
file content (1821 lines) | stat: -rw-r--r-- 82,252 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821

R version 4.0.3 Patched (2021-01-18 r79850) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(cluster)
> ## Compare on these:
> nms <- c("clustering", "objective", "isolation", "clusinfo", "silinfo")
> nm2 <- c("medoids", "id.med", nms)
> nm3 <- nm2[- pmatch("obj", nm2)]
> 
> (x <- x0 <- cbind(V1 = (-3:4)^2, V2 = c(0:6,NA), V3 = c(1,2,NA,7,NA,8:9,8)))
     V1 V2 V3
[1,]  9  0  1
[2,]  4  1  2
[3,]  1  2 NA
[4,]  0  3  7
[5,]  1  4 NA
[6,]  4  5  8
[7,]  9  6  9
[8,] 16 NA  8
> (px <- pam(x,2, metric="manhattan"))
Medoids:
     ID V1 V2 V3
[1,]  2  4  1  2
[2,]  6  4  5  8
Clustering vector:
[1] 1 1 1 2 2 2 2 2
Objective function:
build  swap 
6.375 6.375 

Available components:
 [1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
 [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"      
> stopifnot(identical(x,x0))# DUP=FALSE ..
> pd <-  pam(dist(x,"manhattan"), 2)
> px2 <- pam(x,2, metric="manhattan", keep.diss=FALSE, keep.data=FALSE)
> pdC <- pam(x,2, metric="manhattan", cluster.only = TRUE)
> p1  <- pam(x,1, metric="manhattan")
> 
> stopifnot(identical(px[nms], pd[nms]),
+ 	  identical(px[nms], px2[nms]),
+ 	  identical(pdC, px2$clustering),
+ 	  ## and for default dist "euclidean":
+ 	  identical(pam(x,	2)[nms],
+ 		    pam(dist(x),2)[nms]),
+ 	  identical(p1[c("id.med", "objective", "clusinfo")],
+ 		    list(id.med = 6L, objective = c(build=9.25, swap=9.25),
+ 			 clusinfo = array(c(8, 18, 9.25, 45, 0), dim = c(1, 5),
+ 			 dimnames=list(NULL, c("size", "max_diss", "av_diss",
+ 			 "diameter", "separation"))))),
+ 	  p1$clustering == 1, is.null(p1$silinfo)
+ 	  )
> 
> set.seed(253)
> ## generate 250 objects, divided into 2 clusters.
> x <- rbind(cbind(rnorm(120, 0,8), rnorm(120, 0,8)),
+ 	   cbind(rnorm(130,50,8), rnorm(130,10,8)))
> 
> .proctime00 <- proc.time()
> 
> summary(px2 <- pam(x, 2))
Medoids:
      ID                      
[1,]  61 -0.7697828 -0.2330187
[2,] 163 49.1392167  9.4097259
Clustering vector:
  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Objective function:
   build     swap 
13.25843 10.20817 

Numerical information per cluster:
     size max_diss  av_diss diameter separation
[1,]  120 31.04843 10.18584 53.22082   9.419035
[2,]  130 26.94337 10.22878 47.86442   9.419035

Isolated clusters:
 L-clusters: character(0)
 L*-clusters: character(0)

Silhouette plot information:
    cluster neighbor  sil_width
117       1        2 0.80638966
75        1        2 0.80600824
81        1        2 0.80556624
107       1        2 0.80535252
6         1        2 0.80526675
100       1        2 0.80385505
68        1        2 0.80369702
113       1        2 0.80331774
61        1        2 0.80315322
57        1        2 0.80313945
12        1        2 0.80161573
59        1        2 0.80047745
82        1        2 0.79630964
67        1        2 0.79559589
63        1        2 0.79488886
47        1        2 0.79458809
21        1        2 0.79379540
9         1        2 0.79343081
95        1        2 0.79332153
4         1        2 0.79136081
3         1        2 0.79130879
39        1        2 0.79052367
120       1        2 0.78877423
90        1        2 0.78767224
85        1        2 0.78588359
106       1        2 0.78504452
92        1        2 0.78303000
83        1        2 0.78245915
19        1        2 0.78228359
14        1        2 0.78139236
10        1        2 0.77825678
49        1        2 0.77597087
64        1        2 0.77482761
44        1        2 0.77397394
89        1        2 0.77297318
119       1        2 0.77238705
108       1        2 0.77137189
104       1        2 0.76871378
32        1        2 0.76856251
115       1        2 0.76843312
27        1        2 0.76811698
88        1        2 0.76810713
109       1        2 0.76681303
62        1        2 0.76655954
36        1        2 0.76547988
66        1        2 0.76535606
74        1        2 0.76491406
26        1        2 0.76441455
24        1        2 0.76436188
65        1        2 0.76381352
40        1        2 0.76061109
52        1        2 0.75748679
54        1        2 0.75746436
13        1        2 0.75594073
56        1        2 0.75353784
96        1        2 0.75268786
116       1        2 0.75267215
110       1        2 0.75266614
112       1        2 0.75150872
78        1        2 0.75083708
7         1        2 0.74905187
86        1        2 0.74190424
18        1        2 0.74162144
111       1        2 0.74085474
69        1        2 0.74044653
76        1        2 0.73911707
50        1        2 0.73847075
93        1        2 0.73616384
31        1        2 0.73462007
33        1        2 0.73455252
43        1        2 0.73396232
102       1        2 0.72930751
118       1        2 0.72778023
15        1        2 0.72588122
53        1        2 0.72542363
8         1        2 0.72535191
77        1        2 0.72467809
16        1        2 0.72446952
48        1        2 0.72331213
105       1        2 0.72325095
37        1        2 0.72055248
101       1        2 0.71783562
22        1        2 0.71217552
23        1        2 0.71078375
84        1        2 0.70573352
17        1        2 0.70221946
38        1        2 0.69947240
2         1        2 0.69718780
98        1        2 0.69601237
1         1        2 0.69373841
35        1        2 0.69179546
70        1        2 0.69074915
28        1        2 0.68434091
97        1        2 0.68351978
5         1        2 0.67662675
72        1        2 0.67420722
34        1        2 0.67315267
11        1        2 0.67226046
103       1        2 0.67188668
87        1        2 0.67172802
58        1        2 0.67090513
46        1        2 0.66835116
60        1        2 0.66565445
80        1        2 0.65983842
73        1        2 0.65093947
55        1        2 0.64709226
20        1        2 0.64439401
45        1        2 0.63403361
51        1        2 0.63303101
42        1        2 0.62906268
94        1        2 0.60916406
91        1        2 0.59905996
41        1        2 0.57245485
29        1        2 0.55594781
99        1        2 0.55035955
79        1        2 0.50808544
71        1        2 0.46663954
25        1        2 0.43797346
114       1        2 0.16645003
30        1        2 0.08928664
121       2        1 0.80353953
137       2        1 0.80253721
146       2        1 0.80106653
173       2        1 0.80039417
216       2        1 0.79969919
124       2        1 0.79964913
163       2        1 0.79901674
157       2        1 0.79779188
242       2        1 0.79744315
227       2        1 0.79708130
207       2        1 0.79653829
130       2        1 0.79574204
188       2        1 0.79496670
250       2        1 0.79302877
145       2        1 0.79190501
126       2        1 0.79156003
166       2        1 0.79068795
222       2        1 0.78986170
232       2        1 0.78839216
176       2        1 0.78819086
198       2        1 0.78782877
225       2        1 0.78747329
230       2        1 0.78689375
205       2        1 0.78683641
160       2        1 0.78643596
150       2        1 0.78484046
136       2        1 0.78455577
228       2        1 0.78198238
206       2        1 0.78137390
152       2        1 0.78044944
200       2        1 0.77843458
149       2        1 0.77822272
221       2        1 0.77758324
226       2        1 0.77611981
129       2        1 0.77531368
199       2        1 0.77491451
154       2        1 0.77136276
241       2        1 0.77076783
179       2        1 0.77010597
174       2        1 0.76893758
214       2        1 0.76776510
181       2        1 0.76763087
213       2        1 0.76683151
215       2        1 0.76639087
236       2        1 0.76637552
218       2        1 0.76563050
182       2        1 0.76450873
219       2        1 0.76370712
208       2        1 0.76090426
151       2        1 0.75957536
164       2        1 0.75914844
248       2        1 0.75849775
224       2        1 0.75826151
168       2        1 0.75782023
189       2        1 0.75555083
128       2        1 0.75550519
125       2        1 0.75510766
177       2        1 0.75128941
147       2        1 0.75086382
158       2        1 0.75029192
245       2        1 0.74993652
186       2        1 0.74741247
165       2        1 0.74681005
156       2        1 0.74478894
122       2        1 0.74315425
247       2        1 0.74107328
220       2        1 0.74054057
183       2        1 0.73818743
184       2        1 0.73743259
169       2        1 0.73712431
180       2        1 0.73419669
240       2        1 0.73390938
134       2        1 0.73382823
190       2        1 0.73379720
217       2        1 0.73311931
171       2        1 0.73110365
143       2        1 0.72986022
153       2        1 0.72891371
223       2        1 0.72887340
238       2        1 0.72789416
175       2        1 0.72311665
138       2        1 0.72290131
235       2        1 0.72157157
237       2        1 0.71591233
132       2        1 0.71549875
204       2        1 0.71381083
201       2        1 0.71263881
170       2        1 0.70812568
191       2        1 0.70747428
243       2        1 0.70588929
193       2        1 0.70499170
141       2        1 0.70489885
161       2        1 0.70303117
249       2        1 0.69300988
229       2        1 0.69231982
196       2        1 0.69162302
211       2        1 0.69128644
246       2        1 0.68757678
159       2        1 0.68619850
133       2        1 0.68605444
194       2        1 0.68538064
155       2        1 0.68278455
234       2        1 0.68202095
127       2        1 0.68111027
144       2        1 0.67559517
131       2        1 0.65959281
139       2        1 0.65895024
209       2        1 0.65844942
148       2        1 0.65180336
185       2        1 0.64989675
212       2        1 0.63954685
192       2        1 0.63470144
123       2        1 0.63005333
202       2        1 0.61735843
135       2        1 0.61493992
210       2        1 0.60680456
140       2        1 0.58410004
187       2        1 0.58193543
239       2        1 0.57088679
203       2        1 0.56761998
244       2        1 0.55321123
231       2        1 0.55043439
197       2        1 0.52364031
195       2        1 0.51955678
142       2        1 0.47466260
162       2        1 0.46155841
172       2        1 0.45167576
178       2        1 0.42686872
233       2        1 0.37013099
167       2        1 0.32442373
Average silhouette width per cluster:
[1] 0.7196104 0.7148520
Average silhouette width of total data set:
[1] 0.717136

Available components:
 [1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
 [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"      
> pdx <- pam(dist(x), 2)
> all.equal(px2[nms], pdx[nms], tol = 1e-12) ## TRUE
[1] TRUE
> pdxK <- pam(dist(x), 2, keep.diss = TRUE)
> stopifnot(identical(pdx[nm2], pdxK[nm2]))
> 
> spdx <- silhouette(pdx)
> summary(spdx)
Silhouette of 250 units in 2 clusters from pam(x = dist(x), k = 2) :
 Cluster sizes and average silhouette widths:
      120       130 
0.7196104 0.7148520 
Individual silhouette widths:
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
0.08929 0.69137 0.74397 0.71714 0.77806 0.80639 
> spdx
    cluster neighbor  sil_width
117       1        2 0.80638966
75        1        2 0.80600824
81        1        2 0.80556624
107       1        2 0.80535252
6         1        2 0.80526675
100       1        2 0.80385505
68        1        2 0.80369702
113       1        2 0.80331774
61        1        2 0.80315322
57        1        2 0.80313945
12        1        2 0.80161573
59        1        2 0.80047745
82        1        2 0.79630964
67        1        2 0.79559589
63        1        2 0.79488886
47        1        2 0.79458809
21        1        2 0.79379540
9         1        2 0.79343081
95        1        2 0.79332153
4         1        2 0.79136081
3         1        2 0.79130879
39        1        2 0.79052367
120       1        2 0.78877423
90        1        2 0.78767224
85        1        2 0.78588359
106       1        2 0.78504452
92        1        2 0.78303000
83        1        2 0.78245915
19        1        2 0.78228359
14        1        2 0.78139236
10        1        2 0.77825678
49        1        2 0.77597087
64        1        2 0.77482761
44        1        2 0.77397394
89        1        2 0.77297318
119       1        2 0.77238705
108       1        2 0.77137189
104       1        2 0.76871378
32        1        2 0.76856251
115       1        2 0.76843312
27        1        2 0.76811698
88        1        2 0.76810713
109       1        2 0.76681303
62        1        2 0.76655954
36        1        2 0.76547988
66        1        2 0.76535606
74        1        2 0.76491406
26        1        2 0.76441455
24        1        2 0.76436188
65        1        2 0.76381352
40        1        2 0.76061109
52        1        2 0.75748679
54        1        2 0.75746436
13        1        2 0.75594073
56        1        2 0.75353784
96        1        2 0.75268786
116       1        2 0.75267215
110       1        2 0.75266614
112       1        2 0.75150872
78        1        2 0.75083708
7         1        2 0.74905187
86        1        2 0.74190424
18        1        2 0.74162144
111       1        2 0.74085474
69        1        2 0.74044653
76        1        2 0.73911707
50        1        2 0.73847075
93        1        2 0.73616384
31        1        2 0.73462007
33        1        2 0.73455252
43        1        2 0.73396232
102       1        2 0.72930751
118       1        2 0.72778023
15        1        2 0.72588122
53        1        2 0.72542363
8         1        2 0.72535191
77        1        2 0.72467809
16        1        2 0.72446952
48        1        2 0.72331213
105       1        2 0.72325095
37        1        2 0.72055248
101       1        2 0.71783562
22        1        2 0.71217552
23        1        2 0.71078375
84        1        2 0.70573352
17        1        2 0.70221946
38        1        2 0.69947240
2         1        2 0.69718780
98        1        2 0.69601237
1         1        2 0.69373841
35        1        2 0.69179546
70        1        2 0.69074915
28        1        2 0.68434091
97        1        2 0.68351978
5         1        2 0.67662675
72        1        2 0.67420722
34        1        2 0.67315267
11        1        2 0.67226046
103       1        2 0.67188668
87        1        2 0.67172802
58        1        2 0.67090513
46        1        2 0.66835116
60        1        2 0.66565445
80        1        2 0.65983842
73        1        2 0.65093947
55        1        2 0.64709226
20        1        2 0.64439401
45        1        2 0.63403361
51        1        2 0.63303101
42        1        2 0.62906268
94        1        2 0.60916406
91        1        2 0.59905996
41        1        2 0.57245485
29        1        2 0.55594781
99        1        2 0.55035955
79        1        2 0.50808544
71        1        2 0.46663954
25        1        2 0.43797346
114       1        2 0.16645003
30        1        2 0.08928664
121       2        1 0.80353953
137       2        1 0.80253721
146       2        1 0.80106653
173       2        1 0.80039417
216       2        1 0.79969919
124       2        1 0.79964913
163       2        1 0.79901674
157       2        1 0.79779188
242       2        1 0.79744315
227       2        1 0.79708130
207       2        1 0.79653829
130       2        1 0.79574204
188       2        1 0.79496670
250       2        1 0.79302877
145       2        1 0.79190501
126       2        1 0.79156003
166       2        1 0.79068795
222       2        1 0.78986170
232       2        1 0.78839216
176       2        1 0.78819086
198       2        1 0.78782877
225       2        1 0.78747329
230       2        1 0.78689375
205       2        1 0.78683641
160       2        1 0.78643596
150       2        1 0.78484046
136       2        1 0.78455577
228       2        1 0.78198238
206       2        1 0.78137390
152       2        1 0.78044944
200       2        1 0.77843458
149       2        1 0.77822272
221       2        1 0.77758324
226       2        1 0.77611981
129       2        1 0.77531368
199       2        1 0.77491451
154       2        1 0.77136276
241       2        1 0.77076783
179       2        1 0.77010597
174       2        1 0.76893758
214       2        1 0.76776510
181       2        1 0.76763087
213       2        1 0.76683151
215       2        1 0.76639087
236       2        1 0.76637552
218       2        1 0.76563050
182       2        1 0.76450873
219       2        1 0.76370712
208       2        1 0.76090426
151       2        1 0.75957536
164       2        1 0.75914844
248       2        1 0.75849775
224       2        1 0.75826151
168       2        1 0.75782023
189       2        1 0.75555083
128       2        1 0.75550519
125       2        1 0.75510766
177       2        1 0.75128941
147       2        1 0.75086382
158       2        1 0.75029192
245       2        1 0.74993652
186       2        1 0.74741247
165       2        1 0.74681005
156       2        1 0.74478894
122       2        1 0.74315425
247       2        1 0.74107328
220       2        1 0.74054057
183       2        1 0.73818743
184       2        1 0.73743259
169       2        1 0.73712431
180       2        1 0.73419669
240       2        1 0.73390938
134       2        1 0.73382823
190       2        1 0.73379720
217       2        1 0.73311931
171       2        1 0.73110365
143       2        1 0.72986022
153       2        1 0.72891371
223       2        1 0.72887340
238       2        1 0.72789416
175       2        1 0.72311665
138       2        1 0.72290131
235       2        1 0.72157157
237       2        1 0.71591233
132       2        1 0.71549875
204       2        1 0.71381083
201       2        1 0.71263881
170       2        1 0.70812568
191       2        1 0.70747428
243       2        1 0.70588929
193       2        1 0.70499170
141       2        1 0.70489885
161       2        1 0.70303117
249       2        1 0.69300988
229       2        1 0.69231982
196       2        1 0.69162302
211       2        1 0.69128644
246       2        1 0.68757678
159       2        1 0.68619850
133       2        1 0.68605444
194       2        1 0.68538064
155       2        1 0.68278455
234       2        1 0.68202095
127       2        1 0.68111027
144       2        1 0.67559517
131       2        1 0.65959281
139       2        1 0.65895024
209       2        1 0.65844942
148       2        1 0.65180336
185       2        1 0.64989675
212       2        1 0.63954685
192       2        1 0.63470144
123       2        1 0.63005333
202       2        1 0.61735843
135       2        1 0.61493992
210       2        1 0.60680456
140       2        1 0.58410004
187       2        1 0.58193543
239       2        1 0.57088679
203       2        1 0.56761998
244       2        1 0.55321123
231       2        1 0.55043439
197       2        1 0.52364031
195       2        1 0.51955678
142       2        1 0.47466260
162       2        1 0.46155841
172       2        1 0.45167576
178       2        1 0.42686872
233       2        1 0.37013099
167       2        1 0.32442373
attr(,"Ordered")
[1] TRUE
attr(,"call")
pam(x = dist(x), k = 2)
attr(,"class")
[1] "silhouette"
> postscript("pam-tst.ps")
> if(FALSE)
+     plot(spdx)# the silhouette
> ## is now identical :
> plot(pdx)# failed in 1.7.0 -- now only does silhouette
> 
> par(mfrow = 2:1)
> ## new 'dist' argument for clusplot():
> plot(pdx, dist=dist(x))
> ## but this should work automagically (via eval()) as well:
> plot(pdx)
> ## or this
> clusplot(pdx)
> 
> data(ruspini)
> summary(pr4 <- pam(ruspini, 4))
Medoids:
   ID  x   y
10 10 19  65
32 32 44 149
52 52 99 119
70 70 69  21
Clustering vector:
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2 
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 
 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  3  3  3  3  3  3  3  3 
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 
 3  3  3  3  3  3  3  3  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4 
Objective function:
   build     swap 
17.22898 11.48637 

Numerical information per cluster:
     size max_diss  av_diss diameter separation
[1,]   20 24.04163 12.55362 40.24922   40.49691
[2,]   23 26.92582 10.44238 36.61967   24.04163
[3,]   17 33.97058 13.84800 47.63402   24.04163
[4,]   15 17.02939  8.98767 27.07397   40.49691

Isolated clusters:
 L-clusters: character(0)
 L*-clusters: [1] 1 4

Silhouette plot information:
   cluster neighbor sil_width
10       1        4 0.8056096
6        1        4 0.7954977
9        1        4 0.7923048
11       1        4 0.7831672
8        1        2 0.7811793
12       1        4 0.7658171
3        1        4 0.7587961
14       1        4 0.7569107
2        1        4 0.7456150
16       1        4 0.7436018
13       1        4 0.7398841
4        1        2 0.7361533
18       1        4 0.7080079
15       1        4 0.7006854
19       1        4 0.7000938
1        1        4 0.6798381
5        1        4 0.6646571
20       1        4 0.6619626
17       1        4 0.6148541
7        1        2 0.5900575
26       2        3 0.8357433
32       2        3 0.8332753
27       2        3 0.8290271
25       2        3 0.8285547
28       2        3 0.8192636
35       2        3 0.8186309
33       2        3 0.8175087
23       2        3 0.8089969
22       2        3 0.8025389
34       2        3 0.8013310
31       2        3 0.7949677
36       2        3 0.7943536
24       2        3 0.7930770
29       2        3 0.7897346
30       2        3 0.7892027
21       2        3 0.7698024
37       2        3 0.7684502
39       2        3 0.7631648
38       2        3 0.7438848
40       2        3 0.7083130
42       2        3 0.5291270
43       2        3 0.4931623
41       2        3 0.4290814
54       3        2 0.7741745
57       3        2 0.7703455
55       3        2 0.7641810
50       3        2 0.7619943
52       3        2 0.7616220
56       3        2 0.7575313
59       3        2 0.7327828
49       3        2 0.7317002
51       3        2 0.7209864
60       3        2 0.7206840
58       3        2 0.7019611
53       3        2 0.6775322
45       3        2 0.5974787
46       3        2 0.5740823
47       3        2 0.4835635
48       3        2 0.4247331
44       3        2 0.4196093
70       4        1 0.8548947
67       4        1 0.8527439
65       4        1 0.8503105
69       4        1 0.8391810
71       4        1 0.8381065
66       4        1 0.8229841
62       4        1 0.8153092
64       4        1 0.8061254
73       4        1 0.7950213
63       4        1 0.7795369
72       4        1 0.7748121
61       4        1 0.7701103
68       4        1 0.7620559
74       4        1 0.7596815
75       4        1 0.7425538
Average silhouette width per cluster:
[1] 0.7262347 0.7548344 0.6691154 0.8042285
Average silhouette width of total data set:
[1] 0.737657

2775 dissimilarities, summarized :
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.414  40.106  75.591  71.538  99.169 154.500 
Metric :  euclidean 
Number of objects : 75

Available components:
 [1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
 [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"      
> (pr3 <- pam(ruspini, 3))
Medoids:
   ID  x   y
17 17 30  52
32 32 44 149
52 52 99 119
Clustering vector:
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2 
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 
 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  3  3  3  3  3  3  3  3 
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 
 3  3  3  3  3  3  3  3  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
Objective function:
   build     swap 
25.68229 21.59293 

Available components:
 [1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
 [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"      
> (pr5 <- pam(ruspini, 5))
Medoids:
   ID  x   y
10 10 19  65
32 32 44 149
52 52 99 119
47 47 78  94
70 70 69  21
Clustering vector:
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2 
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 
 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  3  4  4  4  3  3  3  3 
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 
 3  3  3  3  3  3  3  3  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5 
Objective function:
   build     swap 
12.09864 10.39579 

Available components:
 [1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
 [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"      
> 
> data(votes.repub)
> summary(pv3 <- pam(votes.repub, 3))
Medoids:
           ID X1856 X1860 X1864 X1868 X1872 X1876 X1880 X1884 X1888 X1892 X1896
Alabama     1    NA    NA    NA 51.44 53.19 40.02 36.98 38.44 32.28  3.95 28.13
Alaska      2    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
New Mexico 31    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
           X1900 X1904 X1908 X1912 X1916 X1920 X1924 X1928 X1932 X1936 X1940
Alabama    34.67 20.65 24.38  8.26 21.97 30.98 27.01 48.49 14.15 12.82 14.34
Alaska        NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
New Mexico    NA    NA    NA 35.91 46.53 54.68 48.52 59.01 35.76 36.50 43.28
           X1944 X1948 X1952 X1956 X1960 X1964 X1968 X1972 X1976
Alabama    18.20 19.04 35.02 39.39 41.75  69.5  14.0  72.4 43.48
Alaska        NA    NA    NA    NA 50.94  34.1  45.3  58.1 62.91
New Mexico 46.44 42.93 55.39 57.81 49.41  41.0  51.8  61.0 51.04
Clustering vector:
       Alabama         Alaska        Arizona       Arkansas     California 
             1              2              3              1              2 
      Colorado    Connecticut       Delaware        Florida        Georgia 
             2              2              3              1              1 
        Hawaii          Idaho       Illinois        Indiana           Iowa 
             2              3              2              3              3 
        Kansas       Kentucky      Louisiana          Maine       Maryland 
             2              3              1              2              3 
 Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
             3              2              3              1              3 
       Montana       Nebraska         Nevada  New Hampshire     New Jersey 
             3              3              2              2              2 
    New Mexico       New York North Carolina   North Dakota           Ohio 
             3              3              3              2              3 
      Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
             3              3              2              3              2 
  South Dakota      Tennessee          Texas           Utah        Vermont 
             3              3              2              3              2 
      Virginia     Washington  West Virginia      Wisconsin        Wyoming 
             2              3              3              3              3 
Objective function:
   build     swap 
38.32548 38.32548 

Numerical information per cluster:
     size max_diss  av_diss diameter separation
[1,]    6 78.92731 51.59134 116.7048   50.14189
[2,]   18 86.54675 38.47068 271.2455   19.42184
[3,]   26 60.03879 35.16361 124.8324   19.42184

Isolated clusters:
 L-clusters: character(0)
 L*-clusters: character(0)

Silhouette plot information:
               cluster neighbor   sil_width
Louisiana            1        3  0.54689535
Alabama              1        3  0.52839272
Georgia              1        3  0.52730253
Mississippi          1        2  0.52454810
Florida              1        3  0.25211631
Arkansas             1        3  0.24131701
Alaska               2        3  0.15699268
Hawaii               2        3  0.08479842
Vermont              2        3 -0.02620975
Maine                2        3 -0.03284950
Michigan             2        3 -0.11524982
Pennsylvania         2        3 -0.15341477
New Hampshire        2        3 -0.17099889
Connecticut          2        3 -0.19095000
New Jersey           2        3 -0.19281567
Kansas               2        3 -0.19719316
California           2        3 -0.24006293
Illinois             2        3 -0.25236336
North Dakota         2        3 -0.25464430
Virginia             2        3 -0.26262534
Nevada               2        3 -0.27016336
Colorado             2        3 -0.27885043
Texas                2        1 -0.47297583
South Carolina       2        1 -0.50899710
New Mexico           3        2  0.39555584
Washington           3        2  0.32989454
Oklahoma             3        2  0.30953823
Wyoming              3        2  0.30163169
Idaho                3        2  0.29915132
Montana              3        2  0.29105494
Missouri             3        2  0.29038462
Oregon               3        2  0.27710695
Maryland             3        2  0.27437520
West Virginia        3        2  0.27089938
Utah                 3        2  0.26964380
Tennessee            3        2  0.26846440
Arizona              3        2  0.25968564
Delaware             3        2  0.25920434
Kentucky             3        2  0.25868341
South Dakota         3        2  0.25615670
Indiana              3        2  0.25031548
Wisconsin            3        2  0.21808013
Ohio                 3        2  0.21477474
Nebraska             3        2  0.20965953
North Carolina       3        2  0.19201537
Minnesota            3        2  0.18955165
New York             3        2  0.18820394
Iowa                 3        2  0.17296046
Rhode Island         3        2  0.12599915
Massachusetts        3        2  0.12106770
Average silhouette width per cluster:
[1]  0.4367620 -0.1876985  0.2497715
Average silhouette width of total data set:
[1] 0.1147212

1225 dissimilarities, summarized :
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  17.20   48.34   64.68   82.23  105.49  281.95 
Metric :  euclidean 
Number of objects : 50

Available components:
 [1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
 [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"      
> (pv4 <- pam(votes.repub, 4))
Medoids:
           ID X1856 X1860 X1864 X1868 X1872 X1876 X1880 X1884 X1888 X1892 X1896
Alabama     1    NA    NA    NA 51.44 53.19 40.02 36.98 38.44 32.28  3.95 28.13
Alaska      2    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
New Mexico 31    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
Iowa       15 49.13 54.87 64.23 61.92 64.18 58.58 56.85 52.42 52.36 49.60 55.46
           X1900 X1904 X1908 X1912 X1916 X1920 X1924 X1928 X1932 X1936 X1940
Alabama    34.67 20.65 24.38  8.26 21.97 30.98 27.01 48.49 14.15 12.82 14.34
Alaska        NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
New Mexico    NA    NA    NA 35.91 46.53 54.68 48.52 59.01 35.76 36.50 43.28
Iowa       57.99 63.37 55.62 24.30 54.06 70.91 55.06 61.80 39.98 42.70 52.03
           X1944 X1948 X1952 X1956 X1960 X1964 X1968 X1972 X1976
Alabama    18.20 19.04 35.02 39.39 41.75  69.5  14.0  72.4 43.48
Alaska        NA    NA    NA    NA 50.94  34.1  45.3  58.1 62.91
New Mexico 46.44 42.93 55.39 57.81 49.41  41.0  51.8  61.0 51.04
Iowa       51.99 47.58 63.76 59.06 56.71  38.1  53.0  57.6 50.51
Clustering vector:
       Alabama         Alaska        Arizona       Arkansas     California 
             1              2              3              1              2 
      Colorado    Connecticut       Delaware        Florida        Georgia 
             2              2              3              1              1 
        Hawaii          Idaho       Illinois        Indiana           Iowa 
             2              3              4              3              4 
        Kansas       Kentucky      Louisiana          Maine       Maryland 
             4              3              1              2              3 
 Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
             4              2              4              1              3 
       Montana       Nebraska         Nevada  New Hampshire     New Jersey 
             3              4              2              2              2 
    New Mexico       New York North Carolina   North Dakota           Ohio 
             3              3              3              4              4 
      Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
             3              3              4              4              2 
  South Dakota      Tennessee          Texas           Utah        Vermont 
             4              3              2              3              2 
      Virginia     Washington  West Virginia      Wisconsin        Wyoming 
             2              3              3              4              3 
Objective function:
   build     swap 
35.84182 35.84182 

Available components:
 [1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
 [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"      
> (pv6 <- pam(votes.repub, 6, trace = 3))
C pam(): computing 1226 dissimilarities from  50 x 31  matrix: [Ok]
pam()'s bswap(*, s=281.951, pamonce=0): build 6 medoids:
    new repr. 2
    new repr. 1
    new repr. 31
    new repr. 15
    new repr. 46
    new repr. 40
  after build: medoids are  1  2 15 31 40 46
  and min.dist dysma[1:n] are
      0      0   37.7     56   35.8   28.5   28.6   31.7   54.1   48.2
   51.7   33.2   27.3   30.5      0   35.1   25.4   60.9   36.9   26.7
   48.4   28.1   33.2   63.1   21.1   28.6   37.5   35.8   29.8   31.3
      0     32   29.9   35.7   30.9   35.1   27.8   35.7   50.2      0
   26.2   30.2   45.2   34.1   33.8      0   28.5   35.1   34.2   28.8
   swp new 10 <->  1 old; decreasing diss. 1579.03 by -2.57067
end{bswap()}, end{cstat()}
Medoids:
               ID X1856 X1860 X1864 X1868 X1872 X1876 X1880 X1884 X1888 X1892
Georgia        10    NA    NA    NA 35.72 43.77 27.94 34.33 33.84 28.33 21.80
Alaska          2    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
Virginia       46  0.19  1.15    NA    NA 50.48 40.62 39.52 48.90 49.47 38.75
New Mexico     31    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
Iowa           15 49.13 54.87 64.23 61.92 64.18 58.58 56.85 52.42 52.36 49.60
South Carolina 40    NA    NA    NA 57.93 75.95 50.26 33.97 23.72 17.27 18.99
               X1896 X1900 X1904 X1908 X1912 X1916 X1920 X1924 X1928 X1932
Georgia        36.82 28.56 18.32 31.40  4.27  7.07 28.57 18.19 43.37  7.77
Alaska            NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
Virginia       45.90 43.81 36.67 38.36 17.00 32.05 37.85 32.79 53.91 30.09
New Mexico        NA    NA    NA    NA 35.91 46.53 54.68 48.52 59.01 35.76
Iowa           55.46 57.99 63.37 55.62 24.30 54.06 70.91 55.06 61.80 39.98
South Carolina 13.51  7.04  4.63  5.97  1.06  2.43  3.90  2.21  8.54  1.89
               X1936 X1940 X1944 X1948 X1952 X1956 X1960 X1964 X1968 X1972
Georgia        12.60 14.84 18.25 18.31 30.34 33.22 37.44  54.1  30.4  75.0
Alaska            NA    NA    NA    NA    NA    NA 50.94  34.1  45.3  58.1
Virginia       29.39 31.55 37.39 41.04 56.32 55.37 52.44  46.5  41.4  67.8
New Mexico     36.50 43.28 46.44 42.93 55.39 57.81 49.41  41.0  51.8  61.0
Iowa           42.70 52.03 51.99 47.58 63.76 59.06 56.71  38.1  53.0  57.6
South Carolina  1.43  4.37  4.46  3.78 49.28 25.18 48.76  58.9  38.1  70.8
               X1976
Georgia        33.02
Alaska         62.91
Virginia       50.73
New Mexico     51.04
Iowa           50.51
South Carolina 43.54
Clustering vector:
       Alabama         Alaska        Arizona       Arkansas     California 
             1              2              3              3              2 
      Colorado    Connecticut       Delaware        Florida        Georgia 
             2              2              4              3              1 
        Hawaii          Idaho       Illinois        Indiana           Iowa 
             2              4              5              4              5 
        Kansas       Kentucky      Louisiana          Maine       Maryland 
             5              4              1              2              4 
 Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
             5              2              5              6              4 
       Montana       Nebraska         Nevada  New Hampshire     New Jersey 
             4              5              2              2              2 
    New Mexico       New York North Carolina   North Dakota           Ohio 
             4              4              3              5              5 
      Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
             4              4              5              5              6 
  South Dakota      Tennessee          Texas           Utah        Vermont 
             5              3              2              4              2 
      Virginia     Washington  West Virginia      Wisconsin        Wyoming 
             3              4              4              5              4 
Objective function:
   build     swap 
31.58067 31.52926 

Available components:
 [1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
 [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"      
> 
> cat('Time elapsed: ', proc.time() - .proctime00,'\n')
Time elapsed:  0.392 0.016 0.41 0 0 
> 
> ## re-starting with medoids from pv6  shouldn't change:
> pv6. <- pam(votes.repub, 6, medoids = pv6$id.med, trace = 3)
C pam(): computing 1226 dissimilarities from  50 x 31  matrix: [Ok]
pam()'s bswap(*, s=281.951, pamonce=0): medoids given;   after build: medoids are  2 10 15 31 40 46
  and min.dist dysma[1:n] are
   48.2      0   37.7     56   35.8   28.5   28.6   31.7   54.1      0
   51.7   33.2   27.3   30.5      0   35.1   25.4   58.3   36.9   26.7
   48.4   28.1   33.2   63.1   21.1   28.6   37.5   35.8   29.8   31.3
      0     32   29.9   35.7   30.9   35.1   27.8   35.7   50.2      0
   26.2   30.2   45.2   34.1   33.8      0   28.5   35.1   34.2   28.8
end{bswap()}, end{cstat()}
> identical(pv6[nm3], pv6.[nm3])
[1] TRUE
> 
> ## This example seg.faulted at some point:
> d.st <- data.frame(V1= c(9, 12, 12, 15, 9, 9, 13, 11, 15, 10, 13, 13,
+ 		       13, 15,  8, 13, 13, 10, 7, 9, 6, 11, 3),
+ 		   V2= c(5, 9, 3, 5, 1, 1, 2, NA, 10, 1, 4, 7,
+ 		       4, NA, NA, 5, 2, 4, 3, 3, 6, 1, 1),
+ 		   V3 = c(63, 41, 59, 50, 290, 226, 60, 36, 32, 121, 70, 51,
+ 		       79, 32, 42, 39, 76, 60, 56, 88, 57, 309, 254),
+ 		   V4 = c(146, 43, 78, 88, 314, 149, 78, NA, 238, 153, 159, 222,
+ 		       203, NA, NA, 74, 100, 111, 9, 180, 50, 256, 107))
> dd <- daisy(d.st, stand = TRUE)
> (r0 <- pam(dd, 5))# cluster 5 = { 23 } -- on single observation
Medoids:
     ID   
[1,] 15 15
[2,]  8  8
[3,] 14 14
[4,] 22 22
[5,] 23 23
Clustering vector:
 [1] 1 2 2 3 4 4 2 2 3 2 2 2 2 3 1 2 2 2 1 1 1 4 5
Objective function:
    build      swap 
0.9368049 0.8621860 

Available components:
[1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
[6] "clusinfo"   "silinfo"    "diss"       "call"      
> ## pam doing the "daisy" computation internally:
> r0s <- pam(d.st, 5, stand=TRUE, keep.diss=FALSE, keep.data=FALSE)
> (ii <- which(names(r0) %in% c("call","medoids")))
[1] 1 9
> stopifnot(all.equal(r0[-ii], r0s[-ii], tol=1e-14),
+           identical(r0s$medoids, data.matrix(d.st)[r0$medoids, ]))
> 
> ## This gave only 3 different medoids -> and seg.fault:
> (r5 <- pam(dd, 5, medoids = c(1,3,20,2,5), trace = 2)) # now "fine"
pam()'s bswap(*, s=8.51931, pamonce=0): medoids given;   after build: medoids are  1  2  3  5 20
   swp new 14 <->  2 old; decreasing diss. 29.8745 by -5.50096
   swp new 15 <->  1 old; decreasing diss. 24.3735 by -2.20162
   swp new  6 <-> 20 old; decreasing diss. 22.1719 by -2.12745
   swp new  8 <->  3 old; decreasing diss. 20.0444 by -0.201608
end{bswap()}, end{cstat()}
Medoids:
     ID   
[1,] 15 15
[2,]  8  8
[3,] 14 14
[4,]  5  5
[5,]  6  6
Clustering vector:
 [1] 1 2 2 3 4 5 2 2 3 5 2 2 2 3 1 2 2 2 1 1 1 4 5
Objective function:
    build      swap 
1.2988899 0.8627319 

Available components:
[1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
[6] "clusinfo"   "silinfo"    "diss"       "call"      
> 
> dev.off()
null device 
          1 
> 
> ##------------------------ Testing pam() with new "pamonce" argument:
> 
> ## This is from "next version of Matrix" test-tools-1.R:
> showSys.time <- function(expr) {
+     ## prepend 'Time' for R CMD Rdiff
+     st <- system.time(expr)
+     writeLines(paste("Time", capture.output(print(st))))
+     invisible(st)
+ }
> show6Ratios <- function(...) {
+     stopifnot(length(rgs <- list(...)) == 6,
+               nchar(ns <- names(rgs)) > 0)
+     r <- round(cbind(..1, ..2, ..3, ..4, ..5, ..6)[c(1,5),], 5)
+     dimnames(r) <- list(paste("Time ", rownames(r)), ns)
+     r
+ }
> 
> 
> n <- 1000
> ## If not enough cases, all CPU times equals 0.
> n <- 500 # for now, and automatic testing
> 
> sd <- 0.5
> set.seed(13)
> n2 <- as.integer(round(n * 1.5))
> x <- rbind(cbind(rnorm( n,0,sd), rnorm( n,0,sd)),
+            cbind(rnorm(n2,5,sd), rnorm(n2,5,sd)),
+            cbind(rnorm(n2,7,sd), rnorm(n2,7,sd)),
+            cbind(rnorm(n2,9,sd), rnorm(n2,9,sd)))
> 
> 
> ## original algorithm
> st0 <- showSys.time(pamx      <- pam(x, 4,               trace.lev=2))# 8.157   0.024   8.233
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=0): build 4 medoids:
    new repr. 1268
    new repr. 414
    new repr. 2153
    new repr. 915
  after build: medoids are  414  915 1268 2153
   swp new 1793 <-> 1268 old; decreasing diss. 1862.37 by -129.13
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   1.163   0.005   1.176 
>  ## bswapPamOnce  algorithm
> st1 <- showSys.time(pamxonce  <- pam(x, 4, pamonce=TRUE, trace.lev=2))# 6.122   0.024   6.181
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=1): build 4 medoids:
    new repr. 1268
    new repr. 414
    new repr. 2153
    new repr. 915
  after build: medoids are  414  915 1268 2153
   swp new 1793 <-> 1268 old; decreasing diss. 1862.37 by -129.13
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.882   0.015   0.908 
> ## bswapPamOnceDistIndice
> st2 <- showSys.time(pamxonce2 <- pam(x, 4, pamonce = 2,  trace.lev=2))# 4.101   0.024   4.151
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=2): build 4 medoids:
    new repr. 1268
    new repr. 414
    new repr. 2153
    new repr. 915
  after build: medoids are  414  915 1268 2153
   swp new 1793 <-> 1268 old; decreasing diss. 1862.37 by -129.13
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.741   0.000   0.746 
> ## bswapPamSchubert FastPAM1
> st3 <- showSys.time(pamxonce3 <- pam(x, 4, pamonce = 3,  trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=3): build 4 medoids:
    new repr. 1268
    new repr. 414
    new repr. 2153
    new repr. 915
  after build: medoids are  414  915 1268 2153
   swp new 1793 <-> 1268 old; decreasing diss. 1862.37 by -129.13
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.560   0.001   0.566 
> ## bswapPamSchubert FastPAM2
> st4 <- showSys.time(pamxonce4 <- pam(x, 4, pamonce = 4,  trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=4): build 4 medoids:
    new repr. 1268
    new repr. 414
    new repr. 2153
    new repr. 915
  after build: medoids are  414  915 1268 2153
   swp new 1793 <-> 1268 old; decreasing diss. 1862.37 by -129.13
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.637   0.000   0.643 
> ## bswapPamSchubert FastPAM2 with linearized memory access
> st5 <- showSys.time(pamxonce5 <- pam(x, 4, pamonce = 5,  trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=5): build 4 medoids:
    new repr. 1268
    new repr. 414
    new repr. 2153
    new repr. 915
  after build: medoids are  414  915 1268 2153
   swp new 1793 <-> 1268 old; decreasing diss. 1862.37 by -129.13
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.494   0.000   0.498 
> ## bswapPamSchubert FasterPAM
> st6 <- showSys.time(pamxonce6 <- pam(x, 4, pamonce = 6,  trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=6): build 4 medoids:
    new repr. 1268
    new repr. 414
    new repr. 2153
    new repr. 915
  after build: medoids are  414  915 1268 2153
   swp new 1251 <-> 1268 old; decreasing diss. 1862.37 by -27.6945
   swp new 1255 <-> 1251 old; decreasing diss. 1834.68 by -81.213
   swp new 1259 <-> 1255 old; decreasing diss. 1753.46 by -4.71205
   swp new 1265 <-> 1259 old; decreasing diss. 1748.75 by -1.5194
   swp new 1280 <-> 1265 old; decreasing diss. 1747.23 by -1.34867
   swp new 1300 <-> 1280 old; decreasing diss. 1745.88 by -9.69283
   swp new 1421 <-> 1300 old; decreasing diss. 1736.19 by -2.94296
   swp new 1793 <-> 1421 old; decreasing diss. 1733.25 by -0.00639415
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.483   0.001   0.488 
> show6Ratios('6:orig' = st6/st0, '5:orig' = st5/st0, '4:orig' = st4/st0, '3:orig' = st3/st0, '2:orig' = st2/st0, '1:orig' = st1/st0)
                 6:orig  5:orig  4:orig  3:orig  2:orig  1:orig
Time  user.self 0.41531 0.42476 0.54772 0.48151 0.63715 0.75838
Time  sys.child     NaN     NaN     NaN     NaN     NaN     NaN
> 
> ## only call element is not equal
> (icall <- which(names(pamx) == "call"))
[1] 9
> pamx[[icall]]
pam(x = x, k = 4, trace.lev = 2)
> stopifnot(all.equal(pamx    [-icall],  pamxonce [-icall]),
+ 	  all.equal(pamxonce[-icall],  pamxonce2[-icall]),
+ 	  all.equal(pamxonce[-icall],  pamxonce3[-icall]),
+ 	  all.equal(pamxonce[-icall],  pamxonce4[-icall]),
+ 	  all.equal(pamxonce[-icall],  pamxonce5[-icall]),
+ 	  all.equal(pamxonce[-icall],  pamxonce6[-icall]))
> 
> ## Same using specified medoids
> (med0 <- 1 + round(n* c(0,1, 2.5, 4)))#                                      lynne (~ 2010, AMD Phenom II X4 925)
[1]    1  501 1251 2001
> st0 <- showSys.time(pamxst      <- pam(x, 4, medoids = med0,               trace.lev=2))#  13.071   0.024  13.177
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=0): medoids given;   after build: medoids are    1  501 1251 2001
   swp new  915 <->  501 old; decreasing diss. 2126.83 by -197.507
   swp new 1793 <-> 1251 old; decreasing diss. 1929.32 by -101.336
   swp new  414 <->    1 old; decreasing diss. 1827.98 by -86.3404
   swp new 2153 <-> 2001 old; decreasing diss. 1741.64 by -8.40201
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   1.720   0.000   1.732 
> st1 <- showSys.time(pamxoncest  <- pam(x, 4, medoids = med0, pamonce=TRUE, trace.lev=2))#   8.503   0.024   8.578
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=1): medoids given;   after build: medoids are    1  501 1251 2001
   swp new  915 <->  501 old; decreasing diss. 2126.83 by -197.507
   swp new 1793 <-> 1251 old; decreasing diss. 1929.32 by -101.336
   swp new  414 <->    1 old; decreasing diss. 1827.98 by -86.3404
   swp new 2153 <-> 2001 old; decreasing diss. 1741.64 by -8.40201
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   1.319   0.000   1.329 
> st2 <- showSys.time(pamxonce2st <- pam(x, 4, medoids = med0, pamonce=2,    trace.lev=2))#   5.587   0.025   5.647
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=2): medoids given;   after build: medoids are    1  501 1251 2001
   swp new  915 <->  501 old; decreasing diss. 2126.83 by -197.507
   swp new 1793 <-> 1251 old; decreasing diss. 1929.32 by -101.336
   swp new  414 <->    1 old; decreasing diss. 1827.98 by -86.3404
   swp new 2153 <-> 2001 old; decreasing diss. 1741.64 by -8.40201
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.915   0.001   0.922 
> st3 <- showSys.time(pamxonce3st <- pam(x, 4, medoids = med0, pamonce=3,    trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=3): medoids given;   after build: medoids are    1  501 1251 2001
   swp new  915 <->  501 old; decreasing diss. 2126.83 by -197.507
   swp new 1793 <-> 1251 old; decreasing diss. 1929.32 by -101.336
   swp new  414 <->    1 old; decreasing diss. 1827.98 by -86.3404
   swp new 2153 <-> 2001 old; decreasing diss. 1741.64 by -8.40201
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.442   0.001   0.445 
> st4 <- showSys.time(pamxonce4st <- pam(x, 4, medoids = med0, pamonce=4,    trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=4): medoids given;   after build: medoids are    1  501 1251 2001
   swp new  915 <->  501 old; decreasing diss. 2126.83 by -197.507
   fswp new 1421 <-> 1251 old; decreasing diss. 1929.32 by -101.326
   fswp new  414 <->    1 old; decreasing diss. 1827.99 by -86.3404
   fswp new 2153 <-> 2001 old; decreasing diss. 1741.65 by -8.40546
   swp new 1793 <-> 1421 old; decreasing diss. 1733.25 by -0.00639415
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.329   0.000   0.331 
> st5 <- showSys.time(pamxonce5st <- pam(x, 4, medoids = med0, pamonce=5,    trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=5): medoids given;   after build: medoids are    1  501 1251 2001
   swp new  915 <->  501 old; decreasing diss. 2126.83 by -197.507
   fswp new 1421 <-> 1251 old; decreasing diss. 1929.32 by -101.326
   fswp new  414 <->    1 old; decreasing diss. 1827.99 by -86.3404
   fswp new 2153 <-> 2001 old; decreasing diss. 1741.65 by -8.40546
   swp new 1793 <-> 1421 old; decreasing diss. 1733.25 by -0.00639415
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.289   0.000   0.290 
> st6 <- showSys.time(pamxonce6st <- pam(x, 4, medoids = med0, pamonce=6,    trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=6): medoids given;   after build: medoids are    1  501 1251 2001
   swp new    8 <->    1 old; decreasing diss. 2126.83 by -33.2528
   swp new   12 <->    8 old; decreasing diss. 2093.57 by -32.0203
   swp new   15 <->   12 old; decreasing diss. 2061.55 by -2.88573
   swp new   16 <->   15 old; decreasing diss. 2058.67 by -3.50571
   swp new   33 <->   16 old; decreasing diss. 2055.16 by -0.382726
   swp new   56 <->   33 old; decreasing diss. 2054.78 by -0.660581
   swp new   70 <->   56 old; decreasing diss. 2054.12 by -9.63432
   swp new   86 <->   70 old; decreasing diss. 2044.48 by -2.56554
   swp new  123 <->   86 old; decreasing diss. 2041.92 by -1.30247
   swp new  414 <->  123 old; decreasing diss. 2040.62 by -0.130313
   swp new  502 <->  501 old; decreasing diss. 2040.49 by -36.5109
   swp new  507 <->  502 old; decreasing diss. 2003.97 by -131.351
   swp new  509 <->  507 old; decreasing diss. 1872.62 by -14.3528
   swp new  530 <->  509 old; decreasing diss. 1858.27 by -7.60641
   swp new  542 <->  530 old; decreasing diss. 1850.66 by -2.78128
   swp new  574 <->  542 old; decreasing diss. 1847.88 by -4.18202
   swp new  913 <->  574 old; decreasing diss.  1843.7 by -0.343729
   swp new  915 <->  913 old; decreasing diss. 1843.36 by -0.378301
   swp new 1255 <-> 1251 old; decreasing diss. 1842.98 by -81.0222
   swp new 1259 <-> 1255 old; decreasing diss. 1761.96 by -4.71205
   swp new 1265 <-> 1259 old; decreasing diss. 1757.24 by -1.6954
   swp new 1280 <-> 1265 old; decreasing diss. 1755.55 by -1.25118
   swp new 1300 <-> 1280 old; decreasing diss.  1754.3 by -9.70566
   swp new 1421 <-> 1300 old; decreasing diss. 1744.59 by -2.93951
   swp new 1793 <-> 1421 old; decreasing diss. 1741.65 by -0.00984953
   swp new 2089 <-> 2001 old; decreasing diss. 1741.64 by -3.18091
   swp new 2153 <-> 2089 old; decreasing diss. 1738.46 by -5.2211
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.227   0.000   0.228 
> show6Ratios('6:orig' = st6/st0, '5:orig' = st5/st0, '4:orig' = st4/st0, '3:orig' = st3/st0, '2:orig' = st2/st0, '1:orig' = st1/st0)
                 6:orig  5:orig  4:orig  3:orig  2:orig  1:orig
Time  user.self 0.13198 0.16802 0.19128 0.25698 0.53198 0.76686
Time  sys.child     NaN     NaN     NaN     NaN     NaN     NaN
> 
> ## only call element is not equal
> stopifnot(all.equal(pamxst    [-icall], pamxoncest [-icall]),
+           all.equal(pamxoncest[-icall], pamxonce2st[-icall]),
+           all.equal(pamxoncest[-icall], pamxonce3st[-icall]),
+           all.equal(pamxoncest[-icall], pamxonce4st[-icall]),
+           all.equal(pamxoncest[-icall], pamxonce5st[-icall]),
+           all.equal(pamxoncest[-icall], pamxonce6st[-icall]))
> 
> ## Different starting values
> med0 <- 1:4 #                                                               lynne (~ 2010, AMD Phenom II X4 925)
> st0 <- showSys.time(pamxst      <- pam(x, 4, medoids = med0,               trace.lev=2))# 13.416   0.023  13.529
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=0): medoids given;   after build: medoids are    1    2    3    4
   swp new 1421 <->    4 old; decreasing diss. 21009.4 by -15939.9
   swp new 2153 <->    3 old; decreasing diss. 5069.52 by -1657.88
   swp new  915 <->    2 old; decreasing diss. 3411.65 by -1592.06
   swp new  414 <->    1 old; decreasing diss. 1819.59 by -86.3404
   swp new 1793 <-> 1421 old; decreasing diss. 1733.25 by -0.00639415
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   1.727   0.000   1.732 
> st1 <- showSys.time(pamxoncest  <- pam(x, 4, medoids = med0, pamonce=TRUE, trace.lev=2))#  8.384   0.024   8.459
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=1): medoids given;   after build: medoids are    1    2    3    4
   swp new 1421 <->    4 old; decreasing diss. 21009.4 by -15939.9
   swp new 2153 <->    3 old; decreasing diss. 5069.52 by -1657.88
   swp new  915 <->    2 old; decreasing diss. 3411.65 by -1592.06
   swp new  414 <->    1 old; decreasing diss. 1819.59 by -86.3404
   swp new 1793 <-> 1421 old; decreasing diss. 1733.25 by -0.00639415
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   1.362   0.000   1.366 
> st2 <- showSys.time(pamxonce2st <- pam(x, 4, medoids = med0, pamonce=2,    trace.lev=2))#  5.455   0.030   5.520
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=2): medoids given;   after build: medoids are    1    2    3    4
   swp new 1421 <->    4 old; decreasing diss. 21009.4 by -15939.9
   swp new 2153 <->    3 old; decreasing diss. 5069.52 by -1657.88
   swp new  915 <->    2 old; decreasing diss. 3411.65 by -1592.06
   swp new  414 <->    1 old; decreasing diss. 1819.59 by -86.3404
   swp new 1793 <-> 1421 old; decreasing diss. 1733.25 by -0.00639415
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.926   0.000   0.929 
> st3 <- showSys.time(pamxonce3st <- pam(x, 4, medoids = med0, pamonce=3,    trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=3): medoids given;   after build: medoids are    1    2    3    4
   swp new 1421 <->    4 old; decreasing diss. 21009.4 by -15939.9
   swp new 2153 <->    3 old; decreasing diss. 5069.52 by -1657.88
   swp new  915 <->    2 old; decreasing diss. 3411.65 by -1592.06
   swp new  414 <->    1 old; decreasing diss. 1819.59 by -86.3404
   swp new 1793 <-> 1421 old; decreasing diss. 1733.25 by -0.00639415
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.504   0.000   0.505 
> st4 <- showSys.time(pamxonce4st <- pam(x, 4, medoids = med0, pamonce=4,    trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=4): medoids given;   after build: medoids are    1    2    3    4
   swp new 1421 <->    4 old; decreasing diss. 21009.4 by -15939.9
   swp new 2153 <->    3 old; decreasing diss. 5069.52 by -1657.88
   swp new  915 <->    2 old; decreasing diss. 3411.65 by -1592.06
   swp new  414 <->    1 old; decreasing diss. 1819.59 by -86.3404
   fswp new 1793 <-> 1421 old; decreasing diss. 1733.25 by -0.00639415
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.449   0.000   0.451 
> st5 <- showSys.time(pamxonce5st <- pam(x, 4, medoids = med0, pamonce=5,    trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=5): medoids given;   after build: medoids are    1    2    3    4
   swp new 1421 <->    4 old; decreasing diss. 21009.4 by -15939.9
   swp new 2153 <->    3 old; decreasing diss. 5069.52 by -1657.88
   swp new  915 <->    2 old; decreasing diss. 3411.65 by -1592.06
   swp new  414 <->    1 old; decreasing diss. 1819.59 by -86.3404
   fswp new 1793 <-> 1421 old; decreasing diss. 1733.25 by -0.00639415
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.338   0.000   0.340 
> st6 <- showSys.time(pamxonce6st <- pam(x, 4, medoids = med0, pamonce=6,    trace.lev=2))#
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=6): medoids given;   after build: medoids are    1    2    3    4
   swp new    7 <->    3 old; decreasing diss. 21009.4 by -4.9986
   swp new    8 <->    2 old; decreasing diss. 21004.4 by -16.4723
   swp new   11 <->    7 old; decreasing diss. 20987.9 by -12.0798
   swp new   12 <->    8 old; decreasing diss. 20975.9 by -3.31491
   swp new   13 <->    1 old; decreasing diss. 20972.5 by -4.88251
   swp new   14 <->   13 old; decreasing diss. 20967.7 by -1.90148
   swp new   15 <->   14 old; decreasing diss. 20965.8 by -9.59363
   swp new   22 <->   11 old; decreasing diss. 20956.2 by -10.0478
   swp new   24 <->   15 old; decreasing diss. 20946.1 by -7.99457
   swp new   26 <->   12 old; decreasing diss. 20938.1 by -3.0991
   swp new   44 <->   22 old; decreasing diss.   20935 by -880.436
   swp new   45 <->    4 old; decreasing diss. 20054.6 by -9.44638
   swp new   55 <->   26 old; decreasing diss. 20045.1 by -1.77816
   swp new   57 <->   24 old; decreasing diss. 20043.4 by -1.76138
   swp new   58 <->   44 old; decreasing diss. 20041.6 by -178.122
   swp new   63 <->   45 old; decreasing diss. 19863.5 by -0.34634
   swp new   71 <->   57 old; decreasing diss. 19863.1 by -1.49747
   swp new   75 <->   63 old; decreasing diss. 19861.6 by -1.31804
   swp new   76 <->   71 old; decreasing diss. 19860.3 by -1.42789
   swp new   80 <->   55 old; decreasing diss. 19858.9 by -5.29615
   swp new   81 <->   75 old; decreasing diss. 19853.6 by -0.164308
   swp new   83 <->   76 old; decreasing diss. 19853.4 by -0.0877432
   swp new  115 <->   81 old; decreasing diss. 19853.3 by -0.303527
   swp new  171 <->   58 old; decreasing diss.   19853 by -971.874
   swp new  185 <->  115 old; decreasing diss. 18881.2 by -0.471238
   swp new  192 <->   80 old; decreasing diss. 18880.7 by -0.294662
   swp new  257 <->  185 old; decreasing diss. 18880.4 by -0.466733
   swp new  290 <->  257 old; decreasing diss. 18879.9 by -0.105762
   swp new  309 <->   83 old; decreasing diss. 18879.8 by -0.0395709
   swp new  419 <->  192 old; decreasing diss. 18879.8 by -0.0439214
   swp new  425 <->  309 old; decreasing diss. 18879.7 by -0.136105
   swp new  471 <->  425 old; decreasing diss. 18879.6 by -0.244642
   swp new  501 <->  171 old; decreasing diss. 18879.4 by -11830.7
   swp new  502 <->  471 old; decreasing diss. 7048.64 by -273.113
   swp new  503 <->  290 old; decreasing diss. 6775.52 by -813.133
   swp new  504 <->  502 old; decreasing diss. 5962.39 by -20.8894
   swp new  507 <->  504 old; decreasing diss.  5941.5 by -42.7153
   swp new  515 <->  501 old; decreasing diss. 5898.79 by -0.453931
   swp new  523 <->  515 old; decreasing diss. 5898.33 by -67.1248
   swp new  526 <->  507 old; decreasing diss. 5831.21 by -0.673248
   swp new  527 <->  526 old; decreasing diss. 5830.53 by -2.26904
   swp new  537 <->  503 old; decreasing diss. 5828.26 by -3.1636
   swp new  542 <->  527 old; decreasing diss.  5825.1 by -2.0623
   swp new  545 <->  542 old; decreasing diss. 5823.04 by -17.9136
   swp new  547 <->  523 old; decreasing diss. 5805.13 by -194.143
   swp new  573 <->  547 old; decreasing diss. 5610.98 by -607.192
   swp new  576 <->  545 old; decreasing diss. 5003.79 by -0.801911
   swp new  579 <->  573 old; decreasing diss. 5002.99 by -347.734
   swp new  592 <->  576 old; decreasing diss. 4655.26 by -0.997177
   swp new  604 <->  592 old; decreasing diss. 4654.26 by -0.808458
   swp new  617 <->  604 old; decreasing diss. 4653.45 by -1.02162
   swp new  813 <->  537 old; decreasing diss. 4652.43 by -0.254896
   swp new  883 <->  617 old; decreasing diss. 4652.17 by -1.83048
   swp new  955 <->  813 old; decreasing diss. 4650.34 by -0.591944
   swp new 1015 <->  883 old; decreasing diss. 4649.75 by -0.0303283
   swp new 1016 <->  955 old; decreasing diss. 4649.72 by -0.343593
   swp new 1086 <-> 1016 old; decreasing diss. 4649.38 by -0.0942057
   swp new 1088 <-> 1015 old; decreasing diss. 4649.28 by -0.0747132
   swp new 1111 <-> 1086 old; decreasing diss. 4649.21 by -0.996659
   swp new 1131 <-> 1088 old; decreasing diss. 4648.21 by -0.773913
   swp new 1134 <-> 1111 old; decreasing diss. 4647.44 by -0.174449
   swp new 1151 <-> 1131 old; decreasing diss. 4647.26 by -0.319467
   swp new 1251 <->  579 old; decreasing diss. 4646.94 by -1367.16
   swp new 1252 <-> 1251 old; decreasing diss. 3279.79 by -27.203
   swp new 1253 <-> 1151 old; decreasing diss. 3252.58 by -137.657
   swp new 1255 <-> 1252 old; decreasing diss. 3114.93 by -52.4651
   swp new 1257 <-> 1253 old; decreasing diss. 3062.46 by -42.3678
   swp new 1259 <-> 1255 old; decreasing diss. 3020.09 by -1.87135
   swp new 1266 <-> 1257 old; decreasing diss. 3018.22 by -90.6385
   swp new 1280 <-> 1259 old; decreasing diss. 2927.58 by -20.3614
   swp new 1283 <-> 1266 old; decreasing diss. 2907.22 by -272.98
   swp new 1288 <-> 1280 old; decreasing diss. 2634.24 by -1.69952
   swp new 1300 <-> 1288 old; decreasing diss. 2632.54 by -9.58469
   swp new 1325 <-> 1300 old; decreasing diss. 2622.96 by -7.37653
   swp new 1612 <-> 1283 old; decreasing diss. 2615.58 by -2.38886
   swp new 2001 <-> 1612 old; decreasing diss. 2613.19 by -788.545
   swp new 2089 <-> 2001 old; decreasing diss. 1824.65 by -3.28836
   swp new 2153 <-> 2089 old; decreasing diss. 1821.36 by -5.16445
   swp new   12 <->  419 old; decreasing diss. 1816.19 by -28.3676
   swp new   15 <->   12 old; decreasing diss. 1787.83 by -2.88573
   swp new   16 <->   15 old; decreasing diss. 1784.94 by -3.50571
   swp new   33 <->   16 old; decreasing diss. 1781.43 by -0.382726
   swp new   56 <->   33 old; decreasing diss. 1781.05 by -0.660581
   swp new   70 <->   56 old; decreasing diss. 1780.39 by -9.63432
   swp new   86 <->   70 old; decreasing diss. 1770.76 by -2.56554
   swp new  123 <->   86 old; decreasing diss. 1768.19 by -1.30247
   swp new  414 <->  123 old; decreasing diss. 1766.89 by -0.130313
   swp new  507 <-> 1134 old; decreasing diss. 1766.76 by -1.67967
   swp new  509 <->  507 old; decreasing diss. 1765.08 by -11.8255
   swp new  530 <->  509 old; decreasing diss. 1753.25 by -9.54887
   swp new  542 <->  530 old; decreasing diss.  1743.7 by -2.59694
   swp new  574 <->  542 old; decreasing diss. 1741.11 by -3.50085
   swp new  913 <->  574 old; decreasing diss. 1737.61 by -0.356354
   swp new  915 <->  913 old; decreasing diss. 1737.25 by -0.471447
   swp new 1300 <-> 1325 old; decreasing diss. 1736.78 by -0.589135
   swp new 1421 <-> 1300 old; decreasing diss. 1736.19 by -2.94296
   swp new 1793 <-> 1421 old; decreasing diss. 1733.25 by -0.00639415
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.258   0.000   0.259 
> show6Ratios('6:orig' = st6/st0, '5:orig' = st5/st0, '4:orig' = st4/st0, '3:orig' = st3/st0, '2:orig' = st2/st0, '1:orig' = st1/st0)
                 6:orig  5:orig  4:orig  3:orig  2:orig  1:orig
Time  user.self 0.14939 0.19572 0.25999 0.29184 0.53619 0.78865
Time  sys.child     NaN     NaN     NaN     NaN     NaN     NaN
> 
> ## only call element is not equal
> stopifnot(all.equal(pamxst    [-icall], pamxoncest [-icall]),
+           all.equal(pamxoncest[-icall], pamxonce2st[-icall]),
+           all.equal(pamxoncest[-icall], pamxonce3st[-icall]),
+           all.equal(pamxoncest[-icall], pamxonce4st[-icall]),
+           all.equal(pamxoncest[-icall], pamxonce5st[-icall]),
+           all.equal(pamxoncest[-icall], pamxonce6st[-icall]))
> 
> 
> ## Medoid bug  --- MM: Fixed, well "0L+ hack", in my pam.q, on 2012-01-31
> ## ----------
> med0 <- (1:6)
> st0 <- showSys.time(pamxst   <- pam(x, 6, medoids = med0 ,            trace.lev=2))
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=0): medoids given;   after build: medoids are    1    2    3    4    5    6
   swp new 1421 <->    6 old; decreasing diss. 20991.1 by -15949.5
   swp new 2153 <->    4 old; decreasing diss. 5041.66 by -1676.25
   swp new  915 <->    3 old; decreasing diss. 3365.41 by -1671.37
   swp new  325 <->    2 old; decreasing diss. 1694.04 by -53.8582
   swp new 2720 <->    5 old; decreasing diss. 1640.18 by -26.6572
   swp new 2696 <-> 2153 old; decreasing diss. 1613.53 by -19.0531
   swp new   52 <->    1 old; decreasing diss. 1594.47 by -13.965
   swp new 2709 <-> 2720 old; decreasing diss. 1580.51 by -5.81848
   swp new  199 <->  325 old; decreasing diss. 1574.69 by -2.65496
   swp new  438 <->   52 old; decreasing diss. 1572.03 by -1.77054
   swp new 2082 <-> 2696 old; decreasing diss. 1570.26 by -0.187256
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   4.345   0.000   4.357 
> stopifnot(identical(med0, 1:6))
> med0 <- (1:6)
> st1 <- showSys.time(pamxst.1 <- pam(x, 6, medoids = med0 , pamonce=1, trace.lev=2))
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=1): medoids given;   after build: medoids are    1    2    3    4    5    6
   swp new 1421 <->    6 old; decreasing diss. 20991.1 by -15949.5
   swp new 2153 <->    4 old; decreasing diss. 5041.66 by -1676.25
   swp new  915 <->    3 old; decreasing diss. 3365.41 by -1671.37
   swp new  325 <->    2 old; decreasing diss. 1694.04 by -53.8582
   swp new 2720 <->    5 old; decreasing diss. 1640.18 by -26.6572
   swp new 2696 <-> 2153 old; decreasing diss. 1613.53 by -19.0531
   swp new   52 <->    1 old; decreasing diss. 1594.47 by -13.965
   swp new 2709 <-> 2720 old; decreasing diss. 1580.51 by -5.81848
   swp new  199 <->  325 old; decreasing diss. 1574.69 by -2.65496
   swp new  438 <->   52 old; decreasing diss. 1572.03 by -1.77054
   swp new 2082 <-> 2696 old; decreasing diss. 1570.26 by -0.187256
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   3.753   0.000   3.763 
> stopifnot(identical(med0, 1:6))
> med0 <- (1:6)
> st2 <- showSys.time(pamxst.2 <- pam(x, 6, medoids = med0 , pamonce=2, trace.lev=2))
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=2): medoids given;   after build: medoids are    1    2    3    4    5    6
   swp new 1421 <->    6 old; decreasing diss. 20991.1 by -15949.5
   swp new 2153 <->    4 old; decreasing diss. 5041.66 by -1676.25
   swp new  915 <->    3 old; decreasing diss. 3365.41 by -1671.37
   swp new  325 <->    2 old; decreasing diss. 1694.04 by -53.8582
   swp new 2720 <->    5 old; decreasing diss. 1640.18 by -26.6572
   swp new 2696 <-> 2153 old; decreasing diss. 1613.53 by -19.0531
   swp new   52 <->    1 old; decreasing diss. 1594.47 by -13.965
   swp new 2709 <-> 2720 old; decreasing diss. 1580.51 by -5.81848
   swp new  199 <->  325 old; decreasing diss. 1574.69 by -2.65496
   swp new  438 <->   52 old; decreasing diss. 1572.03 by -1.77054
   swp new 2082 <-> 2696 old; decreasing diss. 1570.26 by -0.187256
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   2.519   0.001   2.530 
> stopifnot(identical(med0, 1:6))
> med0 <- (1:6)
> st3 <- showSys.time(pamxst.3 <- pam(x, 6, medoids = med0 , pamonce=3, trace.lev=2))
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=3): medoids given;   after build: medoids are    1    2    3    4    5    6
   swp new 1421 <->    6 old; decreasing diss. 20991.1 by -15949.5
   swp new 2153 <->    4 old; decreasing diss. 5041.66 by -1676.25
   swp new  915 <->    3 old; decreasing diss. 3365.41 by -1671.37
   swp new  325 <->    2 old; decreasing diss. 1694.04 by -53.8582
   swp new 2720 <->    5 old; decreasing diss. 1640.18 by -26.6572
   swp new 2696 <-> 2153 old; decreasing diss. 1613.53 by -19.0531
   swp new   52 <->    1 old; decreasing diss. 1594.47 by -13.965
   swp new 2709 <-> 2720 old; decreasing diss. 1580.51 by -5.81848
   swp new  199 <->  325 old; decreasing diss. 1574.69 by -2.65496
   swp new  438 <->   52 old; decreasing diss. 1572.03 by -1.77054
   swp new 2082 <-> 2696 old; decreasing diss. 1570.26 by -0.187256
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.854   0.000   0.857 
> stopifnot(identical(med0, 1:6))
> med0 <- (1:6)
> st4 <- showSys.time(pamxst.4 <- pam(x, 6, medoids = med0 , pamonce=4, trace.lev=2))
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=4): medoids given;   after build: medoids are    1    2    3    4    5    6
   swp new 1421 <->    6 old; decreasing diss. 20991.1 by -15949.5
   swp new 2153 <->    4 old; decreasing diss. 5041.66 by -1676.25
   swp new  915 <->    3 old; decreasing diss. 3365.41 by -1671.37
   swp new  325 <->    2 old; decreasing diss. 1694.04 by -53.8582
   fswp new 2720 <->    5 old; decreasing diss. 1640.18 by -26.6572
   swp new 2696 <-> 2153 old; decreasing diss. 1613.53 by -19.0531
   fswp new   52 <->    1 old; decreasing diss. 1594.47 by -13.965
   swp new 2709 <-> 2720 old; decreasing diss. 1580.51 by -5.81848
   fswp new  199 <->  325 old; decreasing diss. 1574.69 by -2.65496
   swp new  438 <->   52 old; decreasing diss. 1572.03 by -1.77054
   fswp new 2082 <-> 2696 old; decreasing diss. 1570.26 by -0.187256
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.619   0.000   0.620 
> stopifnot(identical(med0, 1:6))
> med0 <- (1:6)
> st5 <- showSys.time(pamxst.5 <- pam(x, 6, medoids = med0 , pamonce=5, trace.lev=2))
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=5): medoids given;   after build: medoids are    1    2    3    4    5    6
   swp new 1421 <->    6 old; decreasing diss. 20991.1 by -15949.5
   swp new 2153 <->    4 old; decreasing diss. 5041.66 by -1676.25
   swp new  915 <->    3 old; decreasing diss. 3365.41 by -1671.37
   swp new  325 <->    2 old; decreasing diss. 1694.04 by -53.8582
   fswp new 2720 <->    5 old; decreasing diss. 1640.18 by -26.6572
   swp new 2696 <-> 2153 old; decreasing diss. 1613.53 by -19.0531
   fswp new   52 <->    1 old; decreasing diss. 1594.47 by -13.965
   swp new 2709 <-> 2720 old; decreasing diss. 1580.51 by -5.81848
   fswp new  199 <->  325 old; decreasing diss. 1574.69 by -2.65496
   swp new  438 <->   52 old; decreasing diss. 1572.03 by -1.77054
   fswp new 2082 <-> 2696 old; decreasing diss. 1570.26 by -0.187256
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.473   0.001   0.476 
> stopifnot(identical(med0, 1:6))
> med0 <- (1:6)
> st6 <- showSys.time(pamxst.6 <- pam(x, 6, medoids = med0 , pamonce=6, trace.lev=2))
C pam(): computing 3779876 dissimilarities from  2750 x 2  matrix: [Ok]
pam()'s bswap(*, s=15.7788, pamonce=6): medoids given;   after build: medoids are    1    2    3    4    5    6
   swp new    7 <->    6 old; decreasing diss. 20991.1 by -3.78677
   swp new    8 <->    5 old; decreasing diss. 20987.4 by -25.0122
   swp new    9 <->    2 old; decreasing diss. 20962.3 by -6.53934
   swp new   10 <->    7 old; decreasing diss. 20955.8 by -0.133503
   swp new   11 <->    9 old; decreasing diss. 20955.7 by -14.9294
   swp new   12 <->   10 old; decreasing diss. 20940.7 by -2.35016
   swp new   13 <->   12 old; decreasing diss. 20938.4 by -12.1267
   swp new   14 <->   11 old; decreasing diss. 20926.3 by -2.99664
   swp new   15 <->   13 old; decreasing diss. 20923.3 by -11.5871
   swp new   20 <->    1 old; decreasing diss. 20911.7 by -0.0423835
   swp new   22 <->    3 old; decreasing diss. 20911.6 by -8.76936
   swp new   23 <->   20 old; decreasing diss. 20902.9 by -0.779336
   swp new   39 <->   15 old; decreasing diss. 20902.1 by -0.285867
   swp new   44 <->    4 old; decreasing diss. 20901.8 by -889.012
   swp new   45 <->   14 old; decreasing diss. 20012.8 by -0.586001
   swp new   46 <->   45 old; decreasing diss. 20012.2 by -1.1479
   swp new   57 <->   39 old; decreasing diss. 20011.1 by -3.67274
   swp new   58 <->   44 old; decreasing diss. 20007.4 by -189.36
   swp new   62 <->   23 old; decreasing diss.   19818 by -0.626154
   swp new   66 <->   46 old; decreasing diss. 19817.4 by -1.29082
   swp new   68 <->   22 old; decreasing diss. 19816.1 by -0.580804
   swp new   75 <->   62 old; decreasing diss. 19815.5 by -0.860328
   swp new   76 <->   57 old; decreasing diss. 19814.7 by -1.97434
   swp new  171 <->   58 old; decreasing diss. 19812.7 by -968.625
   swp new  185 <->   75 old; decreasing diss. 18844.1 by -0.12972
   swp new  198 <->   68 old; decreasing diss. 18843.9 by -0.533904
   swp new  204 <->  198 old; decreasing diss. 18843.4 by -0.00928895
   swp new  218 <->  185 old; decreasing diss. 18843.4 by -0.0287215
   swp new  280 <->  204 old; decreasing diss. 18843.4 by -0.913559
   swp new  329 <->  280 old; decreasing diss. 18842.5 by -0.101916
   swp new  361 <->    8 old; decreasing diss. 18842.3 by -0.0966188
   swp new  402 <->  361 old; decreasing diss. 18842.3 by -0.0394578
   swp new  501 <->  171 old; decreasing diss. 18842.2 by -11833
   swp new  502 <->   66 old; decreasing diss. 7009.24 by -309.206
   swp new  503 <->  329 old; decreasing diss. 6700.03 by -887.644
   swp new  504 <->   76 old; decreasing diss. 5812.39 by -28.554
   swp new  506 <->  504 old; decreasing diss. 5783.83 by -14.2809
   swp new  507 <->  506 old; decreasing diss. 5769.55 by -19.8604
   swp new  508 <->  507 old; decreasing diss. 5749.69 by -7.88586
   swp new  515 <->  501 old; decreasing diss.  5741.8 by -3.36477
   swp new  519 <->  502 old; decreasing diss. 5738.44 by -1.16993
   swp new  523 <->  515 old; decreasing diss. 5737.27 by -71.9147
   swp new  526 <->  508 old; decreasing diss. 5665.35 by -1.56708
   swp new  533 <->  526 old; decreasing diss. 5663.79 by -1.652
   swp new  537 <->  519 old; decreasing diss. 5662.14 by -0.283073
   swp new  540 <->  537 old; decreasing diss. 5661.85 by -2.35314
   swp new  545 <->  533 old; decreasing diss.  5659.5 by -2.94604
   swp new  547 <->  503 old; decreasing diss. 5656.55 by -221.229
   swp new  573 <->  547 old; decreasing diss. 5435.32 by -574.75
   swp new  575 <->  523 old; decreasing diss. 4860.57 by -17.1525
   swp new  579 <->  573 old; decreasing diss. 4843.42 by -346.495
   swp new  593 <->  575 old; decreasing diss. 4496.93 by -2.83188
   swp new  594 <->  540 old; decreasing diss.  4494.1 by -0.50804
   swp new  618 <->  545 old; decreasing diss. 4493.59 by -0.137577
   swp new  660 <->  618 old; decreasing diss. 4493.45 by -4.45459
   swp new  663 <->  593 old; decreasing diss.    4489 by -0.912682
   swp new  709 <->  663 old; decreasing diss. 4488.08 by -1.44419
   swp new  848 <->  594 old; decreasing diss. 4486.64 by -0.00137738
   swp new  991 <->  709 old; decreasing diss. 4486.64 by -0.173764
   swp new 1242 <->  660 old; decreasing diss. 4486.46 by -0.244432
   swp new 1251 <->  579 old; decreasing diss. 4486.22 by -1369.29
   swp new 1252 <->  402 old; decreasing diss. 3116.93 by -58.5165
   swp new 1253 <-> 1252 old; decreasing diss. 3058.42 by -169.451
   swp new 1255 <-> 1251 old; decreasing diss. 2888.97 by -30.8092
   swp new 1257 <->  848 old; decreasing diss. 2858.16 by -70.3794
   swp new 1262 <-> 1255 old; decreasing diss. 2787.78 by -29.3154
   swp new 1266 <-> 1253 old; decreasing diss. 2758.46 by -64.8733
   swp new 1282 <-> 1262 old; decreasing diss. 2693.59 by -0.803303
   swp new 1283 <-> 1257 old; decreasing diss. 2692.79 by -238.314
   swp new 1284 <-> 1266 old; decreasing diss. 2454.47 by -6.79018
   swp new 1289 <-> 1284 old; decreasing diss. 2447.68 by -6.25715
   swp new 1291 <-> 1289 old; decreasing diss. 2441.42 by -1.33251
   swp new 1293 <-> 1291 old; decreasing diss. 2440.09 by -4.73682
   swp new 1299 <-> 1293 old; decreasing diss. 2435.35 by -5.10123
   swp new 1301 <-> 1282 old; decreasing diss. 2430.25 by -3.83834
   swp new 1322 <-> 1301 old; decreasing diss. 2426.41 by -1.61521
   swp new 1332 <-> 1322 old; decreasing diss.  2424.8 by -1.66893
   swp new 1335 <-> 1299 old; decreasing diss. 2423.13 by -9.28429
   swp new 1374 <-> 1332 old; decreasing diss. 2413.85 by -1.14706
   swp new 1469 <-> 1374 old; decreasing diss.  2412.7 by -0.0376604
   swp new 1583 <-> 1335 old; decreasing diss. 2412.66 by -0.0266074
   swp new 1612 <-> 1283 old; decreasing diss. 2412.64 by -1.78413
   swp new 2001 <-> 1612 old; decreasing diss. 2410.85 by -794.078
   swp new 2089 <-> 2001 old; decreasing diss. 1616.77 by -3.16676
   swp new 2153 <-> 2089 old; decreasing diss. 1613.61 by -5.2914
   swp new   12 <->  218 old; decreasing diss. 1608.32 by -9.02144
   swp new   15 <->   12 old; decreasing diss. 1599.29 by -2.88573
   swp new   16 <->   15 old; decreasing diss. 1596.41 by -3.50571
   swp new   33 <->   16 old; decreasing diss.  1592.9 by -0.382726
   swp new   56 <->   33 old; decreasing diss. 1592.52 by -0.660581
   swp new   70 <->   56 old; decreasing diss. 1591.86 by -9.63432
   swp new   86 <->   70 old; decreasing diss. 1582.22 by -2.56554
   swp new  123 <->   86 old; decreasing diss. 1579.66 by -1.30247
   swp new  414 <->  123 old; decreasing diss. 1578.36 by -0.130313
   swp new  507 <-> 1242 old; decreasing diss. 1578.23 by -16.7114
   swp new  513 <->  991 old; decreasing diss. 1561.51 by -2.15127
   swp new  518 <->  507 old; decreasing diss. 1559.36 by -7.23052
   swp new  556 <->  518 old; decreasing diss. 1552.13 by -1.79073
   swp new  622 <->  513 old; decreasing diss. 1550.34 by -0.947204
   swp new  822 <->  556 old; decreasing diss.  1549.4 by -0.320612
   swp new  926 <->  622 old; decreasing diss. 1549.07 by -1.31521
   swp new 1106 <->  926 old; decreasing diss. 1547.76 by -0.187491
   swp new 1124 <->  822 old; decreasing diss. 1547.57 by -0.261824
   swp new 1194 <-> 1124 old; decreasing diss. 1547.31 by -0.0387596
   swp new 1256 <-> 1583 old; decreasing diss. 1547.27 by -1.04235
   swp new 1262 <-> 1469 old; decreasing diss. 1546.23 by -2.25214
   swp new 1429 <-> 1256 old; decreasing diss. 1543.98 by -0.359624
   swp new 1592 <-> 1429 old; decreasing diss. 1543.62 by -0.641983
   swp new 2286 <-> 2153 old; decreasing diss. 1542.98 by -0.109986
   swp new 2482 <-> 2286 old; decreasing diss. 1542.87 by -0.0744393
end{bswap()}, end{cstat()}
Time    user  system elapsed 
Time   0.282   0.001   0.284 
> stopifnot(identical(med0, 1:6))
> stopifnot(all.equal(pamxst[-icall], pamxst.1 [-icall]),
+           all.equal(pamxst[-icall], pamxst.2 [-icall]),
+           all.equal(pamxst[-icall], pamxst.3 [-icall]),
+           all.equal(pamxst[-icall], pamxst.4 [-icall]),
+           all.equal(pamxst[-icall], pamxst.5 [-icall]))
> # FasterPAM finds a better solution here, by chance
> stopifnot(pamxst$objective >= pamxst.6$objective)
> 
> 
> ## Last Line:
> cat('Time elapsed: ', proc.time() - .proctime00,'\n')
Time elapsed:  29.923 0.049 30.113 0 0 
> 
> 
> proc.time()
   user  system elapsed 
 30.026   0.082  30.241