1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
|
/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
file Copyright.txt or https://cmake.org/licensing for details. */
#include "cmComputeLinkDepends.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdio>
#include <iterator>
#include <sstream>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <cm/memory>
#include <cm/string_view>
#include <cmext/string_view>
#include "cmsys/RegularExpression.hxx"
#include "cmComputeComponentGraph.h"
#include "cmGeneratorExpression.h"
#include "cmGeneratorExpressionDAGChecker.h"
#include "cmGeneratorTarget.h"
#include "cmGlobalGenerator.h"
#include "cmList.h"
#include "cmListFileCache.h"
#include "cmLocalGenerator.h"
#include "cmMakefile.h"
#include "cmMessageType.h"
#include "cmPolicies.h"
#include "cmRange.h"
#include "cmState.h"
#include "cmStateTypes.h"
#include "cmStringAlgorithms.h"
#include "cmTarget.h"
#include "cmValue.h"
#include "cmake.h"
/*
This file computes an ordered list of link items to use when linking a
single target in one configuration. Each link item is identified by
the string naming it. A graph of dependencies is created in which
each node corresponds to one item and directed edges lead from nodes to
those which must *follow* them on the link line. For example, the
graph
A -> B -> C
will lead to the link line order
A B C
The set of items placed in the graph is formed with a breadth-first
search of the link dependencies starting from the main target.
There are two types of items: those with known direct dependencies and
those without known dependencies. We will call the two types "known
items" and "unknown items", respectively. Known items are those whose
names correspond to targets (built or imported) and those for which an
old-style <item>_LIB_DEPENDS variable is defined. All other items are
unknown and we must infer dependencies for them. For items that look
like flags (beginning with '-') we trivially infer no dependencies,
and do not include them in the dependencies of other items.
Known items have dependency lists ordered based on how the user
specified them. We can use this order to infer potential dependencies
of unknown items. For example, if link items A and B are unknown and
items X and Y are known, then we might have the following dependency
lists:
X: Y A B
Y: A B
The explicitly known dependencies form graph edges
X -> Y , X -> A , X -> B , Y -> A , Y -> B
We can also infer the edge
A -> B
because *every* time A appears B is seen on its right. We do not know
whether A really needs symbols from B to link, but it *might* so we
must preserve their order. This is the case also for the following
explicit lists:
X: A B Y
Y: A B
Here, A is followed by the set {B,Y} in one list, and {B} in the other
list. The intersection of these sets is {B}, so we can infer that A
depends on at most B. Meanwhile B is followed by the set {Y} in one
list and {} in the other. The intersection is {} so we can infer that
B has no dependencies.
Let's make a more complex example by adding unknown item C and
considering these dependency lists:
X: A B Y C
Y: A C B
The explicit edges are
X -> Y , X -> A , X -> B , X -> C , Y -> A , Y -> B , Y -> C
For the unknown items, we infer dependencies by looking at the
"follow" sets:
A: intersect( {B,Y,C} , {C,B} ) = {B,C} ; infer edges A -> B , A -> C
B: intersect( {Y,C} , {} ) = {} ; infer no edges
C: intersect( {} , {B} ) = {} ; infer no edges
Note that targets are never inferred as dependees because outside
libraries should not depend on them.
------------------------------------------------------------------------------
The initial exploration of dependencies using a BFS associates an
integer index with each link item. When the graph is built outgoing
edges are sorted by this index.
After the initial exploration of the link interface tree, any
transitive (dependent) shared libraries that were encountered and not
included in the interface are processed in their own BFS. This BFS
follows only the dependent library lists and not the link interfaces.
They are added to the link items with a mark indicating that the are
transitive dependencies. Then cmComputeLinkInformation deals with
them on a per-platform basis.
The complete graph formed from all known and inferred dependencies may
not be acyclic, so an acyclic version must be created.
The original graph is converted to a directed acyclic graph in which
each node corresponds to a strongly connected component of the
original graph. For example, the dependency graph
X -> A -> B -> C -> A -> Y
contains strongly connected components {X}, {A,B,C}, and {Y}. The
implied directed acyclic graph (DAG) is
{X} -> {A,B,C} -> {Y}
We then compute a topological order for the DAG nodes to serve as a
reference for satisfying dependencies efficiently. We perform the DFS
in reverse order and assign topological order indices counting down so
that the result is as close to the original BFS order as possible
without violating dependencies.
------------------------------------------------------------------------------
The final link entry order is constructed as follows. We first walk
through and emit the *original* link line as specified by the user.
As each item is emitted, a set of pending nodes in the component DAG
is maintained. When a pending component has been completely seen, it
is removed from the pending set and its dependencies (following edges
of the DAG) are added. A trivial component (those with one item) is
complete as soon as its item is seen. A non-trivial component (one
with more than one item; assumed to be static libraries) is complete
when *all* its entries have been seen *twice* (all entries seen once,
then all entries seen again, not just each entry twice). A pending
component tracks which items have been seen and a count of how many
times the component needs to be seen (once for trivial components,
twice for non-trivial). If at any time another component finishes and
re-adds an already pending component, the pending component is reset
so that it needs to be seen in its entirety again. This ensures that
all dependencies of a component are satisfied no matter where it
appears.
After the original link line has been completed, we append to it the
remaining pending components and their dependencies. This is done by
repeatedly emitting the first item from the first pending component
and following the same update rules as when traversing the original
link line. Since the pending components are kept in topological order
they are emitted with minimal repeats (we do not want to emit a
component just to have it added again when another component is
completed later). This process continues until no pending components
remain. We know it will terminate because the component graph is
guaranteed to be acyclic.
The final list of items produced by this procedure consists of the
original user link line followed by minimal additional items needed to
satisfy dependencies. The final list is then filtered to de-duplicate
items that we know the linker will reuse automatically (shared libs).
*/
namespace {
// LINK_LIBRARY helpers
bool IsFeatureSupported(cmMakefile* makefile, std::string const& linkLanguage,
std::string const& feature)
{
auto featureSupported = cmStrCat(
"CMAKE_", linkLanguage, "_LINK_LIBRARY_USING_", feature, "_SUPPORTED");
if (makefile->GetDefinition(featureSupported).IsOn()) {
return true;
}
featureSupported =
cmStrCat("CMAKE_LINK_LIBRARY_USING_", feature, "_SUPPORTED");
return makefile->GetDefinition(featureSupported).IsOn();
}
// LINK_LIBRARY feature attributes management
struct LinkLibraryFeatureAttributeSet
{
std::set<cmStateEnums::TargetType> LibraryTypes = {
cmStateEnums::EXECUTABLE, cmStateEnums::STATIC_LIBRARY,
cmStateEnums::SHARED_LIBRARY, cmStateEnums::MODULE_LIBRARY,
cmStateEnums::UNKNOWN_LIBRARY
};
std::set<std::string> Override;
enum DeduplicationKind
{
Default,
Yes,
No
};
DeduplicationKind Deduplication = Default;
};
std::map<std::string, LinkLibraryFeatureAttributeSet>
LinkLibraryFeatureAttributes;
const LinkLibraryFeatureAttributeSet& GetLinkLibraryFeatureAttributes(
cmMakefile* makefile, std::string const& linkLanguage,
const std::string& feature)
{
auto it = LinkLibraryFeatureAttributes.find(feature);
if (it != LinkLibraryFeatureAttributes.end()) {
return it->second;
}
auto featureAttributesVariable =
cmStrCat("CMAKE_", linkLanguage, "_LINK_LIBRARY_", feature, "_ATTRIBUTES");
auto featureAttributesValues =
makefile->GetDefinition(featureAttributesVariable);
if (featureAttributesValues.IsEmpty()) {
// try language agnostic definition
featureAttributesVariable =
cmStrCat("CMAKE_LINK_LIBRARY_", feature, "_ATTRIBUTES");
featureAttributesValues =
makefile->GetDefinition(featureAttributesVariable);
}
if (!featureAttributesValues.IsEmpty()) {
LinkLibraryFeatureAttributeSet featureAttributes;
cmsys::RegularExpression processingOption{
"^(LIBRARY_TYPE|DEDUPLICATION|OVERRIDE)=((STATIC|SHARED|MODULE|"
"EXECUTABLE)(,("
"STATIC|"
"SHARED|MODULE|EXECUTABLE)"
")*|YES|NO|DEFAULT|[A-Za-z0-9_]+(,[A-Za-z0-9_]+)*)$"
};
std::string errorMessage;
for (auto const& option : cmList{ featureAttributesValues }) {
if (processingOption.find(option)) {
if (processingOption.match(1) == "LIBRARY_TYPE") {
featureAttributes.LibraryTypes.clear();
for (auto const& value :
cmTokenize(processingOption.match(2), ","_s)) {
if (value == "STATIC") {
featureAttributes.LibraryTypes.emplace(
cmStateEnums::STATIC_LIBRARY);
} else if (value == "SHARED") {
featureAttributes.LibraryTypes.emplace(
cmStateEnums::SHARED_LIBRARY);
} else if (value == "MODULE") {
featureAttributes.LibraryTypes.emplace(
cmStateEnums::MODULE_LIBRARY);
} else if (value == "EXECUTABLE") {
featureAttributes.LibraryTypes.emplace(cmStateEnums::EXECUTABLE);
} else {
errorMessage += cmStrCat(" ", option, '\n');
break;
}
}
// Always add UNKNOWN type
featureAttributes.LibraryTypes.emplace(
cmStateEnums::UNKNOWN_LIBRARY);
} else if (processingOption.match(1) == "DEDUPLICATION") {
if (processingOption.match(2) == "YES") {
featureAttributes.Deduplication =
LinkLibraryFeatureAttributeSet::Yes;
} else if (processingOption.match(2) == "NO") {
featureAttributes.Deduplication =
LinkLibraryFeatureAttributeSet::No;
} else if (processingOption.match(2) == "DEFAULT") {
featureAttributes.Deduplication =
LinkLibraryFeatureAttributeSet::Default;
} else {
errorMessage += cmStrCat(" ", option, '\n');
}
} else if (processingOption.match(1) == "OVERRIDE") {
featureAttributes.Override.clear();
auto values = cmTokenize(processingOption.match(2), ","_s);
featureAttributes.Override.insert(values.begin(), values.end());
}
} else {
errorMessage += cmStrCat(" ", option, '\n');
}
}
if (!errorMessage.empty()) {
makefile->GetCMakeInstance()->IssueMessage(
MessageType::FATAL_ERROR,
cmStrCat("Erroneous option(s) for '", featureAttributesVariable,
"':\n", errorMessage));
}
return LinkLibraryFeatureAttributes.emplace(feature, featureAttributes)
.first->second;
}
return LinkLibraryFeatureAttributes
.emplace(feature, LinkLibraryFeatureAttributeSet{})
.first->second;
}
// LINK_GROUP helpers
const cm::string_view LG_BEGIN = "<LINK_GROUP:"_s;
const cm::string_view LG_END = "</LINK_GROUP:"_s;
const cm::string_view LG_ITEM_BEGIN = "<LINK_GROUP>"_s;
const cm::string_view LG_ITEM_END = "</LINK_GROUP>"_s;
inline std::string ExtractGroupFeature(std::string const& item)
{
return item.substr(LG_BEGIN.length(),
item.find(':', LG_BEGIN.length()) - LG_BEGIN.length());
}
bool IsGroupFeatureSupported(cmMakefile* makefile,
std::string const& linkLanguage,
std::string const& feature)
{
auto featureSupported = cmStrCat(
"CMAKE_", linkLanguage, "_LINK_GROUP_USING_", feature, "_SUPPORTED");
if (makefile->GetDefinition(featureSupported).IsOn()) {
return true;
}
featureSupported =
cmStrCat("CMAKE_LINK_GROUP_USING_", feature, "_SUPPORTED");
return makefile->GetDefinition(featureSupported).IsOn();
}
class EntriesProcessing
{
public:
using LinkEntry = cmComputeLinkDepends::LinkEntry;
using EntryVector = cmComputeLinkDepends::EntryVector;
EntriesProcessing(const cmGeneratorTarget* target,
const std::string& linkLanguage, EntryVector& entries,
EntryVector& finalEntries)
: Target(target)
, LinkLanguage(linkLanguage)
, Entries(entries)
, FinalEntries(finalEntries)
{
const auto* makefile = target->Makefile;
switch (target->GetPolicyStatusCMP0156()) {
case cmPolicies::WARN:
if (!makefile->GetCMakeInstance()->GetIsInTryCompile() &&
makefile->PolicyOptionalWarningEnabled(
"CMAKE_POLICY_WARNING_CMP0156")) {
makefile->GetCMakeInstance()->IssueMessage(
MessageType::AUTHOR_WARNING,
cmStrCat(cmPolicies::GetPolicyWarning(cmPolicies::CMP0156),
"\nSince the policy is not set, legacy libraries "
"de-duplication strategy will be applied."),
target->GetBacktrace());
}
CM_FALLTHROUGH;
case cmPolicies::OLD:
// rely on default initialization of the class
break;
case cmPolicies::REQUIRED_IF_USED:
case cmPolicies::REQUIRED_ALWAYS:
makefile->GetCMakeInstance()->IssueMessage(
MessageType::FATAL_ERROR,
cmPolicies::GetRequiredPolicyError(cmPolicies::CMP0156),
target->GetBacktrace());
CM_FALLTHROUGH;
case cmPolicies::NEW: {
// Policy 0179 applies only when policy 0156 is new
switch (target->GetPolicyStatusCMP0179()) {
case cmPolicies::WARN:
if (!makefile->GetCMakeInstance()->GetIsInTryCompile() &&
makefile->PolicyOptionalWarningEnabled(
"CMAKE_POLICY_WARNING_CMP0179")) {
makefile->GetCMakeInstance()->IssueMessage(
MessageType::AUTHOR_WARNING,
cmStrCat(cmPolicies::GetPolicyWarning(cmPolicies::CMP0179),
"\nSince the policy is not set, static libraries "
"de-duplication will keep the last occurrence of the "
"static libraries."),
target->GetBacktrace());
}
CM_FALLTHROUGH;
case cmPolicies::OLD:
break;
case cmPolicies::REQUIRED_IF_USED:
case cmPolicies::REQUIRED_ALWAYS:
makefile->GetCMakeInstance()->IssueMessage(
MessageType::FATAL_ERROR,
cmPolicies::GetRequiredPolicyError(cmPolicies::CMP0179),
target->GetBacktrace());
CM_FALLTHROUGH;
case cmPolicies::NEW:
break;
}
if (auto libProcessing = makefile->GetDefinition(cmStrCat(
"CMAKE_", linkLanguage, "_LINK_LIBRARIES_PROCESSING"))) {
// UNICITY keyword is just for compatibility with previous
// implementation
cmsys::RegularExpression processingOption{
"^(ORDER|UNICITY|DEDUPLICATION)=(FORWARD|REVERSE|ALL|NONE|SHARED)$"
};
std::string errorMessage;
for (auto const& option : cmList{ libProcessing }) {
if (processingOption.find(option)) {
if (processingOption.match(1) == "ORDER") {
if (processingOption.match(2) == "FORWARD") {
this->Order = Forward;
} else if (processingOption.match(2) == "REVERSE") {
this->Order = Reverse;
} else {
errorMessage += cmStrCat(" ", option, '\n');
}
} else if (processingOption.match(1) == "UNICITY" ||
processingOption.match(1) == "DEDUPLICATION") {
if (processingOption.match(2) == "ALL") {
this->Deduplication = All;
} else if (processingOption.match(2) == "NONE") {
this->Deduplication = None;
} else if (processingOption.match(2) == "SHARED") {
this->Deduplication = Shared;
} else {
errorMessage += cmStrCat(" ", option, '\n');
}
}
} else {
errorMessage += cmStrCat(" ", option, '\n');
}
}
if (!errorMessage.empty()) {
makefile->GetCMakeInstance()->IssueMessage(
MessageType::FATAL_ERROR,
cmStrCat("Erroneous option(s) for 'CMAKE_", linkLanguage,
"_LINK_LIBRARIES_PROCESSING':\n", errorMessage),
target->GetBacktrace());
}
// For some environments, deduplication should be activated only if
// both policies CMP0156 and CMP0179 are NEW
if (makefile->GetDefinition(cmStrCat(
"CMAKE_", linkLanguage, "_PLATFORM_LINKER_ID")) == "LLD"_s &&
makefile->GetDefinition("CMAKE_EXECUTABLE_FORMAT") == "ELF"_s &&
target->GetPolicyStatusCMP0179() != cmPolicies::NEW &&
this->Deduplication == All) {
this->Deduplication = Shared;
}
}
}
}
}
void AddGroups(const std::map<size_t, std::vector<size_t>>& groups)
{
if (!groups.empty()) {
this->Groups = &groups;
// record all libraries as part of groups to ensure correct
// deduplication: libraries as part of groups are always kept.
for (const auto& g : groups) {
for (auto index : g.second) {
this->Emitted.insert(index);
}
}
}
}
void AddLibraries(const std::vector<size_t>& libEntries)
{
if (this->Order == Reverse) {
std::vector<size_t> entries;
if (this->Deduplication == All &&
this->Target->GetPolicyStatusCMP0179() == cmPolicies::NEW) {
// keep the first occurrence of the static libraries
std::set<size_t> emitted{ this->Emitted };
for (auto index : libEntries) {
LinkEntry const& entry = this->Entries[index];
if (!entry.Target ||
entry.Target->GetType() != cmStateEnums::STATIC_LIBRARY) {
entries.emplace_back(index);
continue;
}
if (this->IncludeEntry(entry) || emitted.insert(index).second) {
entries.emplace_back(index);
}
}
} else {
entries = libEntries;
}
// Iterate in reverse order so we can keep only the last occurrence
// of the shared libraries.
this->AddLibraries(cmReverseRange(entries));
} else {
this->AddLibraries(cmMakeRange(libEntries));
}
}
void AddObjects(const std::vector<size_t>& objectEntries)
{
// Place explicitly linked object files in the front. The linker will
// always use them anyway, and they may depend on symbols from libraries.
if (this->Order == Reverse) {
// Append in reverse order at the end since we reverse the final order.
for (auto index : cmReverseRange(objectEntries)) {
this->FinalEntries.emplace_back(this->Entries[index]);
}
} else {
// Append in reverse order to ensure correct final order
for (auto index : cmReverseRange(objectEntries)) {
this->FinalEntries.emplace(this->FinalEntries.begin(),
this->Entries[index]);
}
}
}
void Finalize()
{
if (this->Order == Reverse) {
// Reverse the resulting order since we iterated in reverse.
std::reverse(this->FinalEntries.begin(), this->FinalEntries.end());
}
// expand groups
if (this->Groups) {
for (const auto& g : *this->Groups) {
const LinkEntry& groupEntry = this->Entries[g.first];
auto it = this->FinalEntries.begin();
while (true) {
it = std::find_if(it, this->FinalEntries.end(),
[&groupEntry](const LinkEntry& entry) -> bool {
return groupEntry.Item == entry.Item;
});
if (it == this->FinalEntries.end()) {
break;
}
it->Item.Value = std::string(LG_ITEM_END);
for (auto index = g.second.rbegin(); index != g.second.rend();
++index) {
it = this->FinalEntries.insert(it, this->Entries[*index]);
}
it = this->FinalEntries.insert(it, groupEntry);
it->Item.Value = std::string(LG_ITEM_BEGIN);
}
}
}
}
private:
enum OrderKind
{
Forward,
Reverse
};
enum DeduplicationKind
{
None,
Shared,
All
};
bool IncludeEntry(LinkEntry const& entry) const
{
if (entry.Feature != cmComputeLinkDepends::LinkEntry::DEFAULT) {
auto const& featureAttributes = GetLinkLibraryFeatureAttributes(
this->Target->Makefile, this->LinkLanguage, entry.Feature);
if ((!entry.Target ||
featureAttributes.LibraryTypes.find(entry.Target->GetType()) !=
featureAttributes.LibraryTypes.end()) &&
featureAttributes.Deduplication !=
LinkLibraryFeatureAttributeSet::Default) {
return featureAttributes.Deduplication ==
LinkLibraryFeatureAttributeSet::No;
}
}
return this->Deduplication == None ||
(this->Deduplication == Shared &&
(!entry.Target ||
entry.Target->GetType() != cmStateEnums::SHARED_LIBRARY)) ||
(this->Deduplication == All && entry.Kind != LinkEntry::Library);
}
template <typename Range>
void AddLibraries(const Range& libEntries)
{
for (auto index : libEntries) {
LinkEntry const& entry = this->Entries[index];
if (this->IncludeEntry(entry) || this->Emitted.insert(index).second) {
this->FinalEntries.emplace_back(entry);
}
}
}
OrderKind Order = Reverse;
DeduplicationKind Deduplication = Shared;
const cmGeneratorTarget* Target;
const std::string& LinkLanguage;
EntryVector& Entries;
EntryVector& FinalEntries;
std::set<size_t> Emitted;
const std::map<size_t, std::vector<size_t>>* Groups = nullptr;
};
}
std::string const& cmComputeLinkDepends::LinkEntry::DEFAULT =
cmLinkItem::DEFAULT;
cmComputeLinkDepends::cmComputeLinkDepends(const cmGeneratorTarget* target,
const std::string& config,
const std::string& linkLanguage,
LinkLibrariesStrategy strategy)
: Target(target)
, Makefile(this->Target->Target->GetMakefile())
, GlobalGenerator(this->Target->GetLocalGenerator()->GetGlobalGenerator())
, CMakeInstance(this->GlobalGenerator->GetCMakeInstance())
, Config(config)
, DebugMode(this->Makefile->IsOn("CMAKE_LINK_DEPENDS_DEBUG_MODE") ||
this->Target->GetProperty("LINK_DEPENDS_DEBUG_MODE").IsOn())
, LinkLanguage(linkLanguage)
, LinkType(CMP0003_ComputeLinkType(
this->Config, this->Makefile->GetCMakeInstance()->GetDebugConfigs()))
, Strategy(strategy)
{
// target oriented feature override property takes precedence over
// global override property
cm::string_view lloPrefix = "LINK_LIBRARY_OVERRIDE_"_s;
auto const& keys = this->Target->GetPropertyKeys();
std::for_each(
keys.cbegin(), keys.cend(),
[this, &lloPrefix, &config, &linkLanguage](std::string const& key) {
if (cmHasPrefix(key, lloPrefix)) {
if (cmValue feature = this->Target->GetProperty(key)) {
if (!feature->empty() && key.length() > lloPrefix.length()) {
auto item = key.substr(lloPrefix.length());
cmGeneratorExpressionDAGChecker dagChecker{
this->Target,
"LINK_LIBRARY_OVERRIDE",
nullptr,
nullptr,
this->Target->GetLocalGenerator(),
config,
this->Target->GetBacktrace(),
};
auto overrideFeature = cmGeneratorExpression::Evaluate(
*feature, this->Target->GetLocalGenerator(), config,
this->Target, &dagChecker, this->Target, linkLanguage);
this->LinkLibraryOverride.emplace(item, overrideFeature);
}
}
}
});
// global override property
if (cmValue linkLibraryOverride =
this->Target->GetProperty("LINK_LIBRARY_OVERRIDE")) {
cmGeneratorExpressionDAGChecker dagChecker{
target,
"LINK_LIBRARY_OVERRIDE",
nullptr,
nullptr,
target->GetLocalGenerator(),
config,
target->GetBacktrace(),
};
auto overrideValue = cmGeneratorExpression::Evaluate(
*linkLibraryOverride, target->GetLocalGenerator(), config, target,
&dagChecker, target, linkLanguage);
auto overrideList = cmTokenize(overrideValue, ","_s);
if (overrideList.size() >= 2) {
auto const& feature = overrideList.front();
for_each(overrideList.cbegin() + 1, overrideList.cend(),
[this, &feature](std::string const& item) {
this->LinkLibraryOverride.emplace(item, feature);
});
}
}
}
cmComputeLinkDepends::~cmComputeLinkDepends() = default;
void cmComputeLinkDepends::SetOldLinkDirMode(bool b)
{
this->OldLinkDirMode = b;
}
std::vector<cmComputeLinkDepends::LinkEntry> const&
cmComputeLinkDepends::Compute()
{
// Follow the link dependencies of the target to be linked.
this->AddDirectLinkEntries();
// Complete the breadth-first search of dependencies.
while (!this->BFSQueue.empty()) {
// Get the next entry.
BFSEntry qe = this->BFSQueue.front();
this->BFSQueue.pop();
// Follow the entry's dependencies.
this->FollowLinkEntry(qe);
}
// Complete the search of shared library dependencies.
while (!this->SharedDepQueue.empty()) {
// Handle the next entry.
this->HandleSharedDependency(this->SharedDepQueue.front());
this->SharedDepQueue.pop();
}
// Infer dependencies of targets for which they were not known.
this->InferDependencies();
// finalize groups dependencies
// All dependencies which are raw items must be replaced by the group
// it belongs to, if any.
this->UpdateGroupDependencies();
// Cleanup the constraint graph.
this->CleanConstraintGraph();
// Display the constraint graph.
if (this->DebugMode) {
fprintf(stderr,
"---------------------------------------"
"---------------------------------------\n");
fprintf(stderr, "Link dependency analysis for target %s, config %s\n",
this->Target->GetName().c_str(),
this->Config.empty() ? "noconfig" : this->Config.c_str());
this->DisplayConstraintGraph();
}
// Compute the DAG of strongly connected components. The algorithm
// used by cmComputeComponentGraph should identify the components in
// the same order in which the items were originally discovered in
// the BFS. This should preserve the original order when no
// constraints disallow it.
this->CCG =
cm::make_unique<cmComputeComponentGraph>(this->EntryConstraintGraph);
this->CCG->Compute();
if (!this->CheckCircularDependencies()) {
return this->FinalLinkEntries;
}
// Compute the final ordering.
this->OrderLinkEntries();
// Display the final ordering.
if (this->DebugMode) {
this->DisplayOrderedEntries();
}
// Compute the final set of link entries.
EntriesProcessing entriesProcessing{ this->Target, this->LinkLanguage,
this->EntryList,
this->FinalLinkEntries };
// Add groups first, to ensure that libraries of the groups are always kept.
entriesProcessing.AddGroups(this->GroupItems);
entriesProcessing.AddLibraries(this->FinalLinkOrder);
entriesProcessing.AddObjects(this->ObjectEntries);
entriesProcessing.Finalize();
// Display the final set.
if (this->DebugMode) {
this->DisplayFinalEntries();
}
return this->FinalLinkEntries;
}
std::string const& cmComputeLinkDepends::GetCurrentFeature(
std::string const& item, std::string const& defaultFeature) const
{
auto it = this->LinkLibraryOverride.find(item);
return it == this->LinkLibraryOverride.end() ? defaultFeature : it->second;
}
std::pair<std::map<cmLinkItem, size_t>::iterator, bool>
cmComputeLinkDepends::AllocateLinkEntry(cmLinkItem const& item)
{
std::map<cmLinkItem, size_t>::value_type index_entry(
item, static_cast<size_t>(this->EntryList.size()));
auto lei = this->LinkEntryIndex.insert(index_entry);
if (lei.second) {
this->EntryList.emplace_back();
this->InferredDependSets.emplace_back();
this->EntryConstraintGraph.emplace_back();
}
return lei;
}
std::pair<size_t, bool> cmComputeLinkDepends::AddLinkEntry(
cmLinkItem const& item, cm::optional<size_t> const& groupIndex)
{
// Allocate a spot for the item entry.
auto lei = this->AllocateLinkEntry(item);
// Check if the item entry has already been added.
if (!lei.second) {
// Yes. We do not need to follow the item's dependencies again.
return { lei.first->second, false };
}
// Initialize the item entry.
size_t index = lei.first->second;
LinkEntry& entry = this->EntryList[index];
entry.Item = BT<std::string>(item.AsStr(), item.Backtrace);
entry.Target = item.Target;
entry.Feature = item.Feature;
if (!entry.Target && entry.Item.Value[0] == '-' &&
entry.Item.Value[1] != 'l' &&
entry.Item.Value.substr(0, 10) != "-framework") {
entry.Kind = LinkEntry::Flag;
entry.Feature = LinkEntry::DEFAULT;
} else if (cmHasPrefix(entry.Item.Value, LG_BEGIN) &&
cmHasSuffix(entry.Item.Value, '>')) {
entry.Kind = LinkEntry::Group;
}
if (entry.Kind != LinkEntry::Group) {
// If the item has dependencies queue it to follow them.
if (entry.Target) {
// Target dependencies are always known. Follow them.
BFSEntry qe = { index, groupIndex, nullptr };
this->BFSQueue.push(qe);
} else {
// Look for an old-style <item>_LIB_DEPENDS variable.
std::string var = cmStrCat(entry.Item.Value, "_LIB_DEPENDS");
if (cmValue val = this->Makefile->GetDefinition(var)) {
// The item dependencies are known. Follow them.
BFSEntry qe = { index, groupIndex, val->c_str() };
this->BFSQueue.push(qe);
} else if (entry.Kind != LinkEntry::Flag) {
// The item dependencies are not known. We need to infer them.
this->InferredDependSets[index].Initialized = true;
}
}
}
return { index, true };
}
void cmComputeLinkDepends::AddLinkObject(cmLinkItem const& item)
{
assert(!item.Target); // The item is an object file, not its target.
// Allocate a spot for the item entry.
auto lei = this->AllocateLinkEntry(item);
// Check if the item entry has already been added.
if (!lei.second) {
return;
}
// Initialize the item entry.
size_t index = lei.first->second;
LinkEntry& entry = this->EntryList[index];
entry.Item = BT<std::string>(item.AsStr(), item.Backtrace);
entry.Kind = LinkEntry::Object;
entry.ObjectSource = item.ObjectSource;
// Record explicitly linked object files separately.
this->ObjectEntries.emplace_back(index);
}
void cmComputeLinkDepends::FollowLinkEntry(BFSEntry qe)
{
// Get this entry representation.
size_t depender_index = qe.GroupIndex ? *qe.GroupIndex : qe.Index;
LinkEntry const& entry = this->EntryList[qe.Index];
// Follow the item's dependencies.
if (entry.Target) {
// Follow the target dependencies.
if (cmLinkInterface const* iface =
entry.Target->GetLinkInterface(this->Config, this->Target)) {
const bool isIface =
entry.Target->GetType() == cmStateEnums::INTERFACE_LIBRARY;
// This target provides its own link interface information.
this->AddLinkEntries(depender_index, iface->Libraries);
this->AddLinkObjects(iface->Objects);
for (auto const& language : iface->Languages) {
auto runtimeEntries = iface->LanguageRuntimeLibraries.find(language);
if (runtimeEntries != iface->LanguageRuntimeLibraries.end()) {
this->AddLinkEntries(depender_index, runtimeEntries->second);
}
}
if (isIface) {
return;
}
// Handle dependent shared libraries.
this->FollowSharedDeps(depender_index, iface);
// Support for CMP0003.
for (cmLinkItem const& oi : iface->WrongConfigLibraries) {
this->CheckWrongConfigItem(oi);
}
}
} else {
// Follow the old-style dependency list.
this->AddVarLinkEntries(depender_index, qe.LibDepends);
}
}
void cmComputeLinkDepends::FollowSharedDeps(size_t depender_index,
cmLinkInterface const* iface,
bool follow_interface)
{
// Follow dependencies if we have not followed them already.
if (this->SharedDepFollowed.insert(depender_index).second) {
if (follow_interface) {
this->QueueSharedDependencies(depender_index, iface->Libraries);
}
this->QueueSharedDependencies(depender_index, iface->SharedDeps);
}
}
void cmComputeLinkDepends::QueueSharedDependencies(
size_t depender_index, std::vector<cmLinkItem> const& deps)
{
for (cmLinkItem const& li : deps) {
SharedDepEntry qe;
qe.Item = li;
qe.DependerIndex = depender_index;
this->SharedDepQueue.push(qe);
}
}
void cmComputeLinkDepends::HandleSharedDependency(SharedDepEntry const& dep)
{
// Allocate a spot for the item entry.
auto lei = this->AllocateLinkEntry(dep.Item);
size_t index = lei.first->second;
// Check if the target does not already has an entry.
if (lei.second) {
// Initialize the item entry.
LinkEntry& entry = this->EntryList[index];
entry.Item = BT<std::string>(dep.Item.AsStr(), dep.Item.Backtrace);
entry.Target = dep.Item.Target;
// This item was added specifically because it is a dependent
// shared library. It may get special treatment
// in cmComputeLinkInformation.
entry.Kind = LinkEntry::SharedDep;
}
// Get the link entry for this target.
LinkEntry& entry = this->EntryList[index];
// This shared library dependency must follow the item that listed
// it.
this->EntryConstraintGraph[dep.DependerIndex].emplace_back(
index, true, false, cmListFileBacktrace());
// Target items may have their own dependencies.
if (entry.Target) {
if (cmLinkInterface const* iface =
entry.Target->GetLinkInterface(this->Config, this->Target)) {
// Follow public and private dependencies transitively.
this->FollowSharedDeps(index, iface, true);
}
}
}
void cmComputeLinkDepends::AddVarLinkEntries(
cm::optional<size_t> const& depender_index, const char* value)
{
// This is called to add the dependencies named by
// <item>_LIB_DEPENDS. The variable contains a semicolon-separated
// list. The list contains link-type;item pairs and just items.
cmList deplist{ value };
// Look for entries meant for this configuration.
std::vector<cmLinkItem> actual_libs;
cmTargetLinkLibraryType llt = GENERAL_LibraryType;
bool haveLLT = false;
for (std::string const& d : deplist) {
if (d == "debug") {
llt = DEBUG_LibraryType;
haveLLT = true;
} else if (d == "optimized") {
llt = OPTIMIZED_LibraryType;
haveLLT = true;
} else if (d == "general") {
llt = GENERAL_LibraryType;
haveLLT = true;
} else if (!d.empty()) {
// If no explicit link type was given prior to this entry then
// check if the entry has its own link type variable. This is
// needed for compatibility with dependency files generated by
// the export_library_dependencies command from CMake 2.4 and
// lower.
if (!haveLLT) {
std::string var = cmStrCat(d, "_LINK_TYPE");
if (cmValue val = this->Makefile->GetDefinition(var)) {
if (*val == "debug") {
llt = DEBUG_LibraryType;
} else if (*val == "optimized") {
llt = OPTIMIZED_LibraryType;
}
}
}
// If the library is meant for this link type then use it.
if (llt == GENERAL_LibraryType || llt == this->LinkType) {
actual_libs.emplace_back(this->ResolveLinkItem(depender_index, d));
} else if (this->OldLinkDirMode) {
cmLinkItem item = this->ResolveLinkItem(depender_index, d);
this->CheckWrongConfigItem(item);
}
// Reset the link type until another explicit type is given.
llt = GENERAL_LibraryType;
haveLLT = false;
}
}
// Add the entries from this list.
this->AddLinkEntries(depender_index, actual_libs);
}
void cmComputeLinkDepends::AddDirectLinkEntries()
{
// Add direct link dependencies in this configuration.
cmLinkImplementation const* impl = this->Target->GetLinkImplementation(
this->Config, cmGeneratorTarget::UseTo::Link);
this->AddLinkEntries(cm::nullopt, impl->Libraries);
this->AddLinkObjects(impl->Objects);
for (auto const& language : impl->Languages) {
auto runtimeEntries = impl->LanguageRuntimeLibraries.find(language);
if (runtimeEntries != impl->LanguageRuntimeLibraries.end()) {
this->AddLinkEntries(cm::nullopt, runtimeEntries->second);
}
}
for (cmLinkItem const& wi : impl->WrongConfigLibraries) {
this->CheckWrongConfigItem(wi);
}
}
template <typename T>
void cmComputeLinkDepends::AddLinkEntries(
cm::optional<size_t> const& depender_index, std::vector<T> const& libs)
{
// Track inferred dependency sets implied by this list.
std::map<size_t, DependSet> dependSets;
cm::optional<std::pair<size_t, bool>> group;
std::vector<size_t> groupItems;
// Loop over the libraries linked directly by the depender.
for (T const& l : libs) {
// Skip entries that will resolve to the target getting linked or
// are empty.
cmLinkItem const& item = l;
if (item.AsStr() == this->Target->GetName() || item.AsStr().empty()) {
continue;
}
// emit a warning if an undefined feature is used as part of
// an imported target
if (item.Feature != LinkEntry::DEFAULT && depender_index) {
const auto& depender = this->EntryList[*depender_index];
if (depender.Target && depender.Target->IsImported() &&
!IsFeatureSupported(this->Makefile, this->LinkLanguage,
item.Feature)) {
this->CMakeInstance->IssueMessage(
MessageType::AUTHOR_ERROR,
cmStrCat("The 'IMPORTED' target '", depender.Target->GetName(),
"' uses the generator-expression '$<LINK_LIBRARY>' with "
"the feature '",
item.Feature,
"', which is undefined or unsupported.\nDid you miss to "
"define it by setting variables \"CMAKE_",
this->LinkLanguage, "_LINK_LIBRARY_USING_", item.Feature,
"\" and \"CMAKE_", this->LinkLanguage,
"_LINK_LIBRARY_USING_", item.Feature, "_SUPPORTED\"?"),
this->Target->GetBacktrace());
}
}
if (cmHasPrefix(item.AsStr(), LG_BEGIN) &&
cmHasSuffix(item.AsStr(), '>')) {
group = this->AddLinkEntry(item, cm::nullopt);
if (group->second) {
LinkEntry& entry = this->EntryList[group->first];
entry.Feature = ExtractGroupFeature(item.AsStr());
}
if (depender_index) {
this->EntryConstraintGraph[*depender_index].emplace_back(
group->first, false, false, cmListFileBacktrace());
} else {
// This is a direct dependency of the target being linked.
this->OriginalEntries.push_back(group->first);
}
continue;
}
size_t dependee_index;
if (cmHasPrefix(item.AsStr(), LG_END) && cmHasSuffix(item.AsStr(), '>')) {
assert(group);
dependee_index = group->first;
if (group->second) {
this->GroupItems.emplace(group->first, std::move(groupItems));
}
group = cm::nullopt;
groupItems.clear();
continue;
}
if (depender_index && group) {
const auto& depender = this->EntryList[*depender_index];
const auto& groupFeature = this->EntryList[group->first].Feature;
if (depender.Target && depender.Target->IsImported() &&
!IsGroupFeatureSupported(this->Makefile, this->LinkLanguage,
groupFeature)) {
this->CMakeInstance->IssueMessage(
MessageType::AUTHOR_ERROR,
cmStrCat("The 'IMPORTED' target '", depender.Target->GetName(),
"' uses the generator-expression '$<LINK_GROUP>' with "
"the feature '",
groupFeature,
"', which is undefined or unsupported.\nDid you miss to "
"define it by setting variables \"CMAKE_",
this->LinkLanguage, "_LINK_GROUP_USING_", groupFeature,
"\" and \"CMAKE_", this->LinkLanguage, "_LINK_GROUP_USING_",
groupFeature, "_SUPPORTED\"?"),
this->Target->GetBacktrace());
}
}
// Add a link entry for this item.
auto ale = this->AddLinkEntry(
item, group ? cm::optional<size_t>(group->first) : cm::nullopt);
dependee_index = ale.first;
LinkEntry& entry = this->EntryList[dependee_index];
bool supportedItem = true;
auto const& itemFeature =
this->GetCurrentFeature(entry.Item.Value, item.Feature);
if (group && ale.second && entry.Target &&
(entry.Target->GetType() == cmStateEnums::TargetType::OBJECT_LIBRARY ||
entry.Target->GetType() ==
cmStateEnums::TargetType::INTERFACE_LIBRARY)) {
supportedItem = false;
const auto& groupFeature = this->EntryList[group->first].Feature;
this->CMakeInstance->IssueMessage(
MessageType::AUTHOR_WARNING,
cmStrCat(
"The feature '", groupFeature,
"', specified as part of a generator-expression "
"'$",
LG_BEGIN, groupFeature, ">', will not be applied to the ",
(entry.Target->GetType() == cmStateEnums::TargetType::OBJECT_LIBRARY
? "OBJECT"
: "INTERFACE"),
" library '", entry.Item.Value, "'."),
this->Target->GetBacktrace());
}
// check if feature is applicable to this item
if (itemFeature != LinkEntry::DEFAULT && entry.Target) {
auto const& featureAttributes = GetLinkLibraryFeatureAttributes(
this->Makefile, this->LinkLanguage, itemFeature);
if (featureAttributes.LibraryTypes.find(entry.Target->GetType()) ==
featureAttributes.LibraryTypes.end()) {
supportedItem = false;
this->CMakeInstance->IssueMessage(
MessageType::AUTHOR_WARNING,
cmStrCat("The feature '", itemFeature,
"', specified as part of a generator-expression "
"'$<LINK_LIBRARY:",
itemFeature, ">', will not be applied to the ",
cmState::GetTargetTypeName(entry.Target->GetType()), " '",
entry.Item.Value, "'."),
this->Target->GetBacktrace());
}
}
if (ale.second) {
// current item not yet defined
entry.Feature = itemFeature;
if (!supportedItem) {
entry.Feature = LinkEntry::DEFAULT;
}
}
if (supportedItem) {
if (group) {
const auto& currentFeature = this->EntryList[group->first].Feature;
for (const auto& g : this->GroupItems) {
const auto& groupFeature = this->EntryList[g.first].Feature;
if (groupFeature == currentFeature) {
continue;
}
if (std::find(g.second.cbegin(), g.second.cend(), dependee_index) !=
g.second.cend()) {
this->CMakeInstance->IssueMessage(
MessageType::FATAL_ERROR,
cmStrCat("Impossible to link target '", this->Target->GetName(),
"' because the link item '", entry.Item.Value,
"', specified with the group feature '", currentFeature,
'\'', ", has already occurred with the feature '",
groupFeature, '\'', ", which is not allowed."),
this->Target->GetBacktrace());
continue;
}
}
}
if (entry.Feature != itemFeature) {
bool incompatibleFeatures = true;
// check if an override is possible
auto const& entryFeatureAttributes = GetLinkLibraryFeatureAttributes(
this->Makefile, this->LinkLanguage, entry.Feature);
auto const& itemFeatureAttributes = GetLinkLibraryFeatureAttributes(
this->Makefile, this->LinkLanguage, itemFeature);
if (itemFeatureAttributes.Override.find(entry.Feature) !=
itemFeatureAttributes.Override.end() &&
entryFeatureAttributes.Override.find(itemFeature) !=
entryFeatureAttributes.Override.end()) {
// features override each other
this->CMakeInstance->IssueMessage(
MessageType::FATAL_ERROR,
cmStrCat("Impossible to link target '", this->Target->GetName(),
"' because the link item '", entry.Item.Value,
"' is specified with the features '", itemFeature,
"' and '", entry.Feature, "'",
", and both have an 'OVERRIDE' attribute that overrides "
"the other. Such cycles are not allowed."),
this->Target->GetBacktrace());
} else {
if (itemFeatureAttributes.Override.find(entry.Feature) !=
itemFeatureAttributes.Override.end()) {
entry.Feature = itemFeature;
incompatibleFeatures = false;
} else if (entryFeatureAttributes.Override.find(itemFeature) !=
entryFeatureAttributes.Override.end()) {
incompatibleFeatures = false;
}
if (incompatibleFeatures) {
// incompatibles features occurred
this->CMakeInstance->IssueMessage(
MessageType::FATAL_ERROR,
cmStrCat(
"Impossible to link target '", this->Target->GetName(),
"' because the link item '", entry.Item.Value, "', specified ",
(itemFeature == LinkEntry::DEFAULT
? "without any feature or 'DEFAULT' feature"
: cmStrCat("with the feature '", itemFeature, '\'')),
", has already occurred ",
(entry.Feature == LinkEntry::DEFAULT
? "without any feature or 'DEFAULT' feature"
: cmStrCat("with the feature '", entry.Feature, '\'')),
", which is not allowed."),
this->Target->GetBacktrace());
}
}
}
}
if (group) {
// store item index for dependencies handling
groupItems.push_back(dependee_index);
} else {
std::vector<size_t> indexes;
bool entryHandled = false;
// search any occurrence of the library in already defined groups
for (const auto& g : this->GroupItems) {
for (auto index : g.second) {
if (entry.Item.Value == this->EntryList[index].Item.Value) {
indexes.push_back(g.first);
entryHandled = true;
break;
}
}
}
if (!entryHandled) {
indexes.push_back(dependee_index);
}
for (auto index : indexes) {
// The dependee must come after the depender.
if (depender_index) {
this->EntryConstraintGraph[*depender_index].emplace_back(
index, false, false, cmListFileBacktrace());
} else {
// This is a direct dependency of the target being linked.
this->OriginalEntries.push_back(index);
}
// Update the inferred dependencies for earlier items.
for (auto& dependSet : dependSets) {
// Add this item to the inferred dependencies of other items.
// Target items are never inferred dependees because unknown
// items are outside libraries that should not be depending on
// targets.
if (!this->EntryList[index].Target &&
this->EntryList[index].Kind != LinkEntry::Flag &&
this->EntryList[index].Kind != LinkEntry::Group &&
dependee_index != dependSet.first) {
dependSet.second.insert(index);
}
}
// If this item needs to have dependencies inferred, do so.
if (this->InferredDependSets[index].Initialized) {
// Make sure an entry exists to hold the set for the item.
dependSets[index];
}
}
}
}
// Store the inferred dependency sets discovered for this list.
for (auto const& dependSet : dependSets) {
this->InferredDependSets[dependSet.first].push_back(dependSet.second);
}
}
void cmComputeLinkDepends::AddLinkObjects(std::vector<cmLinkItem> const& objs)
{
for (cmLinkItem const& obj : objs) {
this->AddLinkObject(obj);
}
}
cmLinkItem cmComputeLinkDepends::ResolveLinkItem(
cm::optional<size_t> const& depender_index, const std::string& name)
{
// Look for a target in the scope of the depender.
cmGeneratorTarget const* from = this->Target;
if (depender_index) {
if (cmGeneratorTarget const* depender =
this->EntryList[*depender_index].Target) {
from = depender;
}
}
return from->ResolveLinkItem(BT<std::string>(name));
}
void cmComputeLinkDepends::InferDependencies()
{
// The inferred dependency sets for each item list the possible
// dependencies. The intersection of the sets for one item form its
// inferred dependencies.
for (size_t depender_index = 0;
depender_index < this->InferredDependSets.size(); ++depender_index) {
// Skip items for which dependencies do not need to be inferred or
// for which the inferred dependency sets are empty.
DependSetList& sets = this->InferredDependSets[depender_index];
if (!sets.Initialized || sets.empty()) {
continue;
}
// Intersect the sets for this item.
DependSet common = sets.front();
for (DependSet const& i : cmMakeRange(sets).advance(1)) {
DependSet intersection;
std::set_intersection(common.begin(), common.end(), i.begin(), i.end(),
std::inserter(intersection, intersection.begin()));
common = intersection;
}
// Add the inferred dependencies to the graph.
cmGraphEdgeList& edges = this->EntryConstraintGraph[depender_index];
edges.reserve(edges.size() + common.size());
for (auto const& c : common) {
edges.emplace_back(c, true, false, cmListFileBacktrace());
}
}
}
void cmComputeLinkDepends::UpdateGroupDependencies()
{
if (this->GroupItems.empty()) {
return;
}
// Walks through all entries of the constraint graph to replace dependencies
// over raw items by the group it belongs to, if any.
for (auto& edgeList : this->EntryConstraintGraph) {
for (auto& edge : edgeList) {
size_t index = edge;
if (this->EntryList[index].Kind == LinkEntry::Group ||
this->EntryList[index].Kind == LinkEntry::Flag ||
this->EntryList[index].Kind == LinkEntry::Object) {
continue;
}
// search the item in the defined groups
for (const auto& groupItems : this->GroupItems) {
auto pos = std::find(groupItems.second.cbegin(),
groupItems.second.cend(), index);
if (pos != groupItems.second.cend()) {
// replace lib dependency by the group it belongs to
edge = cmGraphEdge{ groupItems.first, false, false,
cmListFileBacktrace() };
}
}
}
}
}
void cmComputeLinkDepends::CleanConstraintGraph()
{
for (cmGraphEdgeList& edgeList : this->EntryConstraintGraph) {
// Sort the outgoing edges for each graph node so that the
// original order will be preserved as much as possible.
std::sort(edgeList.begin(), edgeList.end());
// Make the edge list unique.
edgeList.erase(std::unique(edgeList.begin(), edgeList.end()),
edgeList.end());
}
}
bool cmComputeLinkDepends::CheckCircularDependencies() const
{
std::vector<NodeList> const& components = this->CCG->GetComponents();
size_t nc = components.size();
for (size_t c = 0; c < nc; ++c) {
// Get the current component.
NodeList const& nl = components[c];
// Skip trivial components.
if (nl.size() < 2) {
continue;
}
// no group must be evolved
bool cycleDetected = false;
for (size_t ni : nl) {
if (this->EntryList[ni].Kind == LinkEntry::Group) {
cycleDetected = true;
break;
}
}
if (!cycleDetected) {
continue;
}
// Construct the error message.
auto formatItem = [](LinkEntry const& entry) -> std::string {
if (entry.Kind == LinkEntry::Group) {
auto items =
entry.Item.Value.substr(entry.Item.Value.find(':', 12) + 1);
items.pop_back();
std::replace(items.begin(), items.end(), '|', ',');
return cmStrCat("group \"", ExtractGroupFeature(entry.Item.Value),
":{", items, "}\"");
}
return cmStrCat('"', entry.Item.Value, '"');
};
std::ostringstream e;
e << "The inter-target dependency graph, for the target \""
<< this->Target->GetName()
<< "\", contains the following strongly connected component "
"(cycle):\n";
std::vector<size_t> const& cmap = this->CCG->GetComponentMap();
for (size_t i : nl) {
// Get the depender.
LinkEntry const& depender = this->EntryList[i];
// Describe the depender.
e << " " << formatItem(depender) << "\n";
// List its dependencies that are inside the component.
EdgeList const& el = this->EntryConstraintGraph[i];
for (cmGraphEdge const& ni : el) {
size_t j = ni;
if (cmap[j] == c) {
LinkEntry const& dependee = this->EntryList[j];
e << " depends on " << formatItem(dependee) << "\n";
}
}
}
this->CMakeInstance->IssueMessage(MessageType::FATAL_ERROR, e.str(),
this->Target->GetBacktrace());
return false;
}
return true;
}
void cmComputeLinkDepends::DisplayConstraintGraph()
{
// Display the graph nodes and their edges.
std::ostringstream e;
for (size_t i = 0; i < this->EntryConstraintGraph.size(); ++i) {
EdgeList const& nl = this->EntryConstraintGraph[i];
e << "item " << i << " is [" << this->EntryList[i].Item << "]\n";
e << cmWrap(" item ", nl, " must follow it", "\n") << "\n";
}
fprintf(stderr, "%s\n", e.str().c_str());
}
void cmComputeLinkDepends::OrderLinkEntries()
{
// The component graph is guaranteed to be acyclic. Start a DFS
// from every entry to compute a topological order for the
// components.
Graph const& cgraph = this->CCG->GetComponentGraph();
size_t n = cgraph.size();
this->ComponentVisited.resize(cgraph.size(), 0);
this->ComponentOrder.resize(cgraph.size(), n);
this->ComponentOrderId = n;
// Run in reverse order so the topological order will preserve the
// original order where there are no constraints.
for (size_t c = n; c > 0; --c) {
this->VisitComponent(c - 1);
}
// Display the component graph.
if (this->DebugMode) {
this->DisplayComponents();
}
// Start with the original link line.
switch (this->Strategy) {
case LinkLibrariesStrategy::REORDER_MINIMALLY: {
// Emit the direct dependencies in their original order.
// This gives projects control over ordering.
for (size_t originalEntry : this->OriginalEntries) {
this->VisitEntry(originalEntry);
}
} break;
case LinkLibrariesStrategy::REORDER_FREELY: {
// Schedule the direct dependencies for emission in topo order.
// This may produce more efficient link lines.
for (size_t originalEntry : this->OriginalEntries) {
this->MakePendingComponent(
this->CCG->GetComponentMap()[originalEntry]);
}
} break;
}
// Now explore anything left pending. Since the component graph is
// guaranteed to be acyclic we know this will terminate.
while (!this->PendingComponents.empty()) {
// Visit one entry from the first pending component. The visit
// logic will update the pending components accordingly. Since
// the pending components are kept in topological order this will
// not repeat one.
size_t e = *this->PendingComponents.begin()->second.Entries.begin();
this->VisitEntry(e);
}
}
void cmComputeLinkDepends::DisplayComponents()
{
fprintf(stderr, "The strongly connected components are:\n");
std::vector<NodeList> const& components = this->CCG->GetComponents();
for (size_t c = 0; c < components.size(); ++c) {
fprintf(stderr, "Component (%zu):\n", c);
NodeList const& nl = components[c];
for (size_t i : nl) {
fprintf(stderr, " item %zu [%s]\n", i,
this->EntryList[i].Item.Value.c_str());
}
EdgeList const& ol = this->CCG->GetComponentGraphEdges(c);
for (cmGraphEdge const& oi : ol) {
size_t i = oi;
fprintf(stderr, " followed by Component (%zu)\n", i);
}
fprintf(stderr, " topo order index %zu\n", this->ComponentOrder[c]);
}
fprintf(stderr, "\n");
}
void cmComputeLinkDepends::VisitComponent(size_t c)
{
// Check if the node has already been visited.
if (this->ComponentVisited[c]) {
return;
}
// We are now visiting this component so mark it.
this->ComponentVisited[c] = 1;
// Visit the neighbors of the component first.
// Run in reverse order so the topological order will preserve the
// original order where there are no constraints.
EdgeList const& nl = this->CCG->GetComponentGraphEdges(c);
for (cmGraphEdge const& edge : cmReverseRange(nl)) {
this->VisitComponent(edge);
}
// Assign an ordering id to this component.
this->ComponentOrder[c] = --this->ComponentOrderId;
}
void cmComputeLinkDepends::VisitEntry(size_t index)
{
// Include this entry on the link line.
this->FinalLinkOrder.push_back(index);
// This entry has now been seen. Update its component.
bool completed = false;
size_t component = this->CCG->GetComponentMap()[index];
auto mi = this->PendingComponents.find(this->ComponentOrder[component]);
if (mi != this->PendingComponents.end()) {
// The entry is in an already pending component.
PendingComponent& pc = mi->second;
// Remove the entry from those pending in its component.
pc.Entries.erase(index);
if (pc.Entries.empty()) {
// The complete component has been seen since it was last needed.
--pc.Count;
if (pc.Count == 0) {
// The component has been completed.
this->PendingComponents.erase(mi);
completed = true;
} else {
// The whole component needs to be seen again.
NodeList const& nl = this->CCG->GetComponent(component);
assert(nl.size() > 1);
pc.Entries.insert(nl.begin(), nl.end());
}
}
} else {
// The entry is not in an already pending component.
NodeList const& nl = this->CCG->GetComponent(component);
if (nl.size() > 1) {
// This is a non-trivial component. It is now pending.
PendingComponent& pc = this->MakePendingComponent(component);
// The starting entry has already been seen.
pc.Entries.erase(index);
} else {
// This is a trivial component, so it is already complete.
completed = true;
}
}
// If the entry completed a component, the component's dependencies
// are now pending.
if (completed) {
EdgeList const& ol = this->CCG->GetComponentGraphEdges(component);
for (cmGraphEdge const& oi : ol) {
// This entire component is now pending no matter whether it has
// been partially seen already.
this->MakePendingComponent(oi);
}
}
}
cmComputeLinkDepends::PendingComponent&
cmComputeLinkDepends::MakePendingComponent(size_t component)
{
// Create an entry (in topological order) for the component.
PendingComponent& pc =
this->PendingComponents[this->ComponentOrder[component]];
pc.Id = component;
NodeList const& nl = this->CCG->GetComponent(component);
if (nl.size() == 1) {
// Trivial components need be seen only once.
pc.Count = 1;
} else {
// This is a non-trivial strongly connected component of the
// original graph. It consists of two or more libraries
// (archives) that mutually require objects from one another. In
// the worst case we may have to repeat the list of libraries as
// many times as there are object files in the biggest archive.
// For now we just list them twice.
//
// The list of items in the component has been sorted by the order
// of discovery in the original BFS of dependencies. This has the
// advantage that the item directly linked by a target requiring
// this component will come first which minimizes the number of
// repeats needed.
pc.Count = this->ComputeComponentCount(nl);
}
// Store the entries to be seen.
pc.Entries.insert(nl.begin(), nl.end());
return pc;
}
size_t cmComputeLinkDepends::ComputeComponentCount(NodeList const& nl)
{
size_t count = 2;
for (size_t ni : nl) {
if (cmGeneratorTarget const* target = this->EntryList[ni].Target) {
if (cmLinkInterface const* iface =
target->GetLinkInterface(this->Config, this->Target)) {
if (iface->Multiplicity > count) {
count = iface->Multiplicity;
}
}
}
}
return count;
}
namespace {
void DisplayLinkEntry(int& count, cmComputeLinkDepends::LinkEntry const& entry)
{
if (entry.Kind == cmComputeLinkDepends::LinkEntry::Group) {
if (entry.Item.Value == LG_ITEM_BEGIN) {
fprintf(stderr, " start group");
count = 4;
} else if (entry.Item.Value == LG_ITEM_END) {
fprintf(stderr, " end group");
count = 2;
} else {
fprintf(stderr, " group");
}
} else if (entry.Target) {
fprintf(stderr, "%*starget [%s]", count, "",
entry.Target->GetName().c_str());
} else {
fprintf(stderr, "%*sitem [%s]", count, "", entry.Item.Value.c_str());
}
if (entry.Feature != cmComputeLinkDepends::LinkEntry::DEFAULT) {
fprintf(stderr, ", feature [%s]", entry.Feature.c_str());
}
fprintf(stderr, "\n");
}
}
void cmComputeLinkDepends::DisplayOrderedEntries()
{
fprintf(stderr, "target [%s] link dependency ordering:\n",
this->Target->GetName().c_str());
int count = 2;
for (auto index : this->FinalLinkOrder) {
DisplayLinkEntry(count, this->EntryList[index]);
}
fprintf(stderr, "\n");
}
void cmComputeLinkDepends::DisplayFinalEntries()
{
fprintf(stderr, "target [%s] link line:\n", this->Target->GetName().c_str());
int count = 2;
for (LinkEntry const& entry : this->FinalLinkEntries) {
DisplayLinkEntry(count, entry);
}
fprintf(stderr, "\n");
}
void cmComputeLinkDepends::CheckWrongConfigItem(cmLinkItem const& item)
{
if (!this->OldLinkDirMode) {
return;
}
// For CMake 2.4 bug-compatibility we need to consider the output
// directories of targets linked in another configuration as link
// directories.
if (item.Target && !item.Target->IsImported()) {
this->OldWrongConfigItems.insert(item.Target);
}
}
|