1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
/* This is an example program that makes use of the C Clustering Library. */
/* ========================================================================= */
#include <stdio.h>
#include <stdlib.h> /* The standard C libraries */
#include "cluster.h" /* The C Clustering Library */
/* ========================================================================= */
void show_data(int nrows, int ncols, double** data, int** mask)
/* Print the data matrix */
{ int i, j;
printf("============== The gene expression data matrix ================\n");
for (j = 0; j < ncols; j++) printf("\tCol %d", j);
printf ("\n");
for (i = 0; i < nrows; i++)
{ printf("Row %d", i);
for (j = 0; j < ncols; j++)
{ if (mask[i][j]) printf("\t%5.2g",data[i][j]);
else printf("\t"); /* mask[i][j]==0, so this data point is missing */
}
printf("\n");
}
printf("\n");
return;
}
/* ========================================================================= */
void example_mean_median(int nrows, int ncols, double** data, int** mask)
{ int i, j;
double* temp = malloc(ncols*sizeof(double));
printf("============== Calculating the mean and median ================\n");
for (i = 0; i < nrows; i++)
{ double meanvalue;
double medianvalue;
int ndata = 0;
for (j = 0; j < ncols; j++)
{ if (mask[i][j])
{ temp[ndata] = data[i][j];
ndata++;
}
}
meanvalue = mean(ndata, temp);
medianvalue = median(ndata, temp);
printf("row %2d:\t", i);
printf("mean = %7.3f\t", meanvalue);
printf("median = %7.3f\n", medianvalue);
/* Note that the median routine changes the order of the elements in
* the array temp. */
}
printf("\n");
free(temp);
}
/* ========================================================================= */
double** example_distance_gene(int nrows, int ncols, double** data, int** mask)
/* Calculate the distance matrix between genes using the Euclidean distance. */
{ int i, j;
double* weight = malloc(ncols*sizeof(double));
/* Set up the ragged array */
double** matrix = malloc(nrows*sizeof(double*));
if (matrix) {
matrix[0] = NULL;
for (i = 1; i < nrows; i++)
{ matrix[i] = malloc(i*sizeof(double));
if (matrix[i]==NULL) /* Not enough memory available */
{ while (--i >= 0) free(matrix[i]);
free(matrix);
matrix = NULL;
break;
}
}
}
if (!matrix) {
free(weight);
printf("Insufficient memory to store the distance matrix\n");
return NULL;
}
printf("============ Euclidean distance matrix between genes ============\n");
for (i = 0; i < ncols; i++) weight[i] = 1.0;
distancematrix(nrows, ncols, data, mask, weight, 'e', 0, matrix);
printf(" Gene:");
for(i=0; i<nrows-1; i++) printf("%6d", i);
printf("\n");
for(i=0; i<nrows; i++)
{ printf("Gene %2d:",i);
for(j=0; j<i; j++) printf(" %5.2f", matrix[i][j]);
printf("\n");
}
printf("\n");
free(weight);
return matrix;
}
/* ========================================================================= */
void example_distance_array(int nrows, int ncols, double** data, int** mask)
/* Calculate the distance matrix between microarrays using the Spearman rank
* correlation. */
{ int i, j;
double* weight = malloc(nrows*sizeof(double));
/* Set up the ragged array */
double** matrix = malloc(ncols*sizeof(double*));
printf("========== Spearman distance matrix between microarrays =========\n");
if(matrix==NULL) return; /* Not enough memory available */
matrix[0] = NULL;
/* The zeroth row has zero columns. We allocate it anyway for convenience.*/
for (i = 1; i < ncols; i++)
{ matrix[i] = malloc(i*sizeof(double));
if (matrix[i]==NULL) break; /* Not enough memory available */
}
if (i < ncols) /* break condition encountered */
{ ncols = i;
for (i = 1; i < ncols; i++) free(matrix[i]);
printf("Insufficient memory to store the distance matrix\n");
free(weight);
return;
}
for (i = 0; i < ncols; i++) weight[i] = 1.0;
distancematrix(nrows, ncols, data, mask, weight, 's', 1, matrix);
printf(" Microarray:");
for(i=0; i<ncols-1; i++) printf("%9d", i);
printf("\n");
for(i=0; i<ncols; ++i)
{ printf("Microarray %2d: ",i);
for(j=0; j<i; ++j) printf(" %f", matrix[i][j]);
printf("\n");
}
printf("\n");
free(weight);
for(i = 1; i < ncols; i++) free(matrix[i]);
free(matrix);
}
/* ========================================================================= */
void example_hierarchical(int nrows, int ncols, double** data, int** mask,
double** distmatrix)
/* Perform hierarchical clustering on genes */
{ int i;
int ok;
const int nnodes = nrows-1;
double* weight = malloc(ncols*sizeof(double));
int* clusterid;
Node* tree;
for (i = 0; i < ncols; i++) weight[i] = 1.0;
printf("\n");
printf("================ Pairwise single linkage clustering ============\n");
/* Since we have the distance matrix here, we may as well use it. */
tree = treecluster(nrows, ncols, 0, 0, 0, 0, 'e', 's', distmatrix);
/* The distance matrix was modified by treecluster, so we cannot use it any
* more. But we still need to deallocate it here.
* The first row of distmatrix is a single null pointer; no need to free it.
*/
for (i = 1; i < nrows; i++) free(distmatrix[i]);
free(distmatrix);
if (!tree)
{ /* Indication that the treecluster routine failed */
printf ("treecluster routine failed due to insufficient memory\n");
free(weight);
return;
}
printf("Node Item 1 Item 2 Distance\n");
for(i=0; i<nnodes; i++)
printf("%3d:%9d%9d %g\n",
-i-1, tree[i].left, tree[i].right, tree[i].distance);
printf("\n");
free(tree);
printf("================ Pairwise maximum linkage clustering ============\n");
tree = treecluster(nrows, ncols, data, mask, weight, 0, 'e', 'm', 0);
/* Here, we let treecluster calculate the distance matrix for us. In that
* case, the treecluster routine may fail due to insufficient memory to store
* the distance matrix. For the small data sets in this example, that is
* unlikely to occur though. Let's check for it anyway:
*/
if (!tree)
{ /* Indication that the treecluster routine failed */
printf ("treecluster routine failed due to insufficient memory\n");
free(weight);
return;
}
printf("Node Item 1 Item 2 Distance\n");
for(i=0; i<nnodes; i++)
printf("%3d:%9d%9d %g\n",
-i-1, tree[i].left, tree[i].right, tree[i].distance);
printf("\n");
free(tree);
printf("================ Pairwise average linkage clustering ============\n");
tree = treecluster(nrows, ncols, data, mask, weight, 0, 'e', 'a', 0);
if (!tree)
{ /* Indication that the treecluster routine failed */
printf ("treecluster routine failed due to insufficient memory\n");
free(weight);
return;
}
printf("Node Item 1 Item 2 Distance\n");
for(i=0; i<nnodes; i++)
printf("%3d:%9d%9d %g\n",
-i-1, tree[i].left, tree[i].right, tree[i].distance);
printf("\n");
free(tree);
printf("================ Pairwise centroid linkage clustering ===========\n");
tree = treecluster(nrows, ncols, data, mask, weight, 0, 'e', 'c', 0);
if (!tree)
{ /* Indication that the treecluster routine failed */
printf ("treecluster routine failed due to insufficient memory\n");
free(weight);
return;
}
printf("Node Item 1 Item 2 Distance\n");
for(i=0; i<nnodes; i++)
printf("%3d:%9d%9d %g\n",
-i-1, tree[i].left, tree[i].right, tree[i].distance);
printf("\n");
printf("=============== Cutting a hierarchical clustering tree ==========\n");
clusterid = malloc(nrows*sizeof(int));
ok = cuttree(nrows, tree, 3, clusterid);
if (ok) {
for(i=0; i<nrows; i++) printf("Gene %2d: cluster %2d\n", i, clusterid[i]);
printf("\n");
}
else printf ("cuttree routine failed due to insufficient memory\n");
free(tree);
free(clusterid);
free(weight);
return;
}
/* ========================================================================= */
void example_kmeans(int nrows, int ncols, double** data, int** mask)
/* Perform k-means clustering on genes */
{ int i, j;
const int nclusters = 3;
const int transpose = 0;
const char dist = 'e';
const char method = 'a';
int npass = 1;
int ifound = 0;
double error;
double distance;
int** index;
int* count;
double* weight = malloc(ncols*sizeof(double));
int* clusterid = malloc(nrows*sizeof(int));
double** cdata = malloc(nclusters*sizeof(double*));
int** cmask = malloc(nclusters*sizeof(int*));
for (i = 0; i < nclusters; i++)
{ cdata[i] = malloc(ncols*sizeof(double));
cmask[i] = malloc(ncols*sizeof(int));
}
for (i = 0; i < ncols; i++) weight[i] = 1.0;
printf("======================== k-means clustering ====================\n");
printf("\n");
printf("----- one pass of the EM algorithm (results may change)\n");
kcluster(nclusters,nrows,ncols,data,mask,weight,transpose,npass,method,dist,
clusterid, &error, &ifound);
printf ("Solution found %d times; within-cluster sum of distances is %f\n",
ifound, error);
printf ("Cluster assignments:\n");
for (i = 0; i < nrows; i++)
printf ("Gene %d: cluster %d\n", i, clusterid[i]);
printf ("\n");
printf("----- 1000 passes of the EM algorithm (result should not change)\n");
npass = 1000;
kcluster(nclusters,nrows,ncols,data,mask,weight,transpose,npass,method,dist,
clusterid, &error, &ifound);
printf ("Solution found %d times; ", ifound);
printf ("within-cluster sum of distances is %f\n", error);
printf ("Cluster assignments:\n");
for (i = 0; i < nrows; i++)
printf ("Gene %d: cluster %d\n", i, clusterid[i]);
printf ("\n");
printf ("------- Distance between clusters:\n");
index = malloc(nclusters*sizeof(int*));
count = malloc(nclusters*sizeof(int));
for (i = 0; i < nclusters; i++) count[i] = 0;
for (i = 0; i < nrows; i++) count[clusterid[i]]++;
for (i = 0; i < nclusters; i++) index[i] = malloc(count[i]*sizeof(int));
for (i = 0; i < nclusters; i++) count[i] = 0;
for (i = 0; i < nrows; i++)
{ int id = clusterid[i];
index[id][count[id]] = i;
count[id]++;
}
distance =
clusterdistance(nrows, ncols, data, mask, weight, count[0], count[1],
index[0], index[1], 'e', 'a', 0);
printf("Distance between 0 and 1: %7.3f\n", distance);
distance =
clusterdistance(nrows, ncols, data, mask, weight, count[0], count[2],
index[0], index[2], 'e', 'a', 0);
printf("Distance between 0 and 2: %7.3f\n", distance);
distance =
clusterdistance(nrows, ncols, data, mask, weight, count[1], count[2],
index[1], index[2], 'e', 'a', 0);
printf("Distance between 1 and 2: %7.3f\n", distance);
printf ("\n");
printf ("------- Cluster centroids:\n");
getclustercentroids(nclusters, nrows, ncols, data, mask, clusterid,
cdata, cmask, 0, 'a');
printf(" Microarray:");
for(i=0; i<ncols; i++) printf("\t%7d", i);
printf("\n");
for (i = 0; i < nclusters; i++)
{ printf("Cluster %2d:", i);
for (j = 0; j < ncols; j++) printf("\t%7.3f", cdata[i][j]);
printf("\n");
}
printf("\n");
for (i = 0; i < nclusters; i++) free(index[i]);
free(index);
free(count);
for (i = 0; i < nclusters; i++)
{ free(cdata[i]);
free(cmask[i]);
}
free(cdata);
free(cmask);
free(clusterid);
free(weight);
return;
}
/* ========================================================================= */
void example_som(int nrows, int ncols, double** data, int** mask)
/* Calculate a self-organizing map, applied to genes */
{ int i, j, k;
const int nxgrid = 2;
const int nygrid = 2; /* Rectangular grid 2x2 */
const double inittau = 0.02; /* Initial value of the neighborhood function */
const int niter = 1000; /* Number of iterations */
const char dist = 'c'; /* Pearson correlation */
double* weight = malloc(ncols*sizeof(double));
int (*clusterid)[2] = malloc(nrows*sizeof(int[2]));
double*** celldata = malloc(nxgrid*sizeof(double**));
for (i = 0; i < nxgrid; i++)
{ celldata[i] = malloc(nygrid*sizeof(double*));
for (j = 0; j < nygrid; j++)
celldata[i][j] = malloc(ncols*sizeof(double));
}
for (i = 0; i < ncols; i++) weight[i] = 1.0;
printf("======================= Self-Organizing Map ===================\n");
printf("(results may change on every run)\n");
somcluster(nrows, ncols, data, mask, weight, 0, nxgrid, nygrid, inittau,
niter, dist, celldata, clusterid);
printf("Cluster assignments:\n");
for(i=0; i<nrows; i++)
printf("Gene %2d: %2d %2d\n",i,clusterid[i][0],clusterid[i][1]);
printf("Cluster centroids:\n");
printf("\t");
for (j = 0; j < ncols; j++) printf("\tCol %d", j);
printf ("\n");
for (i = 0; i < nxgrid; i++)
{ for (j = 0; j < nygrid; j++)
{ printf("Cell (%d,%d):", i, j);
for (k = 0; k < ncols; k++) printf("\t%5.2g",celldata[i][j][k]);
printf("\n");
}
}
printf("\n");
/* Deallocate memory */
for (i = 0; i < nxgrid; i++)
{ for (j = 0; j < nygrid; j++) free(celldata[i][j]);
free(celldata[i]);
}
free(celldata);
free(weight);
free(clusterid);
return;
}
/* ========================================================================= */
int main(void)
{ int i;
const int nrows = 13;
const int ncols = 4;
double** data = malloc(nrows*sizeof(double*) );
int** mask = malloc(nrows*sizeof(int*));
double** distmatrix;
for (i = 0; i < nrows; i++)
{ data[i] = malloc(ncols*sizeof(double));
mask[i] = malloc(ncols*sizeof(int));
}
/* Test data, roughly distributed in 0-5, 6-8, 9-12 */
data[ 0][ 0]=0.1; data[ 0][ 1]=0.0; data[ 0][ 2]=9.6; data[ 0][ 3] = 5.6;
data[ 1][ 0]=1.4; data[ 1][ 1]=1.3; data[ 1][ 2]=0.0; data[ 1][ 3] = 3.8;
data[ 2][ 0]=1.2; data[ 2][ 1]=2.5; data[ 2][ 2]=0.0; data[ 2][ 3] = 4.8;
data[ 3][ 0]=2.3; data[ 3][ 1]=1.5; data[ 3][ 2]=9.2; data[ 3][ 3] = 4.3;
data[ 4][ 0]=1.7; data[ 4][ 1]=0.7; data[ 4][ 2]=9.6; data[ 4][ 3] = 3.4;
data[ 5][ 0]=0.0; data[ 5][ 1]=3.9; data[ 5][ 2]=9.8; data[ 5][ 3] = 5.1;
data[ 6][ 0]=6.7; data[ 6][ 1]=3.9; data[ 6][ 2]=5.5; data[ 6][ 3] = 4.8;
data[ 7][ 0]=0.0; data[ 7][ 1]=6.3; data[ 7][ 2]=5.7; data[ 7][ 3] = 4.3;
data[ 8][ 0]=5.7; data[ 8][ 1]=6.9; data[ 8][ 2]=5.6; data[ 8][ 3] = 4.3;
data[ 9][ 0]=0.0; data[ 9][ 1]=2.2; data[ 9][ 2]=5.4; data[ 9][ 3] = 0.0;
data[10][ 0]=3.8; data[10][ 1]=3.5; data[10][ 2]=5.5; data[10][ 3] = 9.6;
data[11][ 0]=0.0; data[11][ 1]=2.3; data[11][ 2]=3.6; data[11][ 3] = 8.5;
data[12][ 0]=4.1; data[12][ 1]=4.5; data[12][ 2]=5.8; data[12][ 3] = 7.6;
/* Some data are actually missing */
mask[ 0][ 0]=1; mask[ 0][ 1]=1; mask[ 0][ 2]=1; mask[ 0][ 3] = 1;
mask[ 1][ 0]=1; mask[ 1][ 1]=1; mask[ 1][ 2]=0; mask[ 1][ 3] = 1;
mask[ 2][ 0]=1; mask[ 2][ 1]=1; mask[ 2][ 2]=0; mask[ 2][ 3] = 1;
mask[ 3][ 0]=1; mask[ 3][ 1]=1; mask[ 3][ 2]=1; mask[ 3][ 3] = 1;
mask[ 4][ 0]=1; mask[ 4][ 1]=1; mask[ 4][ 2]=1; mask[ 4][ 3] = 1;
mask[ 5][ 0]=0; mask[ 5][ 1]=1; mask[ 5][ 2]=1; mask[ 5][ 3] = 1;
mask[ 6][ 0]=1; mask[ 6][ 1]=1; mask[ 6][ 2]=1; mask[ 6][ 3] = 1;
mask[ 7][ 0]=0; mask[ 7][ 1]=1; mask[ 7][ 2]=1; mask[ 7][ 3] = 1;
mask[ 8][ 0]=1; mask[ 8][ 1]=1; mask[ 8][ 2]=1; mask[ 8][ 3] = 1;
mask[ 9][ 0]=1; mask[ 9][ 1]=1; mask[ 9][ 2]=1; mask[ 9][ 3] = 0;
mask[10][ 0]=1; mask[10][ 1]=1; mask[10][ 2]=1; mask[10][ 3] = 1;
mask[11][ 0]=0; mask[11][ 1]=1; mask[11][ 2]=1; mask[11][ 3] = 1;
mask[12][ 0]=1; mask[12][ 1]=1; mask[12][ 2]=1; mask[12][ 3] = 1;
show_data(nrows, ncols, data, mask);
example_mean_median(nrows, ncols, data, mask);
distmatrix = example_distance_gene(nrows, ncols, data, mask);
if (distmatrix) example_hierarchical(nrows, ncols, data, mask, distmatrix);
example_distance_array(nrows, ncols, data, mask);
example_kmeans(nrows, ncols, data, mask);
example_som(nrows, ncols, data, mask);
return 0;
}
|