File: clutter-bezier.c

package info (click to toggle)
clutter-1.0 1.26.4%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,352 kB
  • sloc: ansic: 128,533; sh: 5,580; xml: 1,641; makefile: 1,613; ruby: 149; perl: 142; sed: 16
file content (424 lines) | stat: -rw-r--r-- 11,136 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/*
 * Clutter.
 *
 * An OpenGL based 'interactive canvas' library.
 *
 * Authored By Tomas Frydrych  <tf@openedhand.com>
 *
 * Copyright (C) 2007 OpenedHand
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library. If not, see <http://www.gnu.org/licenses/>.
 */

#include <glib.h>
#include <string.h>
#include "clutter-bezier.h"
#include "clutter-debug.h"

/*
 * We have some experimental code here to allow for constant velocity
 * movement of actors along the bezier path, this macro enables it.
 */
#undef CBZ_L2T_INTERPOLATION

/****************************************************************************
 * ClutterBezier -- represenation of a cubic bezier curve                   *
 * (private; a building block for the public bspline object)                *
 ****************************************************************************/

/*
 * The t parameter of the bezier is from interval <0,1>, so we can use
 * 14.18 format and special multiplication functions that preserve
 * more of the least significant bits but would overflow if the value
 * is > 1
 */
#define CBZ_T_Q 18
#define CBZ_T_ONE (1 << CBZ_T_Q)
#define CBZ_T_MUL(x,y) ((((x) >> 3) * ((y) >> 3)) >> 12)
#define CBZ_T_POW2(x) CBZ_T_MUL (x, x)
#define CBZ_T_POW3(x) CBZ_T_MUL (CBZ_T_POW2 (x), x)
#define CBZ_T_DIV(x,y) ((((x) << 9)/(y)) << 9)

/*
 * Constants for sampling of the bezier
 */
#define CBZ_T_SAMPLES 128
#define CBZ_T_STEP (CBZ_T_ONE / CBZ_T_SAMPLES)
#define CBZ_L_STEP (CBZ_T_ONE / CBZ_T_SAMPLES)

typedef gint32 _FixedT;

/*
 * This is a private type representing a single cubic bezier
 */
struct _ClutterBezier
{
  /*
   * bezier coefficients -- these are calculated using multiplication and
   * addition from integer input, so these are also integers
   */
  gint ax;
  gint bx;
  gint cx;
  gint dx;

  gint ay;
  gint by;
  gint cy;
  gint dy;
    
  /* length of the bezier */
  guint length;

#ifdef CBZ_L2T_INTERPOLATION
  /*
   * coefficients for the L -> t bezier; these are calculated from fixed
   * point input, and more specifically numbers that have been normalised
   * to fit <0,1>, so these are also fixed point, and we can used the
   * _FixedT type here.
   */
  _FixedT La;
  _FixedT Lb;
  _FixedT Lc;
  /*  _FixedT Ld; == 0 */
#endif
};

ClutterBezier *
_clutter_bezier_new (void)
{
  return g_slice_new0 (ClutterBezier);
}

void
_clutter_bezier_free (ClutterBezier * b)
{
  if (G_LIKELY (b))
    {
      g_slice_free (ClutterBezier, b);
    }
}

ClutterBezier *
_clutter_bezier_clone_and_move (const ClutterBezier *b, gint x, gint y)
{
  ClutterBezier * b2 = _clutter_bezier_new ();
  memcpy (b2, b, sizeof (ClutterBezier));

  b2->dx += x;
  b2->dy += y;

  return b2;
}

#ifdef CBZ_L2T_INTERPOLATION
/*
 * L is relative advance along the bezier curve from interval <0,1>
 */
static _FixedT
_clutter_bezier_L2t (const ClutterBezier *b, _FixedT L)
{
  _FixedT t = CBZ_T_MUL (b->La, CBZ_T_POW3(L))
    +  CBZ_T_MUL (b->Lb, CBZ_T_POW2(L))
    +  CBZ_T_MUL (b->Lc, L);
  
  if (t > CBZ_T_ONE)
    t = CBZ_T_ONE;
  else if (t < 0)
    t = 0;
  
  return t;
}
#endif

static gint
_clutter_bezier_t2x (const ClutterBezier * b, _FixedT t)
{
  /*
   * NB -- the int coefficients can be at most 8192 for the multiplication
   * to work in this fashion due to the limits of the 14.18 fixed.
   */
  return ((b->ax*CBZ_T_POW3(t) + b->bx*CBZ_T_POW2(t) + b->cx*t) >> CBZ_T_Q)
    + b->dx;
}

static gint
_clutter_bezier_t2y (const ClutterBezier * b, _FixedT t)
{
  /*
   * NB -- the int coefficients can be at most 8192 for the multiplication
   * to work in this fashion due to the limits of the 14.18 fixed.
   */
  return ((b->ay*CBZ_T_POW3(t) + b->by*CBZ_T_POW2(t) + b->cy*t) >> CBZ_T_Q)
    + b->dy;
}

/*
 * Advances along the bezier to relative length L and returns the coordinances
 * in knot
 */
void
_clutter_bezier_advance (const ClutterBezier *b, gint L, ClutterKnot * knot)
{
#ifdef CBZ_L2T_INTERPOLATION
  _FixedT t = clutter_bezier_L2t (b, L);
#else
  _FixedT t = L;
#endif
  
  knot->x = _clutter_bezier_t2x (b, t);
  knot->y = _clutter_bezier_t2y (b, t);
  
  CLUTTER_NOTE (MISC, "advancing to relative pt %f: t %f, {%d,%d}",
                (double) L / (double) CBZ_T_ONE,
                (double) t / (double) CBZ_T_ONE,
                knot->x, knot->y);
}

void
_clutter_bezier_init (ClutterBezier *b,
		     gint x_0, gint y_0,
		     gint x_1, gint y_1,
		     gint x_2, gint y_2,
		     gint x_3, gint y_3)
{
  _FixedT t;
  int i;
  int xp = x_0;
  int yp = y_0;
  _FixedT length [CBZ_T_SAMPLES + 1];

#ifdef CBZ_L2T_INTERPOLATION
  int j, k;
  _FixedT L;
  _FixedT t_equalized [CBZ_T_SAMPLES + 1];
#endif

#if 0
  g_debug ("Initializing bezier at {{%d,%d},{%d,%d},{%d,%d},{%d,%d}}",
           x0, y0, x1, y1, x2, y2, x3, y3);
#endif
  
  b->dx = x_0;
  b->dy = y_0;

  b->cx = 3 * (x_1 - x_0);
  b->cy = 3 * (y_1 - y_0);

  b->bx = 3 * (x_2 - x_1) - b->cx;
  b->by = 3 * (y_2 - y_1) - b->cy;

  b->ax = x_3 - 3 * x_2 + 3 * x_1 - x_0;
  b->ay = y_3 - 3 * y_2 + 3 * y_1 - y_0;

#if 0
  g_debug ("Cooeficients {{%d,%d},{%d,%d},{%d,%d},{%d,%d}}",
           b->ax, b->ay, b->bx, b->by, b->cx, b->cy, b->dx, b->dy);
#endif
  
  /*
   * Because of the way we do the multiplication in bezeir_t2x,y
   * these coefficients need to be at most 0x1fff; this should be the case,
   * I think, but have added this warning to catch any problems -- if it
   * triggers, we need to change those two functions a bit.
   */
  if (b->ax > 0x1fff || b->bx > 0x1fff || b->cx > 0x1fff)
    g_warning ("Calculated coefficents will result in multiplication "
               "overflow in clutter_bezier_t2x and clutter_bezier_t2y.");

  /*
   * Sample the bezier with CBZ_T_SAMPLES and calculate length at
   * each point.
   *
   * We are working with integers here, so we use the fast sqrti function.
   */
  length[0] = 0;
    
  for (t = CBZ_T_STEP, i = 1; i <= CBZ_T_SAMPLES; ++i, t += CBZ_T_STEP)
    {
      int x = _clutter_bezier_t2x (b, t);
      int y = _clutter_bezier_t2y (b, t);
	
      guint l = cogl_sqrti ((y - yp)*(y - yp) + (x - xp)*(x - xp));

      l += length[i-1];

      length[i] = l;

      xp = x;
      yp = y;
    }

  b->length = length[CBZ_T_SAMPLES];

#if 0
  g_debug ("length %d", b->length);
#endif
  
#ifdef CBZ_L2T_INTERPOLATION
  /*
   * Now normalize the length values, converting them into _FixedT
   */
  for (i = 0; i <= CBZ_T_SAMPLES; ++i)
    {
      length[i] = (length[i] << CBZ_T_Q) / b->length;
    }

  /*
   * Now generate a L -> t table such that the L will equidistant
   * over <0,1>
   */
  t_equalized[0] = 0;
    
  for (i = 1, j = 1, L = CBZ_L_STEP; i < CBZ_T_SAMPLES; ++i, L += CBZ_L_STEP)
    {
      _FixedT l1, l2;
      _FixedT d1, d2, d;
      _FixedT t1, t2;
	
      /* find the band for our L */
      for (k = j; k < CBZ_T_SAMPLES; ++k)
	{
          if (L < length[k])
            break;
	}

      /*
       * Now we know that L is from (length[k-1],length[k]>
       * We remember k-1 in order not to have to iterate over the
       * whole length array in the next iteration of the main loop
       */
      j = k - 1;

      /*
       * Now interpolate equlised t as a weighted average
       */
      l1 = length[k-1];
      l2 = length[k];
      d1 = l2 - L;
      d2 = L - l1;
      d = l2 - l1;
      t1 = (k - 1) * CBZ_T_STEP;
      t2 = k * CBZ_T_STEP;
	
      t_equalized[i] = (t1*d1 + t2*d2)/d;

      if (t_equalized[i] < t_equalized[i-1])
        g_debug ("wrong t: L %f, l1 %f, l2 %f, t1 %f, t2 %f",
                 (double) (L)/(double)CBZ_T_ONE,
                 (double) (l1)/(double)CBZ_T_ONE,
                 (double) (l2)/(double)CBZ_T_ONE,
                 (double) (t1)/(double)CBZ_T_ONE,                 
                 (double) (t2)/(double)CBZ_T_ONE);
      
    }

  t_equalized[CBZ_T_SAMPLES] = CBZ_T_ONE;

  /* We now fit a bezier -- at this stage, do a single fit through our values
   * at 0, 1/3, 2/3 and 1
   *
   * FIXME -- do we need to  use a better fitting approach to choose the best
   * beziere. The actual curve we acquire this way is not too bad shapwise,
   * but (probably due to rounding errors) the resulting curve no longer
   * satisfies the necessary condition that for L2 > L1, t2 > t1, which 
   * causes oscilation.
   */

#if 0
  /*
   * These are the control points we use to calculate the curve coefficients
   * for bezier t(L); these are not needed directly, but are implied in the
   * calculations below.
   *
   * (p0 is 0,0, and p3 is 1,1)
   */
  p1 = (18 * t_equalized[CBZ_T_SAMPLES/3] -
        9 * t_equalized[2*CBZ_T_SAMPLES/3] +
        2 << CBZ_T_Q) / 6;

  p2 = (18 * t_equalized[2*CBZ_T_SAMPLES/3] -
        9 * t_equalized[CBZ_T_SAMPLES/3] -
        (5 << CBZ_T_Q)) / 6;
#endif
    
  b->Lc = (18 * t_equalized[CBZ_T_SAMPLES/3] -
           9 * t_equalized[2*CBZ_T_SAMPLES/3] +
           (2 << CBZ_T_Q)) >> 1;
    
  b->Lb = (36 * t_equalized[2*CBZ_T_SAMPLES/3] -
           45 * t_equalized[CBZ_T_SAMPLES/3] -
           (9 << CBZ_T_Q)) >> 1;

  b->La = ((27 * (t_equalized[CBZ_T_SAMPLES/3] -
                 t_equalized[2*CBZ_T_SAMPLES/3]) +
            (7 << CBZ_T_Q)) >> 1) + CBZ_T_ONE;

  g_debug ("t(1/3) %f, t(2/3) %f",
           (double)t_equalized[CBZ_T_SAMPLES/3]/(double)CBZ_T_ONE,
           (double)t_equalized[2*CBZ_T_SAMPLES/3]/(double)CBZ_T_ONE);

  g_debug ("L -> t coefficients: %f, %f, %f",
           (double)b->La/(double)CBZ_T_ONE,
           (double)b->Lb/(double)CBZ_T_ONE,
           (double)b->Lc/(double)CBZ_T_ONE);


  /*
   * For debugging, you can load these values into a spreadsheet and graph
   * them to see how well the approximation matches the data
   */
  for (i = 0; i < CBZ_T_SAMPLES; ++i)
    {
      g_print ("%f, %f, %f\n",
               (double)(i*CBZ_T_STEP)/(double)CBZ_T_ONE,
               (double)(t_equalized[i])/(double)CBZ_T_ONE,
               (double)(clutter_bezier_L2t(b,i*CBZ_T_STEP))/(double)CBZ_T_ONE);
    }
#endif
}

/*
 * Moves a control point at indx to location represented by knot
 */
void
_clutter_bezier_adjust (ClutterBezier * b, ClutterKnot * knot, guint indx)
{
  guint x[4], y[4];

  g_assert (indx < 4);
    
  x[0] = b->dx;
  y[0] = b->dy;

  x[1] = b->cx / 3 + x[0];
  y[1] = b->cy / 3 + y[0];

  x[2] = b->bx / 3 + b->cx + x[1];
  y[2] = b->by / 3 + b->cy + y[1];

  x[3] = b->ax + x[0] + b->cx + b->bx;
  y[3] = b->ay + y[0] + b->cy + b->by;

  x[indx] = knot->x;
  y[indx] = knot->y;

  _clutter_bezier_init (b, x[0], y[0], x[1], y[1], x[2], y[2], x[3], y[3]);
}

guint
_clutter_bezier_get_length (const ClutterBezier *b)
{
  return b->length;
}