1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
|
/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
file Copyright.txt or https://cmake.org/licensing for details. */
#include "cmComputeLinkDepends.h"
#include "cmAlgorithms.h"
#include "cmComputeComponentGraph.h"
#include "cmGeneratorTarget.h"
#include "cmGlobalGenerator.h"
#include "cmLocalGenerator.h"
#include "cmMakefile.h"
#include "cmStateTypes.h"
#include "cmSystemTools.h"
#include "cmTarget.h"
#include "cmake.h"
#include <algorithm>
#include <assert.h>
#include <iterator>
#include <sstream>
#include <stdio.h>
#include <string.h>
#include <utility>
/*
This file computes an ordered list of link items to use when linking a
single target in one configuration. Each link item is identified by
the string naming it. A graph of dependencies is created in which
each node corresponds to one item and directed edges lead from nodes to
those which must *follow* them on the link line. For example, the
graph
A -> B -> C
will lead to the link line order
A B C
The set of items placed in the graph is formed with a breadth-first
search of the link dependencies starting from the main target.
There are two types of items: those with known direct dependencies and
those without known dependencies. We will call the two types "known
items" and "unknown items", respectively. Known items are those whose
names correspond to targets (built or imported) and those for which an
old-style <item>_LIB_DEPENDS variable is defined. All other items are
unknown and we must infer dependencies for them. For items that look
like flags (beginning with '-') we trivially infer no dependencies,
and do not include them in the dependencies of other items.
Known items have dependency lists ordered based on how the user
specified them. We can use this order to infer potential dependencies
of unknown items. For example, if link items A and B are unknown and
items X and Y are known, then we might have the following dependency
lists:
X: Y A B
Y: A B
The explicitly known dependencies form graph edges
X -> Y , X -> A , X -> B , Y -> A , Y -> B
We can also infer the edge
A -> B
because *every* time A appears B is seen on its right. We do not know
whether A really needs symbols from B to link, but it *might* so we
must preserve their order. This is the case also for the following
explicit lists:
X: A B Y
Y: A B
Here, A is followed by the set {B,Y} in one list, and {B} in the other
list. The intersection of these sets is {B}, so we can infer that A
depends on at most B. Meanwhile B is followed by the set {Y} in one
list and {} in the other. The intersection is {} so we can infer that
B has no dependencies.
Let's make a more complex example by adding unknown item C and
considering these dependency lists:
X: A B Y C
Y: A C B
The explicit edges are
X -> Y , X -> A , X -> B , X -> C , Y -> A , Y -> B , Y -> C
For the unknown items, we infer dependencies by looking at the
"follow" sets:
A: intersect( {B,Y,C} , {C,B} ) = {B,C} ; infer edges A -> B , A -> C
B: intersect( {Y,C} , {} ) = {} ; infer no edges
C: intersect( {} , {B} ) = {} ; infer no edges
Note that targets are never inferred as dependees because outside
libraries should not depend on them.
------------------------------------------------------------------------------
The initial exploration of dependencies using a BFS associates an
integer index with each link item. When the graph is built outgoing
edges are sorted by this index.
After the initial exploration of the link interface tree, any
transitive (dependent) shared libraries that were encountered and not
included in the interface are processed in their own BFS. This BFS
follows only the dependent library lists and not the link interfaces.
They are added to the link items with a mark indicating that the are
transitive dependencies. Then cmComputeLinkInformation deals with
them on a per-platform basis.
The complete graph formed from all known and inferred dependencies may
not be acyclic, so an acyclic version must be created.
The original graph is converted to a directed acyclic graph in which
each node corresponds to a strongly connected component of the
original graph. For example, the dependency graph
X -> A -> B -> C -> A -> Y
contains strongly connected components {X}, {A,B,C}, and {Y}. The
implied directed acyclic graph (DAG) is
{X} -> {A,B,C} -> {Y}
We then compute a topological order for the DAG nodes to serve as a
reference for satisfying dependencies efficiently. We perform the DFS
in reverse order and assign topological order indices counting down so
that the result is as close to the original BFS order as possible
without violating dependencies.
------------------------------------------------------------------------------
The final link entry order is constructed as follows. We first walk
through and emit the *original* link line as specified by the user.
As each item is emitted, a set of pending nodes in the component DAG
is maintained. When a pending component has been completely seen, it
is removed from the pending set and its dependencies (following edges
of the DAG) are added. A trivial component (those with one item) is
complete as soon as its item is seen. A non-trivial component (one
with more than one item; assumed to be static libraries) is complete
when *all* its entries have been seen *twice* (all entries seen once,
then all entries seen again, not just each entry twice). A pending
component tracks which items have been seen and a count of how many
times the component needs to be seen (once for trivial components,
twice for non-trivial). If at any time another component finishes and
re-adds an already pending component, the pending component is reset
so that it needs to be seen in its entirety again. This ensures that
all dependencies of a component are satisfied no matter where it
appears.
After the original link line has been completed, we append to it the
remaining pending components and their dependencies. This is done by
repeatedly emitting the first item from the first pending component
and following the same update rules as when traversing the original
link line. Since the pending components are kept in topological order
they are emitted with minimal repeats (we do not want to emit a
component just to have it added again when another component is
completed later). This process continues until no pending components
remain. We know it will terminate because the component graph is
guaranteed to be acyclic.
The final list of items produced by this procedure consists of the
original user link line followed by minimal additional items needed to
satisfy dependencies. The final list is then filtered to de-duplicate
items that we know the linker will re-use automatically (shared libs).
*/
cmComputeLinkDepends::cmComputeLinkDepends(const cmGeneratorTarget* target,
const std::string& config)
{
// Store context information.
this->Target = target;
this->Makefile = this->Target->Target->GetMakefile();
this->GlobalGenerator =
this->Target->GetLocalGenerator()->GetGlobalGenerator();
this->CMakeInstance = this->GlobalGenerator->GetCMakeInstance();
// The configuration being linked.
this->HasConfig = !config.empty();
this->Config = (this->HasConfig) ? config : std::string();
std::vector<std::string> debugConfigs =
this->Makefile->GetCMakeInstance()->GetDebugConfigs();
this->LinkType = CMP0003_ComputeLinkType(this->Config, debugConfigs);
// Enable debug mode if requested.
this->DebugMode = this->Makefile->IsOn("CMAKE_LINK_DEPENDS_DEBUG_MODE");
// Assume no compatibility until set.
this->OldLinkDirMode = false;
// No computation has been done.
this->CCG = nullptr;
}
cmComputeLinkDepends::~cmComputeLinkDepends()
{
cmDeleteAll(this->InferredDependSets);
delete this->CCG;
}
void cmComputeLinkDepends::SetOldLinkDirMode(bool b)
{
this->OldLinkDirMode = b;
}
std::vector<cmComputeLinkDepends::LinkEntry> const&
cmComputeLinkDepends::Compute()
{
// Follow the link dependencies of the target to be linked.
this->AddDirectLinkEntries();
// Complete the breadth-first search of dependencies.
while (!this->BFSQueue.empty()) {
// Get the next entry.
BFSEntry qe = this->BFSQueue.front();
this->BFSQueue.pop();
// Follow the entry's dependencies.
this->FollowLinkEntry(qe);
}
// Complete the search of shared library dependencies.
while (!this->SharedDepQueue.empty()) {
// Handle the next entry.
this->HandleSharedDependency(this->SharedDepQueue.front());
this->SharedDepQueue.pop();
}
// Infer dependencies of targets for which they were not known.
this->InferDependencies();
// Cleanup the constraint graph.
this->CleanConstraintGraph();
// Display the constraint graph.
if (this->DebugMode) {
fprintf(stderr,
"---------------------------------------"
"---------------------------------------\n");
fprintf(stderr, "Link dependency analysis for target %s, config %s\n",
this->Target->GetName().c_str(),
this->HasConfig ? this->Config.c_str() : "noconfig");
this->DisplayConstraintGraph();
}
// Compute the final ordering.
this->OrderLinkEntires();
// Compute the final set of link entries.
// Iterate in reverse order so we can keep only the last occurrence
// of a shared library.
std::set<int> emmitted;
for (std::vector<int>::const_reverse_iterator
li = this->FinalLinkOrder.rbegin(),
le = this->FinalLinkOrder.rend();
li != le; ++li) {
int i = *li;
LinkEntry const& e = this->EntryList[i];
cmGeneratorTarget const* t = e.Target;
// Entries that we know the linker will re-use do not need to be repeated.
bool uniquify = t && t->GetType() == cmStateEnums::SHARED_LIBRARY;
if (!uniquify || emmitted.insert(i).second) {
this->FinalLinkEntries.push_back(e);
}
}
// Reverse the resulting order since we iterated in reverse.
std::reverse(this->FinalLinkEntries.begin(), this->FinalLinkEntries.end());
// Display the final set.
if (this->DebugMode) {
this->DisplayFinalEntries();
}
return this->FinalLinkEntries;
}
std::map<cmLinkItem, int>::iterator cmComputeLinkDepends::AllocateLinkEntry(
cmLinkItem const& item)
{
std::map<cmLinkItem, int>::value_type index_entry(
item, static_cast<int>(this->EntryList.size()));
std::map<cmLinkItem, int>::iterator lei =
this->LinkEntryIndex.insert(index_entry).first;
this->EntryList.emplace_back();
this->InferredDependSets.push_back(nullptr);
this->EntryConstraintGraph.emplace_back();
return lei;
}
int cmComputeLinkDepends::AddLinkEntry(cmLinkItem const& item)
{
// Check if the item entry has already been added.
std::map<cmLinkItem, int>::iterator lei = this->LinkEntryIndex.find(item);
if (lei != this->LinkEntryIndex.end()) {
// Yes. We do not need to follow the item's dependencies again.
return lei->second;
}
// Allocate a spot for the item entry.
lei = this->AllocateLinkEntry(item);
// Initialize the item entry.
int index = lei->second;
LinkEntry& entry = this->EntryList[index];
entry.Item = item.AsStr();
entry.Target = item.Target;
entry.IsFlag =
(!entry.Target && entry.Item[0] == '-' && entry.Item[1] != 'l' &&
entry.Item.substr(0, 10) != "-framework");
// If the item has dependencies queue it to follow them.
if (entry.Target) {
// Target dependencies are always known. Follow them.
BFSEntry qe = { index, nullptr };
this->BFSQueue.push(qe);
} else {
// Look for an old-style <item>_LIB_DEPENDS variable.
std::string var = entry.Item;
var += "_LIB_DEPENDS";
if (const char* val = this->Makefile->GetDefinition(var)) {
// The item dependencies are known. Follow them.
BFSEntry qe = { index, val };
this->BFSQueue.push(qe);
} else if (!entry.IsFlag) {
// The item dependencies are not known. We need to infer them.
this->InferredDependSets[index] = new DependSetList;
}
}
return index;
}
void cmComputeLinkDepends::FollowLinkEntry(BFSEntry qe)
{
// Get this entry representation.
int depender_index = qe.Index;
LinkEntry const& entry = this->EntryList[depender_index];
// Follow the item's dependencies.
if (entry.Target) {
// Follow the target dependencies.
if (cmLinkInterface const* iface =
entry.Target->GetLinkInterface(this->Config, this->Target)) {
const bool isIface =
entry.Target->GetType() == cmStateEnums::INTERFACE_LIBRARY;
// This target provides its own link interface information.
this->AddLinkEntries(depender_index, iface->Libraries);
if (isIface) {
return;
}
// Handle dependent shared libraries.
this->FollowSharedDeps(depender_index, iface);
// Support for CMP0003.
for (cmLinkItem const& oi : iface->WrongConfigLibraries) {
this->CheckWrongConfigItem(oi);
}
}
} else {
// Follow the old-style dependency list.
this->AddVarLinkEntries(depender_index, qe.LibDepends);
}
}
void cmComputeLinkDepends::FollowSharedDeps(int depender_index,
cmLinkInterface const* iface,
bool follow_interface)
{
// Follow dependencies if we have not followed them already.
if (this->SharedDepFollowed.insert(depender_index).second) {
if (follow_interface) {
this->QueueSharedDependencies(depender_index, iface->Libraries);
}
this->QueueSharedDependencies(depender_index, iface->SharedDeps);
}
}
void cmComputeLinkDepends::QueueSharedDependencies(
int depender_index, std::vector<cmLinkItem> const& deps)
{
for (cmLinkItem const& li : deps) {
SharedDepEntry qe;
qe.Item = li;
qe.DependerIndex = depender_index;
this->SharedDepQueue.push(qe);
}
}
void cmComputeLinkDepends::HandleSharedDependency(SharedDepEntry const& dep)
{
// Check if the target already has an entry.
std::map<cmLinkItem, int>::iterator lei =
this->LinkEntryIndex.find(dep.Item);
if (lei == this->LinkEntryIndex.end()) {
// Allocate a spot for the item entry.
lei = this->AllocateLinkEntry(dep.Item);
// Initialize the item entry.
LinkEntry& entry = this->EntryList[lei->second];
entry.Item = dep.Item.AsStr();
entry.Target = dep.Item.Target;
// This item was added specifically because it is a dependent
// shared library. It may get special treatment
// in cmComputeLinkInformation.
entry.IsSharedDep = true;
}
// Get the link entry for this target.
int index = lei->second;
LinkEntry& entry = this->EntryList[index];
// This shared library dependency must follow the item that listed
// it.
this->EntryConstraintGraph[dep.DependerIndex].push_back(index);
// Target items may have their own dependencies.
if (entry.Target) {
if (cmLinkInterface const* iface =
entry.Target->GetLinkInterface(this->Config, this->Target)) {
// Follow public and private dependencies transitively.
this->FollowSharedDeps(index, iface, true);
}
}
}
void cmComputeLinkDepends::AddVarLinkEntries(int depender_index,
const char* value)
{
// This is called to add the dependencies named by
// <item>_LIB_DEPENDS. The variable contains a semicolon-separated
// list. The list contains link-type;item pairs and just items.
std::vector<std::string> deplist;
cmSystemTools::ExpandListArgument(value, deplist);
// Look for entries meant for this configuration.
std::vector<cmLinkItem> actual_libs;
cmTargetLinkLibraryType llt = GENERAL_LibraryType;
bool haveLLT = false;
for (std::string const& d : deplist) {
if (d == "debug") {
llt = DEBUG_LibraryType;
haveLLT = true;
} else if (d == "optimized") {
llt = OPTIMIZED_LibraryType;
haveLLT = true;
} else if (d == "general") {
llt = GENERAL_LibraryType;
haveLLT = true;
} else if (!d.empty()) {
// If no explicit link type was given prior to this entry then
// check if the entry has its own link type variable. This is
// needed for compatibility with dependency files generated by
// the export_library_dependencies command from CMake 2.4 and
// lower.
if (!haveLLT) {
std::string var = d;
var += "_LINK_TYPE";
if (const char* val = this->Makefile->GetDefinition(var)) {
if (strcmp(val, "debug") == 0) {
llt = DEBUG_LibraryType;
} else if (strcmp(val, "optimized") == 0) {
llt = OPTIMIZED_LibraryType;
}
}
}
// If the library is meant for this link type then use it.
if (llt == GENERAL_LibraryType || llt == this->LinkType) {
actual_libs.emplace_back(this->ResolveLinkItem(depender_index, d));
} else if (this->OldLinkDirMode) {
cmLinkItem item = this->ResolveLinkItem(depender_index, d);
this->CheckWrongConfigItem(item);
}
// Reset the link type until another explicit type is given.
llt = GENERAL_LibraryType;
haveLLT = false;
}
}
// Add the entries from this list.
this->AddLinkEntries(depender_index, actual_libs);
}
void cmComputeLinkDepends::AddDirectLinkEntries()
{
// Add direct link dependencies in this configuration.
cmLinkImplementation const* impl =
this->Target->GetLinkImplementation(this->Config);
this->AddLinkEntries(-1, impl->Libraries);
for (cmLinkItem const& wi : impl->WrongConfigLibraries) {
this->CheckWrongConfigItem(wi);
}
}
template <typename T>
void cmComputeLinkDepends::AddLinkEntries(int depender_index,
std::vector<T> const& libs)
{
// Track inferred dependency sets implied by this list.
std::map<int, DependSet> dependSets;
// Loop over the libraries linked directly by the depender.
for (T const& l : libs) {
// Skip entries that will resolve to the target getting linked or
// are empty.
cmLinkItem const& item = l;
if (item.AsStr() == this->Target->GetName() || item.AsStr().empty()) {
continue;
}
// Add a link entry for this item.
int dependee_index = this->AddLinkEntry(l);
// The dependee must come after the depender.
if (depender_index >= 0) {
this->EntryConstraintGraph[depender_index].push_back(dependee_index);
} else {
// This is a direct dependency of the target being linked.
this->OriginalEntries.push_back(dependee_index);
}
// Update the inferred dependencies for earlier items.
for (auto& dependSet : dependSets) {
// Add this item to the inferred dependencies of other items.
// Target items are never inferred dependees because unknown
// items are outside libraries that should not be depending on
// targets.
if (!this->EntryList[dependee_index].Target &&
!this->EntryList[dependee_index].IsFlag &&
dependee_index != dependSet.first) {
dependSet.second.insert(dependee_index);
}
}
// If this item needs to have dependencies inferred, do so.
if (this->InferredDependSets[dependee_index]) {
// Make sure an entry exists to hold the set for the item.
dependSets[dependee_index];
}
}
// Store the inferred dependency sets discovered for this list.
for (auto const& dependSet : dependSets) {
this->InferredDependSets[dependSet.first]->push_back(dependSet.second);
}
}
cmLinkItem cmComputeLinkDepends::ResolveLinkItem(int depender_index,
const std::string& name)
{
// Look for a target in the scope of the depender.
cmGeneratorTarget const* from = this->Target;
if (depender_index >= 0) {
if (cmGeneratorTarget const* depender =
this->EntryList[depender_index].Target) {
from = depender;
}
}
return from->ResolveLinkItem(name);
}
void cmComputeLinkDepends::InferDependencies()
{
// The inferred dependency sets for each item list the possible
// dependencies. The intersection of the sets for one item form its
// inferred dependencies.
for (unsigned int depender_index = 0;
depender_index < this->InferredDependSets.size(); ++depender_index) {
// Skip items for which dependencies do not need to be inferred or
// for which the inferred dependency sets are empty.
DependSetList* sets = this->InferredDependSets[depender_index];
if (!sets || sets->empty()) {
continue;
}
// Intersect the sets for this item.
DependSetList::const_iterator i = sets->begin();
DependSet common = *i;
for (++i; i != sets->end(); ++i) {
DependSet intersection;
std::set_intersection(common.begin(), common.end(), i->begin(), i->end(),
std::inserter(intersection, intersection.begin()));
common = intersection;
}
// Add the inferred dependencies to the graph.
cmGraphEdgeList& edges = this->EntryConstraintGraph[depender_index];
edges.insert(edges.end(), common.begin(), common.end());
}
}
void cmComputeLinkDepends::CleanConstraintGraph()
{
for (cmGraphEdgeList& edgeList : this->EntryConstraintGraph) {
// Sort the outgoing edges for each graph node so that the
// original order will be preserved as much as possible.
std::sort(edgeList.begin(), edgeList.end());
// Make the edge list unique.
edgeList.erase(std::unique(edgeList.begin(), edgeList.end()),
edgeList.end());
}
}
void cmComputeLinkDepends::DisplayConstraintGraph()
{
// Display the graph nodes and their edges.
std::ostringstream e;
for (unsigned int i = 0; i < this->EntryConstraintGraph.size(); ++i) {
EdgeList const& nl = this->EntryConstraintGraph[i];
e << "item " << i << " is [" << this->EntryList[i].Item << "]\n";
e << cmWrap(" item ", nl, " must follow it", "\n") << "\n";
}
fprintf(stderr, "%s\n", e.str().c_str());
}
void cmComputeLinkDepends::OrderLinkEntires()
{
// Compute the DAG of strongly connected components. The algorithm
// used by cmComputeComponentGraph should identify the components in
// the same order in which the items were originally discovered in
// the BFS. This should preserve the original order when no
// constraints disallow it.
this->CCG = new cmComputeComponentGraph(this->EntryConstraintGraph);
// The component graph is guaranteed to be acyclic. Start a DFS
// from every entry to compute a topological order for the
// components.
Graph const& cgraph = this->CCG->GetComponentGraph();
int n = static_cast<int>(cgraph.size());
this->ComponentVisited.resize(cgraph.size(), 0);
this->ComponentOrder.resize(cgraph.size(), n);
this->ComponentOrderId = n;
// Run in reverse order so the topological order will preserve the
// original order where there are no constraints.
for (int c = n - 1; c >= 0; --c) {
this->VisitComponent(c);
}
// Display the component graph.
if (this->DebugMode) {
this->DisplayComponents();
}
// Start with the original link line.
for (int originalEntry : this->OriginalEntries) {
this->VisitEntry(originalEntry);
}
// Now explore anything left pending. Since the component graph is
// guaranteed to be acyclic we know this will terminate.
while (!this->PendingComponents.empty()) {
// Visit one entry from the first pending component. The visit
// logic will update the pending components accordingly. Since
// the pending components are kept in topological order this will
// not repeat one.
int e = *this->PendingComponents.begin()->second.Entries.begin();
this->VisitEntry(e);
}
}
void cmComputeLinkDepends::DisplayComponents()
{
fprintf(stderr, "The strongly connected components are:\n");
std::vector<NodeList> const& components = this->CCG->GetComponents();
for (unsigned int c = 0; c < components.size(); ++c) {
fprintf(stderr, "Component (%u):\n", c);
NodeList const& nl = components[c];
for (int i : nl) {
fprintf(stderr, " item %d [%s]\n", i, this->EntryList[i].Item.c_str());
}
EdgeList const& ol = this->CCG->GetComponentGraphEdges(c);
for (cmGraphEdge const& oi : ol) {
int i = oi;
fprintf(stderr, " followed by Component (%d)\n", i);
}
fprintf(stderr, " topo order index %d\n", this->ComponentOrder[c]);
}
fprintf(stderr, "\n");
}
void cmComputeLinkDepends::VisitComponent(unsigned int c)
{
// Check if the node has already been visited.
if (this->ComponentVisited[c]) {
return;
}
// We are now visiting this component so mark it.
this->ComponentVisited[c] = 1;
// Visit the neighbors of the component first.
// Run in reverse order so the topological order will preserve the
// original order where there are no constraints.
EdgeList const& nl = this->CCG->GetComponentGraphEdges(c);
for (EdgeList::const_reverse_iterator ni = nl.rbegin(); ni != nl.rend();
++ni) {
this->VisitComponent(*ni);
}
// Assign an ordering id to this component.
this->ComponentOrder[c] = --this->ComponentOrderId;
}
void cmComputeLinkDepends::VisitEntry(int index)
{
// Include this entry on the link line.
this->FinalLinkOrder.push_back(index);
// This entry has now been seen. Update its component.
bool completed = false;
int component = this->CCG->GetComponentMap()[index];
std::map<int, PendingComponent>::iterator mi =
this->PendingComponents.find(this->ComponentOrder[component]);
if (mi != this->PendingComponents.end()) {
// The entry is in an already pending component.
PendingComponent& pc = mi->second;
// Remove the entry from those pending in its component.
pc.Entries.erase(index);
if (pc.Entries.empty()) {
// The complete component has been seen since it was last needed.
--pc.Count;
if (pc.Count == 0) {
// The component has been completed.
this->PendingComponents.erase(mi);
completed = true;
} else {
// The whole component needs to be seen again.
NodeList const& nl = this->CCG->GetComponent(component);
assert(nl.size() > 1);
pc.Entries.insert(nl.begin(), nl.end());
}
}
} else {
// The entry is not in an already pending component.
NodeList const& nl = this->CCG->GetComponent(component);
if (nl.size() > 1) {
// This is a non-trivial component. It is now pending.
PendingComponent& pc = this->MakePendingComponent(component);
// The starting entry has already been seen.
pc.Entries.erase(index);
} else {
// This is a trivial component, so it is already complete.
completed = true;
}
}
// If the entry completed a component, the component's dependencies
// are now pending.
if (completed) {
EdgeList const& ol = this->CCG->GetComponentGraphEdges(component);
for (cmGraphEdge const& oi : ol) {
// This entire component is now pending no matter whether it has
// been partially seen already.
this->MakePendingComponent(oi);
}
}
}
cmComputeLinkDepends::PendingComponent&
cmComputeLinkDepends::MakePendingComponent(unsigned int component)
{
// Create an entry (in topological order) for the component.
PendingComponent& pc =
this->PendingComponents[this->ComponentOrder[component]];
pc.Id = component;
NodeList const& nl = this->CCG->GetComponent(component);
if (nl.size() == 1) {
// Trivial components need be seen only once.
pc.Count = 1;
} else {
// This is a non-trivial strongly connected component of the
// original graph. It consists of two or more libraries
// (archives) that mutually require objects from one another. In
// the worst case we may have to repeat the list of libraries as
// many times as there are object files in the biggest archive.
// For now we just list them twice.
//
// The list of items in the component has been sorted by the order
// of discovery in the original BFS of dependencies. This has the
// advantage that the item directly linked by a target requiring
// this component will come first which minimizes the number of
// repeats needed.
pc.Count = this->ComputeComponentCount(nl);
}
// Store the entries to be seen.
pc.Entries.insert(nl.begin(), nl.end());
return pc;
}
int cmComputeLinkDepends::ComputeComponentCount(NodeList const& nl)
{
unsigned int count = 2;
for (int ni : nl) {
if (cmGeneratorTarget const* target = this->EntryList[ni].Target) {
if (cmLinkInterface const* iface =
target->GetLinkInterface(this->Config, this->Target)) {
if (iface->Multiplicity > count) {
count = iface->Multiplicity;
}
}
}
}
return count;
}
void cmComputeLinkDepends::DisplayFinalEntries()
{
fprintf(stderr, "target [%s] links to:\n", this->Target->GetName().c_str());
for (LinkEntry const& lei : this->FinalLinkEntries) {
if (lei.Target) {
fprintf(stderr, " target [%s]\n", lei.Target->GetName().c_str());
} else {
fprintf(stderr, " item [%s]\n", lei.Item.c_str());
}
}
fprintf(stderr, "\n");
}
void cmComputeLinkDepends::CheckWrongConfigItem(cmLinkItem const& item)
{
if (!this->OldLinkDirMode) {
return;
}
// For CMake 2.4 bug-compatibility we need to consider the output
// directories of targets linked in another configuration as link
// directories.
if (item.Target && !item.Target->IsImported()) {
this->OldWrongConfigItems.insert(item.Target);
}
}
|