1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.6, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Distance (Cluster 3.0 for Windows, Mac OS X, Linux, Unix)</title>
<meta name="description" content="Distance (Cluster 3.0 for Windows, Mac OS X, Linux, Unix)">
<meta name="keywords" content="Distance (Cluster 3.0 for Windows, Mac OS X, Linux, Unix)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Contents.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="index.html#Top" rel="up" title="Top">
<link href="Cluster.html#Cluster" rel="next" title="Cluster">
<link href="Data.html#Data" rel="prev" title="Data">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<span id="Distance"></span><div class="header">
<p>
Next: <a href="Cluster.html#Cluster" accesskey="n" rel="next">Cluster</a>, Previous: <a href="Data.html#Data" accesskey="p" rel="prev">Data</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> [<a href="Contents.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>]</p>
</div>
<hr>
<span id="Distance_002fSimilarity-measures"></span><h2 class="chapter">3 Distance/Similarity measures</h2>
<p>The first choice that must be made is how similarity (or alternatively, distance) between gene expression data is to be defined. There are many
ways to compute how similar two series of numbers are. Cluster provides eight
options.
</p>
<span id="Distance-measures-based-on-the-Pearson-correlation"></span><h3 class="section">3.1 Distance measures based on the Pearson correlation</h3>
<p>The most commonly used similarity metrics are based on Pearson
correlation.
The Pearson correlation coefficient between any two series of numbers
<i>x</i> = {<i>x</i><SUB>1</SUB>, <i>x</i><SUB>2</SUB>, ..., <i>x<SUB>n</SUB></i>}
and
<i>y</i> = {<i>y</i><SUB>1</SUB>, <i>y</i><SUB>2</SUB>, ..., <i>y<SUB>n</SUB></i>}
is defined as
<DIV ALIGN=center>
<table cellpadding=0 cellspacing=0>
<tr>
<td nowrap><i>r</i> = </td>
<td nowrap>
<table cellspacing=0 cellpadding=0>
<tr><td nowrap align=CENTER>1</td></tr>
<tr><td bgcolor=BLACK><table border=0 width="100%" cellspacing=0 cellpadding=1><tr><td></td></tr></table></td></tr>
<tr><td nowrap align=CENTER><i>n</i></td></tr>
</table>
</td>
<td></td>
<td align="center"><i>n</i><br>
<big><big><big>∑</big></big></big><small><br>
<i>i</i><small> </small>=<small> </small>1</small></td>
<td><big><big><big><big><big>(</big></big></big></big></big></td>
<td>
<table cellspacing=0 cellpadding=0>
<tr><td nowrap align=center><i>x<sub>i</sub></i> - <span style="text-decoration: overline;"><i>x</i> </span></td></tr>
<tr><td bgcolor=BLACK><table border=0 width="100%" cellspacing=0 cellpadding=1><tr><td></td></tr></table></td></tr>
<tr><td nowrap align=CENTER><i>σ<sub>x</sub></i></td></tr>
</table>
</td>
<td><big><big><big><big><big>)</big></big></big></big></big></td>
<td><big><big><big><big><big>(</big></big></big></big></big></td>
<td>
<table cellspacing=0 cellpadding=0>
<tr><td nowrap align=center><i>y<sub>i</sub></i> - <span style="text-decoration: overline;"><i>y</i> </span></td></tr>
<tr><td bgcolor=BLACK><table border=0 width="100%" cellspacing=0 cellpadding=1><tr><td></td></tr></table></td></tr>
<tr><td nowrap align=CENTER><i>σ<sub>y</sub></i></td></tr>
</table>
</td>
<td><big><big><big><big><big>)</big></big></big></big></big></td>
</tr>
</table>
</div>
</p>
<p>where
<span style="text-decoration: overline;"><i>x</i></span>
is the average of values in
<i>x</i>
and
σ<SUB><i>x</i></SUB>
is the standard deviation of these values.
</p>
<p>There are many ways of conceptualizing the correlation coefficient. If you were to make
a scatterplot of the values of
<i>x</i>
against
<i>y</i>
(pairing
<i>x</i><SUB>1</SUB>
with
<i>y</i><SUB>1</SUB>, <i>x</i><SUB>2</SUB>
with
<i>y</i><SUB>2</SUB>,
etc), then
<i>r</i>
reports how well you can fit a line to the values.
</p>
<p>The simplest way to think about the correlation coefficient is to plot
<i>x</i>
and
<i>y</i>
as curves, with
<i>r</i>
telling you how similar the shapes of the two curves are.
The Pearson correlation coefficient is always between -1 and 1, with 1 meaning that the two
series are identical, 0 meaning they are completely uncorrelated, and -1 meaning they are
perfect opposites. The correlation coefficient is invariant under linear transformation of
the data. That is, if you multiply all the values in
<i>y</i>
by 2, or add 7 to all the values in
<i>y</i>,
the correlation between
<i>x</i>
and
<i>y</i>
will be unchanged. Thus, two curves that have identical shape, but different
magnitude, will still have a correlation of 1.
</p>
<p>Cluster actually uses four different flavors of the Pearson correlation. The textbook
Pearson correlation coefficient, given by the formula above, is used if you select
Correlation (centered) in the Similarity Metric dialog box.
Correlation (uncentered) uses the following modified equations:<br>
<DIV ALIGN=center>
<table cellpadding=0 cellspacing=0>
<tr>
<td nowrap><i>r</i> = </td>
<td nowrap>
<table cellspacing=0 cellpadding=0>
<tr><td nowrap align=CENTER>1</td></tr>
<tr><td bgcolor=BLACK><table border=0 width="100%" cellspacing=0 cellpadding=1><tr><td></td></tr></table></td></tr>
<tr><td nowrap align=CENTER><i>n</i></td></tr>
</table>
</td>
<td></td>
<td align="center"><i>n</i><br>
<big><big><big>∑</big></big></big><small><br>
<i>i</i><small> </small>=<small> </small>1</small></td>
<td><big><big><big><big><big>(</big></big></big></big></big></td>
<td>
<table cellspacing=0 cellpadding=0>
<tr><td nowrap align=center><i>x<sub>i</sub></i></td></tr>
<tr><td bgcolor=BLACK><table border=0 width="100%" cellspacing=0 cellpadding=1><tr><td></td></tr></table></td></tr>
<tr><td nowrap align=CENTER><i>σ<sub>x</sub></i><sup>(0)</sup></td></tr>
</table>
</td>
<td><big><big><big><big><big>)</big></big></big></big></big></td>
<td><big><big><big><big><big>(</big></big></big></big></big></td>
<td>
<table cellspacing=0 cellpadding=0>
<tr><td nowrap align=center><i>y<sub>i</sub></i></td></tr>
<tr><td bgcolor=BLACK><table border=0 width="100%" cellspacing=0 cellpadding=1><tr><td></td></tr></table></td></tr>
<tr><td nowrap align=CENTER><i>σ<sub>y</sub></i><sup>(0)</sup></td></tr>
</table>
</td>
<td><big><big><big><big><big>)</big></big></big></big></big></td>
</tr>
</table>
</div>
<br>
in which<br>
<DIV ALIGN=center>
<table cellpadding=0 cellspacing=0>
<tr>
<td nowrap><i>σ<sub>x</sub></i><sup>(0)</sup> = </td>
<td><big><big><big>√ </big></big></big></td>
<td><big><big><big><big><big>(</big></big></big></big></big></td>
<td nowrap>
<table cellspacing=0 cellpadding=0>
<tr><td nowrap align=CENTER>1</td></tr>
<tr><td bgcolor=BLACK><table border=0 width="100%" cellspacing=0 cellpadding=1><tr><td></td></tr></table></td></tr>
<tr><td nowrap align=CENTER><i>n</i></td></tr>
</table>
</td>
<td></td>
<td align="center"><i>n</i><br>
<big><big><big>∑</big></big></big><small><br>
<i>i</i><small> </small>=<small> </small>1</small></td>
<td><i>x<sub>i</sub></i><sup>2</sup></td>
<td><big><big><big><big><big>)</big></big></big></big></big></td>
</tr>
</table>
</div>
<DIV ALIGN=center>
<table cellpadding=0 cellspacing=0>
<tr>
<td nowrap><i>σ<sub>y</sub></i><sup>(0)</sup> = </td>
<td><big><big><big>√ </big></big></big></td>
<td><big><big><big><big><big>(</big></big></big></big></big></td>
<td nowrap>
<table cellspacing=0 cellpadding=0>
<tr><td nowrap align=CENTER>1</td></tr>
<tr><td bgcolor=BLACK><table border=0 width="100%" cellspacing=0 cellpadding=1><tr><td></td></tr></table></td></tr>
<tr><td nowrap align=CENTER><i>n</i></td></tr>
</table>
</td>
<td></td>
<td align="center"><i>n</i><br>
<big><big><big>∑</big></big></big><small><br>
<i>i</i><small> </small>=<small> </small>1</small></td>
<td><i>y<sub>i</sub></i><sup>2</sup></td>
<td><big><big><big><big><big>)</big></big></big></big></big></td>
</tr>
</table>
</div>
<br>
This is basically the same function, except that it assumes the mean is 0, even when it is not. The difference is that, if you have two vectors
<i>x</i>
and
<i>y</i>
with identical shape, but which are offset relative to each other by a fixed value, they will have a standard Pearson correlation (centered correlation) of 1 but will not have an uncentered correlation of 1.
The uncentered correlation is equal to the cosine of the angle of two
<i>n</i>-dimensional
vectors
<i>x</i>
and
<i>y</i>,
each representing a vector in
<i>n</i>-dimensional
space that passes through the origin.
Cluster provides two similarity metrics that are the absolute value of these two correlation functions, which consider two items to be similar if they have opposite expression patterns; the standard correlation coefficients consider opposite genes to be very distant.
</p>
<span id="Non_002dparametric-distance-measures"></span><h3 class="section">3.2 Non-parametric distance measures</h3>
<p>The Spearman rank correlation and Kendall’s
<i>τ</i>
are two additional metrics, which are non-parametric versions of the Pearson correlation coefficient. These methods are more robust against outliers.
</p>
<p>The Spearman rank correlation calculates the correlation between the ranks of the data values in the two vectors. For example, if we have two data vectors<br>
<DIV align=center>
<i>x</i> = {2.3, 6.7, 4.5, 20.8};<br>
<i>y</i> = {2.1, 5.9, 4.4, 4.2},<br>
</DIV>
then we first replace them by their ranks:<br>
<DIV align=center>
<i>x</i> = {1, 3, 2, 4};<br>
<i>y</i> = {1, 4, 3, 2}.<br>
</DIV>
Now we calculate the correlation coefficient in their usual manner from these data vectors, resulting in<br>
<DIV align=center>
<i>r</i><sub>Spearman</sub> = 0.4.
</DIV>
In comparison, the regular Pearson correlation between these data is
<i>r</i> = 0.2344.
By replacing the data values by their ranks, we reduced the effect of the outlier 20.8 on the value of the correlation coefficient. The Spearman rank correlation can be used as a test statistic for independence between
<i>x</i> and <i>y</i>.
For more information, see Conover (1980).
</p>
<p>Kendall’s
<i>τ</i>
goes a step further by using only the relative ordering of
<i>x</i> and <i>y</i>
to calculate the correlation (Snedecor & Cochran). To calculate Kendall’s
<i>τ</i>,
consider all pairs of data points
(<i>x<sub>i</sub></i>, <i>y<sub>i</sub></i>) and (<i>x<sub>j</sub></i>, <i>y<sub>j</sub></i>).
We call a pair concordant if
</p><ul>
<li> <i>x<sub>i</sub></i> < <i>x<sub>j</sub></i> and <i>y<sub>i</sub></i> < <i>y<sub>j</sub></i>; or
</li><li> <i>x<sub>i</sub></i> > <i>x<sub>j</sub></i> and <i>y<sub>i</sub></i> > <i>y<sub>j</sub></i>,
</li></ul>
<p>and discordant if
</p><ul>
<li> <i>x<sub>i</sub></i> < <i>x<sub>j</sub></i> and <i>y<sub>i</sub></i> > <i>y<sub>j</sub></i>; or
</li><li> <i>x<sub>i</sub></i> > <i>x<sub>j</sub></i> and <i>y<sub>i</sub></i> < <i>y<sub>j</sub></i>.
</li></ul>
<p>We can represent this by a table:
<DIV ALIGN=center>
<table cellpadding=10 cellspacing=0 border=1>
<tr align=center>
<td>-</td>
<td>(2.3, 2.1)</td>
<td>(6.7, 5.9)</td>
<td>(4.5, 4.4)</td>
<td>(20.8, 4.2)</td>
</tr>
<tr align=center>
<td>(2.3, 2.1)</td>
<td>-</td>
<td><<</td>
<td><<</td>
<td><<</td>
</tr>
<tr align=center>
<td>(6.7, 5.9)</td>
<td>>></td>
<td>-</td>
<td>>></td>
<td><></td>
</tr>
<tr align=center>
<td>(4.5, 4.4)</td>
<td>>></td>
<td><<</td>
<td>-</td>
<td><></td>
</tr>
<tr align=center>
<td>(20.8, 4.2)</td>
<td>>></td>
<td>><</td>
<td>><</td>
<td>-</td>
</tr>
</table>
</DIV>
From this table, we find that there are four concordant pairs and two discordant pairs:
<DIV align=center>
<i>n</i><sub>c</sub> = 4;<br>
<i>n</i><sub>d</sub> = 2.<br>
</DIV>
Kendall’s
<i>τ</i>
is calculated as<br>
<DIV ALIGN=center>
<table cellspacing=0 cellpadding=0>
<tr>
<td><i>τ</i> = </td>
<td> </td>
<td>
<table cellspacing=0 cellpadding=0>
<tr>
<td nowrap align=CENTER>
<i>n</i><sub>c</sub>-<i>n</i><sub>d</sub>
</td>
</tr>
<tr>
<td bgcolor=BLACK><table border=0 width="100%" cellspacing=0 cellpadding=1><tr><td></td></tr></table></td>
</tr>
<tr>
<td nowrap align=CENTER>
<i>n</i>(<i>n</i>-1)/2
</td>
</tr>
</table>
</td>
<td>,</td>
</tr>
</table>
</DIV>
which in this case evaluates as 0.33. In the C Clustering Library, the calculation of Kendall’s
<i>τ</i>
is corrected for the possibility that two ranks are equal.
As in case of the Spearman rank correlation, we may use Kendall’s
<i>τ</i>
to test for independence between
<i>x</i> and <i>y</i>.
</p>
<span id="Distance-measures-related-to-the-Euclidean-distance"></span><h3 class="section">3.3 Distance measures related to the Euclidean distance</h3>
<span id="Euclidean-distance"></span><h4 class="subsection">3.3.1 Euclidean distance</h4>
<p>A newly added distance function is the Euclidean distance, which is defined as
<DIV ALIGN=center>
<table cellpadding=0 cellspacing=0>
<tr>
<td nowrap><i>d</i> = </td>
<td nowrap>
<table cellspacing=0 cellpadding=0>
<tr><td nowrap align=CENTER>1</td></tr>
<tr><td bgcolor=BLACK><table border=0 width="100%" cellspacing=0 cellpadding=1><tr><td></td></tr></table></td></tr>
<tr><td nowrap align=CENTER><i>n</i></td></tr>
</table>
</td>
<td></td>
<td align="center"><i>n</i><br>
<big><big><big>∑</big></big></big><small><br>
<i>i</i><small> </small>=<small> </small>1</small>
</td>
<td><big>(</big></td>
<td><i>x<sub>i</sub></i> - <i>y<sub>i</sub></i></td>
<td><big>)</big><sup>2</sup></td>
</tr>
</table>
</div>
The Euclidean distance takes the difference between two gene expression levels directly. It should therefore only be used for expression data that are suitably normalized, for example by converting the measured gene expression levels to log-ratios. In the sum, we only include terms for which both
<i>x<sub>i</sub></i> and <i>y<sub>i</sub></i>
are present, and divide by
<i>n</i>
accordingly.
</p>
<p>Unlike the correlation-based distance measures, the Euclidean distance takes the magnitude of changes in the gene expression levels into account. An example of the Euclidean distance applied to
<i>k</i>-means
clustering can be found in De Hoon, Imoto, and Miyano (2002).
</p>
<span id="City_002dblock-distance"></span><h4 class="subsection">3.3.2 City-block distance</h4>
<p>The city-block distance, alternatively known as the Manhattan distance, is related to the Euclidean distance. Whereas the Euclidean distance corresponds to the length of the shortest path between two points, the city-block distance is the sum of distances along each dimension:
<DIV ALIGN=center>
<table cellpadding=0 cellspacing=0>
<tr>
<td nowrap><i>d</i> = </td>
<td nowrap>
<table cellspacing=0 cellpadding=0>
<tr><td nowrap align=CENTER>1</td></tr>
<tr><td bgcolor=BLACK><table border=0 width="100%" cellspacing=0 cellpadding=1><tr><td></td></tr></table></td></tr>
<tr><td nowrap align=CENTER><i>n</i></td></tr>
</table>
</td>
<td></td>
<td align="center"><i>n</i><br>
<big><big><big>∑</big></big></big><small><br>
<i>i</i><small> </small>=<small> </small>1</small></td>
<td><big>|</big></td>
<td><i>x<sub>i</sub></i> - <i>y<sub>i</sub></i></td>
<td><big>|</big></td>
</tr>
</table></div>
This is equal to the distance you would have to walk between two points in a city, where you have to walk along city blocks. The city-block distance is a metric, as it satisfies the triangle inequality. Again we only include terms for which both
<i>x<sub>i</sub></i> and <i>y<sub>i</sub></i>
are present, and divide by
<i>n</i>
accordingly.
</p>
<p>As for the Euclidean distance, the expression data are subtracted directly from each other, and we should therefore make sure that they are properly normalized.
</p>
<span id="Missing-values"></span><h3 class="section">3.4 Missing values</h3>
<p>When either
<i>x</i>
or
<i>y</i>
has missing values, only observations present for both
<i>x</i>
and
<i>y</i>
are used in computing similarities.
</p>
<span id="Calculating-the-distance-matrix"></span><h3 class="section">3.5 Calculating the distance matrix</h3>
<p>With any specified metric, the first step in the hierarchical clustering routines described below is to compute the
distance (the opposite of similarity; for all correlation metrics distance = 1.0 - correlation)
between all pairs of items to be clustered (e.g. the set of genes in the current dataset).
This can often be time consuming, and, except for pairwise single-linkage clustering,
memory intensive (the maximum amount of memory required is
4 x <i>N</i> x <i>N</i>
bytes, where
<i>N</i>
is the number of items being clustered). The algorithm for pairwise single-linkage hierarchical clustering is less memory-intensive (linear in
<i>N</i>).
</p>
<hr>
<div class="header">
<p>
Next: <a href="Cluster.html#Cluster" accesskey="n" rel="next">Cluster</a>, Previous: <a href="Data.html#Data" accesskey="p" rel="prev">Data</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> [<a href="Contents.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>]</p>
</div>
</body>
</html>
|