1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/* Clzip - LZMA lossless data compressor
Copyright (C) 2010-2025 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define _FILE_OFFSET_BITS 64
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "lzip.h"
#include "encoder_base.h"
#include "fast_encoder.h"
int FLZe_longest_match_len( FLZ_encoder * const fe, int * const distance )
{
enum { len_limit = 16 };
const int available = min( Mb_available_bytes( &fe->eb.mb ), max_match_len );
if( available < len_limit ) return 0;
const uint8_t * const data = Mb_ptr_to_current_pos( &fe->eb.mb );
fe->key4 = ( ( fe->key4 << 4 ) ^ data[3] ) & fe->eb.mb.key4_mask;
const int pos1 = fe->eb.mb.pos + 1;
int newpos1 = fe->eb.mb.prev_positions[fe->key4];
fe->eb.mb.prev_positions[fe->key4] = pos1;
int32_t * ptr0 = fe->eb.mb.pos_array + fe->eb.mb.cyclic_pos;
int maxlen = 0, count;
for( count = 4; ; )
{
int delta;
if( newpos1 <= 0 || --count < 0 ||
( delta = pos1 - newpos1 ) > fe->eb.mb.dictionary_size )
{ *ptr0 = 0; break; }
int32_t * const newptr = fe->eb.mb.pos_array +
( fe->eb.mb.cyclic_pos - delta +
( ( fe->eb.mb.cyclic_pos >= delta ) ? 0 : fe->eb.mb.dictionary_size + 1 ) );
if( data[maxlen-delta] == data[maxlen] )
{
int len = 0;
while( len < available && data[len-delta] == data[len] ) ++len;
if( maxlen < len )
{ maxlen = len; *distance = delta - 1;
if( maxlen >= len_limit ) { *ptr0 = *newptr; break; } }
}
*ptr0 = newpos1;
ptr0 = newptr;
newpos1 = *ptr0;
}
return maxlen;
}
bool FLZe_encode_member( FLZ_encoder * const fe,
const unsigned long long member_size )
{
const unsigned long long member_size_limit =
member_size - Lt_size - max_marker_size;
int rep = 0, i;
int reps[num_rep_distances];
State state = 0;
for( i = 0; i < num_rep_distances; ++i ) reps[i] = 0;
if( Mb_data_position( &fe->eb.mb ) != 0 ||
Re_member_position( &fe->eb.renc ) != Lh_size )
return false; /* can be called only once */
if( !Mb_data_finished( &fe->eb.mb ) ) /* encode first byte */
{
const uint8_t prev_byte = 0;
const uint8_t cur_byte = Mb_peek( &fe->eb.mb, 0 );
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_match[state][0], 0 );
LZeb_encode_literal( &fe->eb, prev_byte, cur_byte );
CRC32_update_byte( &fe->eb.crc, cur_byte );
FLZe_reset_key4( fe );
FLZe_update_and_move( fe, 1 );
}
while( !Mb_data_finished( &fe->eb.mb ) &&
Re_member_position( &fe->eb.renc ) < member_size_limit )
{
int match_distance;
const int main_len = FLZe_longest_match_len( fe, &match_distance );
const int pos_state = Mb_data_position( &fe->eb.mb ) & pos_state_mask;
int len = 0;
for( i = 0; i < num_rep_distances; ++i )
{
const int tlen = Mb_true_match_len( &fe->eb.mb, 0, reps[i] + 1 );
if( tlen > len ) { len = tlen; rep = i; }
}
if( len > min_match_len && len + 3 > main_len )
{
CRC32_update_buf( &fe->eb.crc, Mb_ptr_to_current_pos( &fe->eb.mb ), len );
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_match[state][pos_state], 1 );
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_rep[state], 1 );
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_rep0[state], rep != 0 );
if( rep == 0 )
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_len[state][pos_state], 1 );
else
{
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_rep1[state], rep > 1 );
if( rep > 1 )
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_rep2[state], rep > 2 );
const int distance = reps[rep];
for( i = rep; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = distance;
}
state = St_set_rep( state );
Re_encode_len( &fe->eb.renc, &fe->eb.rep_len_model, len, pos_state );
Mb_move_pos( &fe->eb.mb );
FLZe_update_and_move( fe, len - 1 );
continue;
}
if( main_len > min_match_len )
{
CRC32_update_buf( &fe->eb.crc, Mb_ptr_to_current_pos( &fe->eb.mb ), main_len );
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_match[state][pos_state], 1 );
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_rep[state], 0 );
state = St_set_match( state );
for( i = num_rep_distances - 1; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = match_distance;
LZeb_encode_pair( &fe->eb, match_distance, main_len, pos_state );
Mb_move_pos( &fe->eb.mb );
FLZe_update_and_move( fe, main_len - 1 );
continue;
}
const uint8_t prev_byte = Mb_peek( &fe->eb.mb, 1 );
const uint8_t cur_byte = Mb_peek( &fe->eb.mb, 0 );
const uint8_t match_byte = Mb_peek( &fe->eb.mb, reps[0] + 1 );
Mb_move_pos( &fe->eb.mb );
CRC32_update_byte( &fe->eb.crc, cur_byte );
if( match_byte == cur_byte )
{
const int shortrep_price = price1( fe->eb.bm_match[state][pos_state] ) +
price1( fe->eb.bm_rep[state] ) +
price0( fe->eb.bm_rep0[state] ) +
price0( fe->eb.bm_len[state][pos_state] );
int price = price0( fe->eb.bm_match[state][pos_state] );
if( St_is_char( state ) )
price += LZeb_price_literal( &fe->eb, prev_byte, cur_byte );
else
price += LZeb_price_matched( &fe->eb, prev_byte, cur_byte, match_byte );
if( shortrep_price < price )
{
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_match[state][pos_state], 1 );
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_rep[state], 1 );
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_rep0[state], 0 );
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_len[state][pos_state], 0 );
state = St_set_shortrep( state );
continue;
}
}
/* literal byte */
Re_encode_bit( &fe->eb.renc, &fe->eb.bm_match[state][pos_state], 0 );
if( ( state = St_set_char( state ) ) < 4 )
LZeb_encode_literal( &fe->eb, prev_byte, cur_byte );
else
LZeb_encode_matched( &fe->eb, prev_byte, cur_byte, match_byte );
}
LZeb_full_flush( &fe->eb, state );
return true;
}
|