1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
/* driver for hybrd example. */
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <minpack.h>
#define real __minpack_real__
void fcn(const int *n, const real *x, real *fvec, int *iflag);
int main()
{
#if (defined(__MINGW32__) && !defined(_UCRT)) || (defined(_MSC_VER) && (_MSC_VER < 1900))
_set_output_format(_TWO_DIGIT_EXPONENT);
#endif
int j, n, maxfev, ml, mu, mode, nprint, info, nfev, ldfjac, lr;
real xtol, epsfcn, factor, fnorm;
real x[9], fvec[9], diag[9], fjac[9*9], r[45], qtf[9],
wa1[9], wa2[9], wa3[9], wa4[9];
int one=1;
n = 9;
/* the following starting values provide a rough solution. */
for (j=1; j<=9; j++) {
x[j-1] = -1.;
}
ldfjac = 9;
lr = 45;
/* set xtol to the square root of the machine precision. */
/* unless high solutions are required, */
/* this is the recommended setting. */
xtol = sqrt(__minpack_func__(dpmpar)(&one));
maxfev = 2000;
ml = 1;
mu = 1;
epsfcn = 0.;
mode = 2;
for (j=1; j<=9; j++) {
diag[j-1] = 1.;
}
factor = 1.e2;
nprint = 0;
__minpack_func__(hybrd)(&fcn, &n, x, fvec, &xtol, &maxfev, &ml, &mu, &epsfcn,
diag, &mode, &factor, &nprint, &info, &nfev,
fjac, &ldfjac, r, &lr, qtf, wa1, wa2, wa3, wa4);
fnorm = __minpack_func__(enorm)(&n, fvec);
printf(" final l2 norm of the residuals %15.7g\n\n", (double)fnorm);
printf(" number of function evaluations %10i\n\n", nfev);
printf(" exit parameter %10i\n\n", info);
printf(" final approximate solution\n");
for (j=1; j<=n; j++) {
printf("%s%15.7g", j%3==1?"\n ":"", (double)x[j-1]);
}
printf("\n");
return 0;
}
void fcn(const int *n, const real *x, real *fvec, int *iflag)
{
/* subroutine fcn for hybrd example. */
int k;
real temp, temp1, temp2;
assert(*n == 9);
if (*iflag == 0) {
/* insert print statements here when nprint is positive. */
/* if the nprint parameter to lmder is positive, the function is
called every nprint iterations with iflag=0, so that the
function may perform special operations, such as printing
residuals. */
return;
}
/* compute residuals */
for (k=1; k<=*n; k++) {
temp = (3 - 2*x[k-1])*x[k-1];
temp1 = 0;
if (k != 1) {
temp1 = x[k-1-1];
}
temp2 = 0;
if (k != *n) {
temp2 = x[k+1-1];
}
fvec[k-1] = temp - temp1 - 2*temp2 + 1;
}
return;
}
|