File: example.c

package info (click to toggle)
cluster3 1.59%2Bds-3
  • links: PTS, VCS
  • area: non-free
  • in suites: bullseye
  • size: 5,624 kB
  • sloc: ansic: 9,948; python: 2,018; perl: 1,566; makefile: 132; sh: 27
file content (435 lines) | stat: -rw-r--r-- 15,991 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/* This is an example program that makes use of the C Clustering Library. */

/* ========================================================================= */

#include <stdio.h>
#include <stdlib.h>  /* The standard C libraries */

#include "cluster.h" /* The C Clustering Library */

/* ========================================================================= */

void show_data(int nrows, int ncols, double** data, int** mask)
/* Print the data matrix */
{ int i, j;
  printf("============== The gene expression data matrix ================\n");
  for (j = 0; j < ncols; j++) printf("\tCol %d", j);
  printf ("\n");
  for (i = 0; i < nrows; i++)
  { printf("Row %d", i);
    for (j = 0; j < ncols; j++)
    { if (mask[i][j]) printf("\t%5.2g",data[i][j]);
      else printf("\t"); /* mask[i][j]==0, so this data point is missing */
    }
    printf("\n");
  }
  printf("\n");
  return;
}

/* ========================================================================= */

void example_mean_median(int nrows, int ncols, double** data, int** mask)
{ int i, j;
  double* temp = malloc(ncols*sizeof(double));
  printf("============== Calculating the mean and median ================\n");
  for (i = 0; i < nrows; i++)
  { double meanvalue;
    double medianvalue;
    int ndata = 0;
    for (j = 0; j < ncols; j++)
    { if (mask[i][j])
      { temp[ndata] = data[i][j];
        ndata++;
      }
    }
    meanvalue = mean(ndata, temp);
    medianvalue = median(ndata, temp);
    printf("row %2d:\t", i);
    printf("mean = %7.3f\t", meanvalue);
    printf("median = %7.3f\n", medianvalue);
    /* Note that the median routine changes the order of the elements in
     * the array temp. */
  }
  printf("\n");
  free(temp);
}

/* ========================================================================= */

double** example_distance_gene(int nrows, int ncols, double** data, int** mask)
/* Calculate the distance matrix between genes using the Euclidean distance. */
{ int i, j;
  double* weight = malloc(ncols*sizeof(double));
  /* Set up the ragged array */
  double** matrix = malloc(nrows*sizeof(double*));
  if (matrix) {
    matrix[0] = NULL;
    for (i = 1; i < nrows; i++)
    { matrix[i] = malloc(i*sizeof(double));
      if (matrix[i]==NULL) /* Not enough memory available */
      { while (--i >= 0) free(matrix[i]);
        free(matrix);
        matrix = NULL;
        break;
      }
    }
  }
  if (!matrix) {
    free(weight);
    printf("Insufficient memory to store the distance matrix\n");
    return NULL;
  }
  printf("============ Euclidean distance matrix between genes ============\n");
  for (i = 0; i < ncols; i++) weight[i] = 1.0;
  distancematrix(nrows, ncols, data, mask, weight, 'e', 0, matrix);
  printf("   Gene:");
  for(i=0; i<nrows-1; i++) printf("%6d", i);
  printf("\n");
  for(i=0; i<nrows; i++)
  { printf("Gene %2d:",i);
    for(j=0; j<i; j++) printf(" %5.2f", matrix[i][j]);
    printf("\n");
  }
  printf("\n");
  free(weight);
  return matrix;
}

/* ========================================================================= */

void example_distance_array(int nrows, int ncols, double** data, int** mask)
/* Calculate the distance matrix between microarrays using the Spearman rank
 * correlation. */
{ int i, j;
  double* weight = malloc(nrows*sizeof(double));
  /* Set up the ragged array */
  double** matrix = malloc(ncols*sizeof(double*));
  printf("========== Spearman distance matrix between microarrays =========\n");
  if(matrix==NULL) return; /* Not enough memory available */
  matrix[0] = NULL;
  /* The zeroth row has zero columns. We allocate it anyway for convenience.*/
  for (i = 1; i < ncols; i++)
  { matrix[i] = malloc(i*sizeof(double));
    if (matrix[i]==NULL) break; /* Not enough memory available */
  }
  if (i < ncols) /* break condition encountered */
  { ncols = i;
    for (i = 1; i < ncols; i++) free(matrix[i]);
    printf("Insufficient memory to store the distance matrix\n");
    free(weight);
    return;
  }
  for (i = 0; i < ncols; i++) weight[i] = 1.0;
  distancematrix(nrows, ncols, data, mask, weight, 's', 1, matrix);
  printf("   Microarray:");
  for(i=0; i<ncols-1; i++) printf("%9d", i);
  printf("\n");
  for(i=0; i<ncols; ++i)
  { printf("Microarray %2d: ",i);
    for(j=0; j<i; ++j) printf(" %f", matrix[i][j]);
    printf("\n");
  }
  printf("\n");
  free(weight);
  for(i = 1; i < ncols; i++) free(matrix[i]);
  free(matrix);
}

/* ========================================================================= */

void example_hierarchical(int nrows, int ncols, double** data, int** mask,
			  double** distmatrix)
/* Perform hierarchical clustering on genes */
{ int i;
  int ok;
  const int nnodes = nrows-1;
  double* weight = malloc(ncols*sizeof(double));
  int* clusterid;
  Node* tree;
  for (i = 0; i < ncols; i++) weight[i] = 1.0;
  printf("\n");
  printf("================ Pairwise single linkage clustering ============\n");
  /* Since we have the distance matrix here, we may as well use it. */
  tree = treecluster(nrows, ncols, 0, 0, 0, 0, 'e', 's', distmatrix);
  /* The distance matrix was modified by treecluster, so we cannot use it any
   * more. But we still need to deallocate it here.
   * The first row of distmatrix is a single null pointer; no need to free it.
   */
  for (i = 1; i < nrows; i++) free(distmatrix[i]);
  free(distmatrix);
  if (!tree)
  { /* Indication that the treecluster routine failed */
    printf ("treecluster routine failed due to insufficient memory\n");
    free(weight);
    return;
  }
  printf("Node     Item 1   Item 2    Distance\n");
  for(i=0; i<nnodes; i++)
    printf("%3d:%9d%9d      %g\n",
           -i-1, tree[i].left, tree[i].right, tree[i].distance);
  printf("\n");
  free(tree);
  printf("================ Pairwise maximum linkage clustering ============\n");
  tree = treecluster(nrows, ncols, data, mask, weight, 0, 'e', 'm', 0);
  /* Here, we let treecluster calculate the distance matrix for us. In that
   * case, the treecluster routine may fail due to insufficient memory to store
   * the distance matrix. For the small data sets in this example, that is
   * unlikely to occur though. Let's check for it anyway:
   */
  if (!tree)
  { /* Indication that the treecluster routine failed */
    printf ("treecluster routine failed due to insufficient memory\n");
    free(weight);
    return;
  }
  printf("Node     Item 1   Item 2    Distance\n");
  for(i=0; i<nnodes; i++)
    printf("%3d:%9d%9d      %g\n",
           -i-1, tree[i].left, tree[i].right, tree[i].distance);
  printf("\n");
  free(tree);
  printf("================ Pairwise average linkage clustering ============\n");
  tree = treecluster(nrows, ncols, data, mask, weight, 0, 'e', 'a', 0); 
  if (!tree)
  { /* Indication that the treecluster routine failed */
    printf ("treecluster routine failed due to insufficient memory\n");
    free(weight);
    return;
  }
  printf("Node     Item 1   Item 2    Distance\n");
  for(i=0; i<nnodes; i++)
    printf("%3d:%9d%9d      %g\n",
           -i-1, tree[i].left, tree[i].right, tree[i].distance);
  printf("\n");
  free(tree);
  printf("================ Pairwise centroid linkage clustering ===========\n");
  tree = treecluster(nrows, ncols, data, mask, weight, 0, 'e', 'c', 0); 
  if (!tree)
  { /* Indication that the treecluster routine failed */
    printf ("treecluster routine failed due to insufficient memory\n");
    free(weight);
    return;
  }
  printf("Node     Item 1   Item 2    Distance\n");
  for(i=0; i<nnodes; i++)
    printf("%3d:%9d%9d      %g\n",
           -i-1, tree[i].left, tree[i].right, tree[i].distance);
  printf("\n");
  printf("=============== Cutting a hierarchical clustering tree ==========\n");
  clusterid = malloc(nrows*sizeof(int));
  ok = cuttree(nrows, tree, 3, clusterid);
  if (ok) {
    for(i=0; i<nrows; i++) printf("Gene %2d: cluster %2d\n", i, clusterid[i]);
    printf("\n");
  }
  else printf ("cuttree routine failed due to insufficient memory\n");
  free(tree);
  free(clusterid);
  free(weight);
  return;
}

/* ========================================================================= */

void example_kmeans(int nrows, int ncols, double** data, int** mask)
/* Perform k-means clustering on genes */
{ int i, j;
  const int nclusters = 3;
  const int transpose = 0;
  const char dist = 'e';
  const char method = 'a';
  int npass = 1;
  int ifound = 0;
  double error;
  double distance;
  int** index;
  int* count;
  double* weight = malloc(ncols*sizeof(double));
  int* clusterid = malloc(nrows*sizeof(int));
  double** cdata = malloc(nclusters*sizeof(double*));
  int** cmask = malloc(nclusters*sizeof(int*));
  for (i = 0; i < nclusters; i++)
  { cdata[i] = malloc(ncols*sizeof(double));
    cmask[i] = malloc(ncols*sizeof(int));
  }
  for (i = 0; i < ncols; i++) weight[i] = 1.0;
  printf("======================== k-means clustering ====================\n");
  printf("\n");
  printf("----- one pass of the EM algorithm (results may change)\n");
  kcluster(nclusters,nrows,ncols,data,mask,weight,transpose,npass,method,dist, 
    clusterid, &error, &ifound);
  printf ("Solution found %d times; within-cluster sum of distances is %f\n",
    ifound, error);
  printf ("Cluster assignments:\n");
  for (i = 0; i < nrows; i++)
    printf ("Gene %d: cluster %d\n", i, clusterid[i]);

  printf ("\n");
  printf("----- 1000 passes of the EM algorithm (result should not change)\n");
  npass = 1000;
  kcluster(nclusters,nrows,ncols,data,mask,weight,transpose,npass,method,dist, 
    clusterid, &error, &ifound);
  printf ("Solution found %d times; ", ifound);
  printf ("within-cluster sum of distances is %f\n", error);
  printf ("Cluster assignments:\n");
  for (i = 0; i < nrows; i++)
    printf ("Gene %d: cluster %d\n", i, clusterid[i]);
  printf ("\n");
  printf ("------- Distance between clusters:\n");
  index = malloc(nclusters*sizeof(int*));
  count = malloc(nclusters*sizeof(int));
  for (i = 0; i < nclusters; i++) count[i] = 0;
  for (i = 0; i < nrows; i++) count[clusterid[i]]++;
  for (i = 0; i < nclusters; i++) index[i] = malloc(count[i]*sizeof(int));
  for (i = 0; i < nclusters; i++) count[i] = 0;
  for (i = 0; i < nrows; i++)
  { int id = clusterid[i];
    index[id][count[id]] = i;
    count[id]++;
  }  
  distance =
    clusterdistance(nrows, ncols, data, mask, weight, count[0], count[1],
		    index[0], index[1], 'e', 'a', 0); 
  printf("Distance between 0 and 1: %7.3f\n", distance);
  distance =
    clusterdistance(nrows, ncols, data, mask, weight, count[0], count[2],
		    index[0], index[2], 'e', 'a', 0); 
  printf("Distance between 0 and 2: %7.3f\n", distance);
  distance =
    clusterdistance(nrows, ncols, data, mask, weight, count[1], count[2],
		    index[1], index[2], 'e', 'a', 0); 
  printf("Distance between 1 and 2: %7.3f\n", distance);

  printf ("\n");
  printf ("------- Cluster centroids:\n");
  getclustercentroids(nclusters, nrows, ncols, data, mask, clusterid,
                      cdata, cmask, 0, 'a');
  printf("   Microarray:");
  for(i=0; i<ncols; i++) printf("\t%7d", i);
  printf("\n");
  for (i = 0; i < nclusters; i++)
  { printf("Cluster %2d:", i);
    for (j = 0; j < ncols; j++) printf("\t%7.3f", cdata[i][j]);
    printf("\n");
  }
  printf("\n");
  for (i = 0; i < nclusters; i++) free(index[i]);
  free(index);
  free(count);

  for (i = 0; i < nclusters; i++)
  { free(cdata[i]);
    free(cmask[i]);
  }
  free(cdata);
  free(cmask);
  free(clusterid);
  free(weight);
  return;
}

/* ========================================================================= */

void example_som(int nrows, int ncols, double** data, int** mask)
/* Calculate a self-organizing map, applied to genes */
{ int i, j, k;
  const int nxgrid = 2;
  const int nygrid = 2; /* Rectangular grid 2x2 */
  const double inittau = 0.02; /* Initial value of the neighborhood function */
  const int niter = 1000; /* Number of iterations */
  const char dist = 'c'; /* Pearson correlation */
  double* weight = malloc(ncols*sizeof(double));
  int (*clusterid)[2] = malloc(nrows*sizeof(int[2])); 
  double*** celldata = malloc(nxgrid*sizeof(double**));
  for (i = 0; i < nxgrid; i++)
  { celldata[i] = malloc(nygrid*sizeof(double*));
    for (j = 0; j < nygrid; j++)
      celldata[i][j] = malloc(ncols*sizeof(double));
  }
  for (i = 0; i < ncols; i++) weight[i] = 1.0;
  printf("======================= Self-Organizing Map ===================\n");
  printf("(results may change on every run)\n");
  somcluster(nrows, ncols, data, mask, weight, 0, nxgrid, nygrid, inittau, 
	     niter, dist, celldata, clusterid);
  printf("Cluster assignments:\n");
  for(i=0; i<nrows; i++)
    printf("Gene %2d: %2d %2d\n",i,clusterid[i][0],clusterid[i][1]);
  printf("Cluster centroids:\n");
  printf("\t");
  for (j = 0; j < ncols; j++) printf("\tCol %d", j);
  printf ("\n");
  for (i = 0; i < nxgrid; i++)
  { for (j = 0; j < nygrid; j++)
    { printf("Cell (%d,%d):", i, j);
      for (k = 0; k < ncols; k++) printf("\t%5.2g",celldata[i][j][k]);
      printf("\n");
    }
  }
  printf("\n");
  /* Deallocate memory */
  for (i = 0; i < nxgrid; i++)
  { for (j = 0; j < nygrid; j++) free(celldata[i][j]);
    free(celldata[i]);
  }
  free(celldata);
  free(weight);
  free(clusterid);
  return;
}

/* ========================================================================= */

int main(void)
{ int i;
  const int nrows = 13;
  const int ncols = 4;
  double** data = malloc(nrows*sizeof(double*) );
  int** mask = malloc(nrows*sizeof(int*));
  double** distmatrix;

  for (i = 0; i < nrows; i++)
  { data[i] = malloc(ncols*sizeof(double));
    mask[i] = malloc(ncols*sizeof(int));
  }

  /* Test data, roughly distributed in 0-5, 6-8, 9-12 */
  data[ 0][ 0]=0.1; data[ 0][ 1]=0.0; data[ 0][ 2]=9.6; data[ 0][ 3] = 5.6;
  data[ 1][ 0]=1.4; data[ 1][ 1]=1.3; data[ 1][ 2]=0.0; data[ 1][ 3] = 3.8;
  data[ 2][ 0]=1.2; data[ 2][ 1]=2.5; data[ 2][ 2]=0.0; data[ 2][ 3] = 4.8;
  data[ 3][ 0]=2.3; data[ 3][ 1]=1.5; data[ 3][ 2]=9.2; data[ 3][ 3] = 4.3;
  data[ 4][ 0]=1.7; data[ 4][ 1]=0.7; data[ 4][ 2]=9.6; data[ 4][ 3] = 3.4;
  data[ 5][ 0]=0.0; data[ 5][ 1]=3.9; data[ 5][ 2]=9.8; data[ 5][ 3] = 5.1;
  data[ 6][ 0]=6.7; data[ 6][ 1]=3.9; data[ 6][ 2]=5.5; data[ 6][ 3] = 4.8;
  data[ 7][ 0]=0.0; data[ 7][ 1]=6.3; data[ 7][ 2]=5.7; data[ 7][ 3] = 4.3;
  data[ 8][ 0]=5.7; data[ 8][ 1]=6.9; data[ 8][ 2]=5.6; data[ 8][ 3] = 4.3;
  data[ 9][ 0]=0.0; data[ 9][ 1]=2.2; data[ 9][ 2]=5.4; data[ 9][ 3] = 0.0;
  data[10][ 0]=3.8; data[10][ 1]=3.5; data[10][ 2]=5.5; data[10][ 3] = 9.6;
  data[11][ 0]=0.0; data[11][ 1]=2.3; data[11][ 2]=3.6; data[11][ 3] = 8.5;
  data[12][ 0]=4.1; data[12][ 1]=4.5; data[12][ 2]=5.8; data[12][ 3] = 7.6;

  /* Some data are actually missing */
  mask[ 0][ 0]=1; mask[ 0][ 1]=1; mask[ 0][ 2]=1; mask[ 0][ 3] = 1;
  mask[ 1][ 0]=1; mask[ 1][ 1]=1; mask[ 1][ 2]=0; mask[ 1][ 3] = 1;
  mask[ 2][ 0]=1; mask[ 2][ 1]=1; mask[ 2][ 2]=0; mask[ 2][ 3] = 1;
  mask[ 3][ 0]=1; mask[ 3][ 1]=1; mask[ 3][ 2]=1; mask[ 3][ 3] = 1;
  mask[ 4][ 0]=1; mask[ 4][ 1]=1; mask[ 4][ 2]=1; mask[ 4][ 3] = 1;
  mask[ 5][ 0]=0; mask[ 5][ 1]=1; mask[ 5][ 2]=1; mask[ 5][ 3] = 1;
  mask[ 6][ 0]=1; mask[ 6][ 1]=1; mask[ 6][ 2]=1; mask[ 6][ 3] = 1;
  mask[ 7][ 0]=0; mask[ 7][ 1]=1; mask[ 7][ 2]=1; mask[ 7][ 3] = 1;
  mask[ 8][ 0]=1; mask[ 8][ 1]=1; mask[ 8][ 2]=1; mask[ 8][ 3] = 1;
  mask[ 9][ 0]=1; mask[ 9][ 1]=1; mask[ 9][ 2]=1; mask[ 9][ 3] = 0;
  mask[10][ 0]=1; mask[10][ 1]=1; mask[10][ 2]=1; mask[10][ 3] = 1;
  mask[11][ 0]=0; mask[11][ 1]=1; mask[11][ 2]=1; mask[11][ 3] = 1;
  mask[12][ 0]=1; mask[12][ 1]=1; mask[12][ 2]=1; mask[12][ 3] = 1;

  show_data(nrows, ncols, data, mask);
  example_mean_median(nrows, ncols, data, mask);
  distmatrix = example_distance_gene(nrows, ncols, data, mask);
  if (distmatrix) example_hierarchical(nrows, ncols, data, mask, distmatrix);
  example_distance_array(nrows, ncols, data, mask);
  example_kmeans(nrows, ncols, data, mask);
  example_som(nrows, ncols, data, mask);

  return 0;
}