1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
<HTML><HEAD><TITLE>Manpage of HYBRD_</TITLE>
</HEAD><BODY>
<H1>HYBRD_</H1>
Section: C Library Functions (3)<BR>Updated: March 8, 2002<BR><A HREF="#index">Index</A>
<A HREF="index.html">Return to Main Contents</A><HR>
<A NAME="lbAB"> </A>
<H2>NAME</H2>
hybrd_, hybrd1_ - find a zero of a system of nonlinear function
<A NAME="lbAC"> </A>
<H2>SYNOPSIS</H2>
<B>#include <<A HREF="file:/usr/include/minpack.h">minpack.h</A>></B>
<P>
<DL COMPACT>
<DT>
<B>void hybrd1_ ( </B>
<B>void (*</B><I>fcn</I><B>)(</B>
<B>int *</B><I>n</I><B>,</B>
<B>double *</B><I>x</I><B>,</B>
<DD>
<B>double *</B><I>fvec</I><B>,</B>
<B>int *</B><I>iflag</I><B>),</B>
<DL COMPACT><DT><DD>
<B>int *</B><I>n</I><B>,</B>
<B>double *</B><I>x</I><B>,</B>
<B>double *</B><I>fvec</I><B>,</B>
<DD>
<B>double *</B><I>tol</I><B>,</B>
<B>int *</B><I>info</I><B>,</B>
<B>double *</B><I>wa</I><B>,</B>
<DD>
<B>int *</B><I>lwa</I><B>);</B>
</DL>
<DT>
<B>void hybrd_</B>
<B>( void (*</B><I>fcn</I><B>)(</B>
<B>int * </B><I>n</I><B>,</B>
<B>double *</B><I>x</I><B>,</B>
<DD>
<B>double *</B><I>fvec</I><B>,</B>
<B>int *</B><I>iflag</I><B>),</B>
<DL COMPACT><DT><DD>
<B>int *</B><I>n</I><B>,</B>
<B>double *</B><I>x</I><B>,</B>
<B>double *</B><I>fvec</I><B>,</B>
<DD>
<B>double *</B><I>xtol</I><B>,</B>
<B>int *</B><I>maxfev</I><B>,</B>
<B>int *</B><I>ml</I><B>,</B>
<B>int *</B><I>mu</I><B>,</B>
<DD>
<B>double *</B><I>epsfcn</I><B>,</B>
<B>double *</B><I>diag</I><B>,</B>
<B>int *</B><I>mode</I><B>,</B>
<B>double *</B><I>factor</I><B>,</B>
<B>int *</B><I>nprint</I><B>,</B>
<B>int *</B><I>info</I><B>,</B>
<DD>
<B>int *</B><I>nfev</I><B>,</B>
<B>double *</B><I>fjac</I><B>,</B>
<B>int *</B><I>ldfjac</I><B>,</B>
<DD>
<B>double *</B><I>r</I><B>,</B>
<B>int *</B><I>lr</I><B>,</B>
<B>double *</B><I>qtf</I><B>,</B>
<DD>
<B>double *</B><I>wa1</I><B>,</B>
<B>double *</B><I>wa2</I><B>,</B>
<B>double *</B><I>wa3</I><B>,</B>
<B>double *</B><I>wa4</I><B>);</B>
</DL>
<DD>
</DL>
<A NAME="lbAD"> </A>
<H2>DESCRIPTION</H2>
<DD>The purpose of <B>hybrd_</B> is to find a zero of a system of
<I>n</I> nonlinear functions in <I>n</I> variables by a modification
of the Powell hybrid method. The user must provide a
subroutine which calculates the functions. The Jacobian is
then calculated by a forward-difference approximation.
<P>
<B>hybrd1_</B> serves the same function but has a simplified calling
sequence.
<BR>
<A NAME="lbAE"> </A>
<H3>Language notes</H3>
<B>hybrd_</B> and <B>hybrd1_</B> are written in FORTRAN. If calling from
C, keep these points in mind:
<DL COMPACT>
<DT>Name mangling.<DD>
With <B>g77</B> version 2.95 or 3.0, all the function names end in an
underscore. This may change with future versions of <B>g77</B>.
<DT>Compile with <B>g77</B>.<DD>
Even if your program is all C code, you should link with <B>g77</B>
so it will pull in the FORTRAN libraries automatically. It's easiest
just to use <B>g77</B> to do all the compiling. (It handles C just fine.)
<DT>Call by reference.<DD>
All function parameters must be pointers.
<DT>Column-major arrays.<DD>
Suppose a function returns an array with 5 rows and 3 columns in an
array <I>z</I> and in the call you have declared a leading dimension of
7. The FORTRAN and equivalent C references are:
<P>
<PRE>
z(1,1) z[0]
z(2,1) z[1]
z(5,1) z[4]
z(1,2) z[7]
z(1,3) z[14]
z(i,j) z[(i-1) + (j-1)*7]
</PRE>
</DL>
<A NAME="lbAF"> </A>
<H3>Parameters for both functions</H3>
<I>fcn</I> is the name of the user-supplied subroutine which calculates
the functions. In FORTRAN, <I>fcn</I> must be declared in an external
statement in the user calling program, and should be written as
follows:
<P>
<PRE>
subroutine fcn(n,x,fvec,iflag)
integer n,iflag
double precision x(n),fvec(n)
----------
calculate the functions at x and
return this vector in fvec.
---------
return
end
</PRE>
<P>
<P>
In C, <I>fcn</I> should be written as follows:
<P>
<PRE>
void fcn(int n, double *x, double *fvec, int *iflag)
{
/* calculate the functions at x and
return this vector in fvec. */
}
</PRE>
<P>
The value of <I>iflag</I> should not be changed by <I>fcn</I> unless
the user wants to terminate execution of <B>hybrd_</B>.
In this case set <I>iflag</I> to a negative integer.
<P>
<I>n</I> is a positive integer input variable set to the number
of functions and variables.
<P>
<I>x</I> is an array of length <I>n</I>. On input <I>x</I> must contain
an initial estimate of the solution vector. On output <I>x</I>
contains the final estimate of the solution vector.
<P>
<I>fvec</I> is an output array of length <I>n</I> which contains
the functions evaluated at the output <I>x</I>.
<BR>
<A NAME="lbAG"> </A>
<H3>Parameters for <B>hybrd1_</B></H3>
<P>
<I>tol</I> is a nonnegative input variable. Termination occurs
when the algorithm estimates that the relative error
between <I>x</I> and the solution is at most <I>tol</I>.
<P>
<I>info</I> is an integer output variable. If the user has
terminated execution, <I>info</I> is set to the (negative)
value of <I>iflag</I>. See description of <I>fcn</I>. Otherwise,
<I>info</I> is set as follows.
<P>
<I>info</I> = 0 improper input parameters.
<P>
<I>info</I> = 1 algorithm estimates that the relative error
<BR> between <I>x</I> and the solution is at most <I>tol</I>.
<P>
<I>info</I> = 2 number of calls to fcn has reached or exceeded
<BR> 200*(<I>n</I>+1).
<P>
<I>info</I> = 3 <I>tol</I> is too small. No further improvement in
<BR> the approximate solution <I>x</I> is possible.
<P>
<I>info</I> = 4 iteration is not making good progress.
<P>
<I>wa</I> is a work array of length <I>lwa</I>.
<P>
<I>lwa</I> is a positive integer input variable not less than
(<I>n</I>*(3*<I>n</I>+13))/2.
<BR>
<A NAME="lbAH"> </A>
<H3>Parameters for <B>hybrd_</B></H3>
<P>
<I>xtol</I> is a nonnegative input variable. Termination
occurs when the relative error between two consecutive
iterates is at most <I>xtol</I>.
<P>
<I>maxfev</I> is a positive integer input variable. Termination
occurs when the number of calls to <I>fcn</I> is at least <I>maxfev</I>
by the end of an iteration.
<P>
<I>ml</I> is a nonnegative integer input variable which specifies
the number of subdiagonals within the band of the
jacobian matrix. If the Jacobian is not banded, set
<I>ml</I> to at least <I>n</I> - 1.
<P>
<I>mu</I> is a nonnegative integer input variable which specifies
the number of superdiagonals within the band of the
jacobian matrix. If the jacobian is not banded, set
mu to at least <I>n</I> - 1.
<P>
<I>epsfcn</I> is an input variable used in determining a suitable
step length for the forward-difference approximation. This
approximation assumes that the relative errors in the
functions are of the order of <I>epsfcn</I>. If <I>epsfcn</I> is less
than the machine precision, it is assumed that the relative
errors in the functions are of the order of the machine
precision.
<P>
<I>diag</I> is an array of length <I>n</I>. If <I>mode</I> = 1 (see
below), <I>diag</I> is internally set. If <I>mode</I> = 2, <I>diag</I>
must contain positive entries that serve as
multiplicative scale factors for the variables.
<P>
<I>mode</I> is an integer input variable. If <I>mode</I> = 1, the
variables will be scaled internally. If <I>mode</I> = 2,
the scaling is specified by the input <I>diag</I>. Other
values of mode are equivalent to <I>mode</I> = 1.
<P>
<I>factor</I> is a positive input variable used in determining the
initial step bound. This bound is set to the product of
<I>factor</I> and the euclidean norm of diag*x if nonzero, or else
to <I>factor</I> itself. In most cases factor should lie in the
interval (.1,100.). 100. Is a generally recommended value.
<P>
<I>nprint</I> is an integer input variable that enables controlled
printing of iterates if it is positive. In this case,
<I>fcn</I> is called with <I>iflag</I> = 0 at the beginning of the first
iteration and every nprint iterations thereafter and
immediately prior to return, with <I>x</I> and <I>fvec</I> available
for printing. If <I>nprint</I> is not positive, no special calls
of <I>fcn</I> with <I>iflag</I> = 0 are made.
<P>
<I>info</I> is an integer output variable. If the user has
terminated execution, <I>info</I> is set to the (negative)
value of <I>iflag</I>. See description of <I>fcn</I>. Otherwise,
<I>info</I> is set as follows.
<P>
<I>info</I> = 0 improper input parameters.
<P>
<I>info</I> = 1 relative error between two consecutive iterates
<BR> is at most <I>xtol</I>.
<P>
<I>info</I> = 2 number of calls to <I>fcn</I> has reached or exceeded
<BR> <I>maxfev</I>.
<P>
<I>info</I> = 3 <I>xtol</I> is too small. No further improvement in
<BR> the approximate solution <I>x</I> is possible.
<P>
<I>info</I> = 4 iteration is not making good progress, as
<BR> measured by the improvement from the last
<BR> five jacobian evaluations.
<P>
<I>info</I> = 5 iteration is not making good progress, as
<BR> measured by the improvement from the last
<BR> ten iterations.
<P>
<I>nfev</I> is an integer output variable set to the number of
calls to <I>fcn</I>.
<P>
<I>fjac</I> is an output <I>n</I> by <I>n</I> array which contains the
orthogonal matrix <I>q</I> produced by the <I>qr</I> factorization
of the final approximate jacobian.
<P>
<I>ldfjac</I> is a positive integer input variable not less than <I>n</I>
which specifies the leading dimension of the array <I>fjac</I>.
<P>
<I>r</I> is an output array of length <I>lr</I> which contains the
upper triangular matrix produced by the <I>qr</I> factorization
of the final approximate Jacobian, stored rowwise.
<P>
<I>lr</I> is a positive integer input variable not less than
(<I>n</I>*(<I>n</I>+1))/2.
<P>
<I>qtf</I> is an output array of length <I>n</I> which contains
the vector (q transpose)*<I>fvec</I>.
<P>
<I>wa1</I>, <I>wa2</I>, <I>wa3</I>, and <I>wa4</I> are work arrays of length <I>n</I>.
<P>
<A NAME="lbAI"> </A>
<H2>SEE ALSO</H2>
<B><A HREF="hybrj_.html">hybrj</A></B>(3),
<B><A HREF="hybrj_.html">hybrj1</A></B>(3).
<BR>
<P>
<A NAME="lbAJ"> </A>
<H2>AUTHORS</H2>
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More.
<BR>
This manual page was written by Jim Van Zandt <<A HREF="mailto:jrv@debian.org">jrv@debian.org</A>>,
for the Debian GNU/Linux system (but may be used by others).
<P>
<HR>
<A NAME="index"> </A><H2>Index</H2>
<DL>
<DT><A HREF="#lbAB">NAME</A><DD>
<DT><A HREF="#lbAC">SYNOPSIS</A><DD>
<DT><A HREF="#lbAD">DESCRIPTION</A><DD>
<DL>
<DT><A HREF="#lbAE">Language notes</A><DD>
<DT><A HREF="#lbAF">Parameters for both functions</A><DD>
<DT><A HREF="#lbAG">Parameters for <B>hybrd1_</B></A><DD>
<DT><A HREF="#lbAH">Parameters for <B>hybrd_</B></A><DD>
</DL>
<DT><A HREF="#lbAI">SEE ALSO</A><DD>
<DT><A HREF="#lbAJ">AUTHORS</A><DD>
</DL>
<HR>
This document was created by
<A HREF="index.html">man2html</A>,
using the manual pages.<BR>
Time: 10:19:50 GMT, April 20, 2007
</BODY>
</HTML>
|