File: test-cogl-vertex-buffer.cs

package info (click to toggle)
clutter-sharp 1.0.0~alpha3~git20090817.r1.349dba6-8
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 4,104 kB
  • ctags: 2,193
  • sloc: xml: 23,456; cs: 9,946; sh: 3,393; perl: 1,213; makefile: 270; awk: 50; sed: 13
file content (305 lines) | stat: -rw-r--r-- 10,811 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
using System;
using System.Runtime.InteropServices;
using Clutter;

public static class TestCoglVertexBuffer
{
    // Defines the size and resolution of the quad mesh we morph:
     
    const int MESH_WIDTH  = 100;      // number of quads along x axis
    const int MESH_HEIGHT = 100;      // number of quads along y axis
    const float QUAD_WIDTH  = 5.0f;   // width in pixels of a single quad
    const float QUAD_HEIGHT = 5.0f;   // height in pixels of a single quad

    // Defines a sine wave that sweeps across the mesh:
     
    const float WAVE_DEPTH   = ((MESH_WIDTH * QUAD_WIDTH) / 16.0f); // peak amplitude 
    const float WAVE_PERIODS = 4.0f;
    const float WAVE_SPEED   = 10.0f;

    // Defines a rippling sine wave emitted from a point:
     
    const float RIPPLE_CENTER_X = ((MESH_WIDTH / 2.0f) * QUAD_WIDTH);
    const float RIPPLE_CENTER_Y = ((MESH_HEIGHT / 2.0f) * QUAD_HEIGHT);
    const float RIPPLE_RADIUS   = (MESH_WIDTH * QUAD_WIDTH);
    const float RIPPLE_DEPTH    = ((MESH_WIDTH * QUAD_WIDTH) / 16.0f); // peak amplitude 
    const float RIPPLE_PERIODS  = 4.0f;
    const float RIPPLE_SPEED    = -10.0f;

    // Defines the width of the gaussian bell used to fade out the alpha
    // towards the edges of the mesh (starting from the ripple center):
     
    const float GAUSSIAN_RADIUS = ((MESH_WIDTH * QUAD_WIDTH) / 6.0f);

    // Our hues lie in the range [0, 1], and this defines how we map amplitude
    // to hues (before scaling by {WAVE,RIPPLE}_DEPTH)
    // As we are interferring two sine waves together; amplitudes lie in the
    // range [-2, 2]
     
    const float HSL_OFFSET = 0.5f; // the hue that we map an amplitude of 0 too 
    const float HSL_SCALE  = 0.25f;
    
    static Actor dummy;
    static Timeline timeline;
    static IntPtr buffer;
    
    static unsafe float *quad_mesh_verts;
    static unsafe byte  *quad_mesh_colors;
    static unsafe ushort *static_indices;
    static uint n_static_indices;

    public static unsafe void Main ()
    {
        Application.Init ();
    
        var stage = Stage.Default;
        var stage_geom = stage.Geometry;
        
        var dummy_width = (int)(MESH_WIDTH * QUAD_WIDTH);
        var dummy_height = (int)(MESH_HEIGHT * QUAD_HEIGHT);
        dummy = CreateDummyActor (dummy_width, dummy_height);
        dummy.SetPosition (
            (int)((stage_geom.Width / 2.0) - (dummy_width / 2.0)),
            (int)((stage_geom.Height / 2.0) - (dummy_height / 2.0)));

        dummy.Painted += (o, e) => {
            Cogl.General.SetSourceColor4ub (0xff, 0x00, 0x00, 0xff);
            Cogl.VertexBuffer.DrawElements (buffer,
                Cogl.GL.GL_TRIANGLE_STRIP,
                0,
                (MESH_WIDTH + 1) * (MESH_HEIGHT + 1),
                (int)n_static_indices,
                Cogl.GL.GL_UNSIGNED_SHORT,
                new IntPtr (static_indices));
        };
        
        timeline = new Timeline () {
            FrameCount = 360,
            Speed = 60,
            Loop = true
        };
        
        timeline.NewFrame += OnNewFrame;
        
        GLib.Idle.Add (() => { stage.QueueRedraw (); return true; });
        
        InitQuadMesh ();
        
        stage.Color = new Color (0, 0, 0, 0xff);
        stage.Add (dummy);
        stage.ShowAll ();
        
        timeline.Start ();
        
        Application.Run ();
    }
    
    static Actor CreateDummyActor (int width, int height)
    {
        var rect = new Rectangle (new Color (0, 0, 0, 0));
        rect.SetSize (width, height);
        return rect;
    }
    
    static float Gaussian (float x, float y)
    {
        // Bell width
        float c = GAUSSIAN_RADIUS;

        // Peak amplitude
        float a = 1.0f;
        // float a = 1.0 / (c * sqrtf (2.0 * G_PI));

        // Center offset
        float b = 0.0f;

        x = x - RIPPLE_CENTER_X;
        y = y - RIPPLE_CENTER_Y;
        float dist = (float)Math.Sqrt (x*x + y*y);

        return a * (float)Math.Exp ((- ((dist - b) * (dist - b))) / (2.0f * c * c));
    }
    
    static unsafe void InitQuadMesh ()
    {
        // Note: we maintain the minimum number of vertices possible. This minimizes
        // the work required when we come to morph the geometry.
        //
        // We use static indices into our mesh so that we can treat the data like a
        // single triangle list and drawing can be done in one operation (Note: We
        // are using degenerate triangles at the edges to link to the next row)
        
        quad_mesh_verts = (float *)Marshal.AllocHGlobal (sizeof (float) * 3 * (MESH_WIDTH + 1) * (MESH_HEIGHT + 1));
        quad_mesh_colors = (byte *)Marshal.AllocHGlobal (sizeof (byte) * 4 * (MESH_WIDTH + 1) * (MESH_HEIGHT + 1));
        
        float *vert = quad_mesh_verts;
        byte *color = quad_mesh_colors;
        
        for (int y = 0; y <= MESH_HEIGHT; y++) {
            for (int x = 0; x <= MESH_WIDTH; x++) {
                vert[0] = x * QUAD_WIDTH;
                vert[1] = y * QUAD_HEIGHT;
                vert += 3;

                color[3] = (byte)(Gaussian (x * QUAD_WIDTH, y * QUAD_HEIGHT) * 255.0);
                color += 4;
            }
        }
        
        buffer = Cogl.VertexBuffer.New ((MESH_WIDTH + 1) * (MESH_HEIGHT + 1));
        Cogl.VertexBuffer.Add (buffer, 
            "gl_Vertex",
            3, // n components
            Cogl.GL.GL_FLOAT,
            false, // normalized
            0, // stride
            new IntPtr (quad_mesh_verts));

        Cogl.VertexBuffer.Add (buffer,
            "gl_Color",
            4, //n components
            Cogl.GL.GL_UNSIGNED_BYTE,
            false, // normalized
            0, // stride
            new IntPtr (quad_mesh_colors));

        Cogl.VertexBuffer.Submit (buffer);
        InitStaticIndexArrays ();
    }
    
    static ushort MeshIndex (int x, int y)
    {
        return (ushort)(y * (MESH_WIDTH + 1) + x);
    }
    
    static unsafe void InitStaticIndexArrays ()
    {
        // - Each row takes (2 + 2 * MESH_WIDTH indices)
        //   - Thats 2 to start the triangle strip then 2 indices to add 2 triangles
        //     per mesh quad.
        // - We have MESH_HEIGHT rows
        // - It takes one extra index for linking between rows (MESH_HEIGHT - 1)
        // - A 2 x 3 mesh == 20 indices...
        
        n_static_indices = (uint)((2 + 2 * MESH_WIDTH) * MESH_HEIGHT + (MESH_HEIGHT - 1));
        static_indices = (ushort *)Marshal.AllocHGlobal ((int)(sizeof (ushort) * n_static_indices));
        ushort *i = static_indices;

        // NB: front facing == anti-clockwise winding
        i[0] = MeshIndex (0, 0);
        i[1] = MeshIndex (0, 1);
        i += 2;

        bool right_dir = true;

        for (int y = 0; y < MESH_HEIGHT; y++) {
            for (int x = 0; x < MESH_WIDTH; x++) {
                // Add 2 triangles per mesh quad...
                if (right_dir) {
                    i[0] = MeshIndex (x + 1, y);
                    i[1] = MeshIndex (x + 1, y + 1);
                } else {
                    i[0] = MeshIndex (MESH_WIDTH - x - 1, y);
                    i[1] = MeshIndex (MESH_WIDTH - x - 1, y + 1);
                }
                i += 2;
            }

            // Link rows...
            if (y == (MESH_HEIGHT - 1)) {
                break;
            }

            if (right_dir) {
                i[0] = MeshIndex (MESH_WIDTH, y + 1);
                i[1] = MeshIndex (MESH_WIDTH, y + 1);
                i[2] = MeshIndex (MESH_WIDTH, y + 2);
            } else {
                i[0] = MeshIndex (0, y + 1);
                i[1] = MeshIndex (0, y + 1);
                i[2] = MeshIndex (0, y + 2);
            }
            
            i += 3;
            right_dir = !right_dir;
        }
    }
    
    static unsafe void OnNewFrame (object o, NewFrameArgs args)
    {
        Color color = Color.Zero;
        uint n_frames = timeline.FrameCount;
        int frame_num = args.FrameNum;
        float period_progress = ((float)frame_num / (float)n_frames) * 2.0f * (float)Math.PI;
        float period_progress_sin = (float)Math.Sin (period_progress);
        float wave_shift = period_progress * WAVE_SPEED;
        float ripple_shift = period_progress * RIPPLE_SPEED;

        for (uint y = 0; y <= MESH_HEIGHT; y++) {
            for (uint x = 0; x <= MESH_WIDTH; x++) {
                uint vert_index = (MESH_WIDTH + 1) * y + x;
                float *vert = &quad_mesh_verts[3 * vert_index];

                float real_x = x * QUAD_WIDTH;
                float real_y = y * QUAD_HEIGHT;

                float wave_offset = (float)x / (MESH_WIDTH + 1);
                float wave_angle = (WAVE_PERIODS * 2 * (float)Math.PI * wave_offset) + wave_shift;
                float wave_sin = (float)Math.Sin (wave_angle);

                float a_sqr = (RIPPLE_CENTER_X - real_x) * (RIPPLE_CENTER_X - real_x);
                float b_sqr = (RIPPLE_CENTER_Y - real_y) * (RIPPLE_CENTER_Y - real_y);
                float ripple_offset = (float)Math.Sqrt (a_sqr + b_sqr) / RIPPLE_RADIUS;
                float ripple_angle = (RIPPLE_PERIODS * 2 * (float)Math.PI * ripple_offset) + ripple_shift;
                float ripple_sin = (float)Math.Sin (ripple_angle);

                vert[2] = (wave_sin * WAVE_DEPTH) + (ripple_sin * RIPPLE_DEPTH);

                // Burn some CPU time picking a pretty color...
                float h = (HSL_OFFSET
                    + wave_sin
                    + ripple_sin
                    + period_progress_sin) * HSL_SCALE;
                float s = 0.5f;
                float l = 0.25f + (period_progress_sin + 1.0f) / 4.0f;
                
                color.FromHls (h * 360.0f, l, s);

                byte *c = &quad_mesh_colors[4 * vert_index];
                c[0] = color.R;
                c[1] = color.G;
                c[2] = color.B;
            }
        }
        
        Cogl.VertexBuffer.Add (buffer,
            "gl_Vertex",
            3, // n components
            Cogl.GL.GL_FLOAT,
            false, // normalized
            0, // stride
            new IntPtr (quad_mesh_verts));
        
        Cogl.VertexBuffer.Add (buffer,
            "gl_Color",
            4, // n components
            Cogl.GL.GL_UNSIGNED_BYTE,
            false, // normalized
            0, // stride
            new IntPtr (quad_mesh_colors));

        Cogl.VertexBuffer.Submit (buffer);

        dummy.SetRotation (RotateAxis.Z, 
            frame_num,
            (int)((MESH_WIDTH * QUAD_WIDTH) / 2),
            (int)((MESH_HEIGHT * QUAD_HEIGHT) / 2),
            0);

        dummy.SetRotation (RotateAxis.X,
            frame_num,
            (int)((MESH_WIDTH * QUAD_WIDTH) / 2),
            (int)((MESH_HEIGHT * QUAD_HEIGHT) / 2),
            0);
    }
}