File: vecjac.c

package info (click to toggle)
cminpack 1.3.11-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,528 kB
  • sloc: ansic: 11,704; fortran: 5,648; makefile: 429; f90: 354; sh: 10
file content (430 lines) | stat: -rw-r--r-- 9,394 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#include <math.h>
#include <assert.h>
#include "cminpack.h"
#include "vec.h"
#define real __cminpack_real__

static inline int max(int a, int b)
{
    return (a > b) ? a : b;
}

static inline int min(int a, int b)
{
    return (a < b) ? a : b;
}

void vecjac(int n, const real *x, real *fjac, int ldfjac, int nprob)
{
    /* System generated locals */
    int fjac_offset;
    real d__1, d__2;

    /* Local variables */
    static real h__;
    static int i__, j, k, k1, k2, ml;
    static real ti, tj, tk;
    static int mu;
    static real tpi, sum, sum1, sum2, prod, temp, temp1, temp2, temp3, 
	    temp4;

/*     ********** */

/*     subroutine vecjac */

/*     this subroutine defines the jacobian matrices of fourteen */
/*     test functions. the problem dimensions are as described */
/*     in the prologue comments of vecfcn. */

/*     the subroutine statement is */

/*       subroutine vecjac(n,x,fjac,ldfjac,nprob) */

/*     where */

/*       n is a positive integer variable. */

/*       x is an array of length n. */

/*       fjac is an n by n array. on output fjac contains the */
/*         jacobian matrix of the nprob function evaluated at x. */

/*       ldfjac is a positive integer variable not less than n */
/*         which specifies the leading dimension of the array fjac. */

/*       nprob is a positive integer variable which defines the */
/*         number of the problem. nprob must not exceed 14. */

/*     subprograms called */

/*       fortran-supplied ... datan,dcos,dexp,dmin1,dsin,dsqrt, */
/*                            max0,min0 */

/*     argonne national laboratory. minpack project. march 1980. */
/*     burton s. garbow, kenneth e. hillstrom, jorge j. more */

/*     ********** */
    /* Parameter adjustments */
    --x;
    fjac_offset = 1 + ldfjac;
    fjac -= fjac_offset;

    /* Function Body */

/*     jacobian routine selector. */
    assert(nprob >= 1 && nprob <=14);
    switch (nprob) {
	case 1:  goto L10;
	case 2:  goto L20;
	case 3:  goto L50;
	case 4:  goto L60;
	case 5:  goto L90;
	case 6:  goto L100;
	case 7:  goto L200;
	case 8:  goto L230;
	case 9:  goto L290;
	case 10:  goto L320;
	case 11:  goto L350;
	case 12:  goto L380;
	case 13:  goto L420;
	case 14:  goto L450;
    }

/*     rosenbrock function. */

L10:
    fjac[1 * ldfjac + 1] = -1.;
    fjac[2 * ldfjac + 1] = 0.;
    fjac[1 * ldfjac + 2] = -20. * x[1];
    fjac[2 * ldfjac + 2] = 10.;
    goto L490;

/*     powell singular function. */

L20:
    for (k = 1; k <= 4; ++k) {
	for (j = 1; j <= 4; ++j) {
	    fjac[k + j * ldfjac] = 0.;
/* L30: */
	}
/* L40: */
    }
    fjac[1 * ldfjac + 1] = 1.;
    fjac[2 * ldfjac + 1] = 10.;
    fjac[3 * ldfjac + 2] = sqrt(5.);
    fjac[4 * ldfjac + 2] = -fjac[3 * ldfjac + 2];
    fjac[2 * ldfjac + 3] = 2. * (x[2] - 2. * x[3]);
    fjac[3 * ldfjac + 3] = -2. * fjac[2 * ldfjac + 3];
    fjac[1 * ldfjac + 4] = 2. * sqrt(10.) * (x[1] - x[4]);
    fjac[4 * ldfjac + 4] = -fjac[1 * ldfjac + 4];
    goto L490;

/*     powell badly scaled function. */

L50:
    fjac[1 * ldfjac + 1] = 1e4 * x[2];
    fjac[2 * ldfjac + 1] = 1e4 * x[1];
    fjac[1 * ldfjac + 2] = -exp(-x[1]);
    fjac[2 * ldfjac + 2] = -exp(-x[2]);
    goto L490;

/*     wood function. */

L60:
    for (k = 1; k <= 4; ++k) {
	for (j = 1; j <= 4; ++j) {
	    fjac[k + j * ldfjac] = 0.;
/* L70: */
	}
/* L80: */
    }
/* Computing 2nd power */
    d__1 = x[1];
    temp1 = x[2] - 3. * (d__1 * d__1);
/* Computing 2nd power */
    d__1 = x[3];
    temp2 = x[4] - 3. * (d__1 * d__1);
    fjac[1 * ldfjac + 1] = -200. * temp1 + 1.;
    fjac[2 * ldfjac + 1] = -200. * x[1];
    fjac[1 * ldfjac + 2] = -2. * 200. * x[1];
    fjac[2 * ldfjac + 2] = 200. + 20.2;
    fjac[4 * ldfjac + 2] = 19.8;
    fjac[3 * ldfjac + 3] = -180. * temp2 + 1.;
    fjac[4 * ldfjac + 3] = -180. * x[3];
    fjac[2 * ldfjac + 4] = 19.8;
    fjac[3 * ldfjac + 4] = -2. * 180. * x[3];
    fjac[4 * ldfjac + 4] = 180. + 20.2;
    goto L490;

/*     helical valley function. */

L90:
    tpi = 8. * atan(1.);
/* Computing 2nd power */
    d__1 = x[1];
/* Computing 2nd power */
    d__2 = x[2];
    temp = d__1 * d__1 + d__2 * d__2;
    temp1 = tpi * temp;
    temp2 = sqrt(temp);
    fjac[1 * ldfjac + 1] = 100. * x[2] / temp1;
    fjac[2 * ldfjac + 1] = -100. * x[1] / temp1;
    fjac[3 * ldfjac + 1] = 10.;
    fjac[1 * ldfjac + 2] = 10. * x[1] / temp2;
    fjac[2 * ldfjac + 2] = 10. * x[2] / temp2;
    fjac[3 * ldfjac + 2] = 0.;
    fjac[1 * ldfjac + 3] = 0.;
    fjac[2 * ldfjac + 3] = 0.;
    fjac[3 * ldfjac + 3] = 1.;
    goto L490;

/*     watson function. */

L100:
    for (k = 1; k <= n; ++k) {
	for (j = k; j <= n; ++j) {
	    fjac[k + j * ldfjac] = 0.;
/* L110: */
	}
/* L120: */
    }
    for (i__ = 1; i__ <= 29; ++i__) {
	ti = (real) i__ / 29.;
	sum1 = 0.;
	temp = 1.;
	for (j = 2; j <= n; ++j) {
	    sum1 += (real) (j-1) * temp * x[j];
	    temp = ti * temp;
/* L130: */
	}
	sum2 = 0.;
	temp = 1.;
	for (j = 1; j <= n; ++j) {
	    sum2 += temp * x[j];
	    temp = ti * temp;
/* L140: */
	}
/* Computing 2nd power */
	d__1 = sum2;
	temp1 = 2. * (sum1 - d__1 * d__1 - 1.);
	temp2 = 2. * sum2;
/* Computing 2nd power */
	d__1 = ti;
	temp = d__1 * d__1;
	tk = 1.;
	for (k = 1; k <= n; ++k) {
	    tj = tk;
	    for (j = k; j <= n; ++j) {
		fjac[k + j * ldfjac] += tj * (((real) (k-1) / ti - 
			temp2) * ((real) (j-1) / ti - temp2) - temp1);
		tj = ti * tj;
/* L150: */
	    }
	    tk = temp * tk;
/* L160: */
	}
/* L170: */
    }
/* Computing 2nd power */
    d__1 = x[1];
    fjac[1 * ldfjac + 1] = fjac[1 * ldfjac + 1] + 6. * (d__1 * d__1) - 2. * x[2] + 3.;
    fjac[2 * ldfjac + 1] -= 2. * x[1];
    fjac[2 * ldfjac + 2] += 1.;
    for (k = 1; k <= n; ++k) {
	for (j = k; j <= n; ++j) {
	    fjac[j + k * ldfjac] = fjac[k + j * ldfjac];
/* L180: */
	}
/* L190: */
    }
    goto L490;

/*     chebyquad function. */

L200:
    tk = 1. / (real) (n);
    for (j = 1; j <= n; ++j) {
	temp1 = 1.;
	temp2 = 2. * x[j] - 1.;
	temp = 2. * temp2;
	temp3 = 0.;
	temp4 = 2.;
	for (k = 1; k <= n; ++k) {
	    fjac[k + j * ldfjac] = tk * temp4;
	    ti = 4. * temp2 + temp * temp4 - temp3;
	    temp3 = temp4;
	    temp4 = ti;
	    ti = temp * temp2 - temp1;
	    temp1 = temp2;
	    temp2 = ti;
/* L210: */
	}
/* L220: */
    }
    goto L490;

/*     brown almost-linear function. */

L230:
    prod = 1.;
    for (j = 1; j <= n; ++j) {
	prod = x[j] * prod;
	for (k = 1; k <= n; ++k) {
	    fjac[k + j * ldfjac] = 1.;
/* L240: */
	}
	fjac[j + j * ldfjac] = 2.;
/* L250: */
    }
    for (j = 1; j <= n; ++j) {
	temp = x[j];
	if (temp != 0.) {
	    goto L270;
	}
	temp = 1.;
	prod = 1.;
	for (k = 1; k <= n; ++k) {
	    if (k != j) {
		prod = x[k] * prod;
	    }
/* L260: */
	}
L270:
	fjac[n + j * ldfjac] = prod / temp;
/* L280: */
    }
    goto L490;

/*     discrete boundary value function. */

L290:
    h__ = 1. / (real) (n+1);
    for (k = 1; k <= n; ++k) {
/* Computing 2nd power */
	d__1 = x[k] + (real) k * h__ + 1.;
	temp = 3. * (d__1 * d__1);
	for (j = 1; j <= n; ++j) {
	    fjac[k + j * ldfjac] = 0.;
/* L300: */
	}
/* Computing 2nd power */
	d__1 = h__;
	fjac[k + k * ldfjac] = 2. + temp * (d__1 * d__1) / 2.;
	if (k != 1) {
	    fjac[k + (k - 1) * ldfjac] = -1.;
	}
	if (k != n) {
	    fjac[k + (k + 1) * ldfjac] = -1.;
	}
/* L310: */
    }
    goto L490;

/*     discrete integral equation function. */

L320:
    h__ = 1. / (real) (n+1);
    for (k = 1; k <= n; ++k) {
	tk = (real) k * h__;
	for (j = 1; j <= n; ++j) {
	    tj = (real) j * h__;
/* Computing 2nd power */
	    d__1 = x[j] + tj + 1.;
	    temp = 3. * (d__1 * d__1);
/* Computing MIN */
	    d__1 = tj * (1. - tk), d__2 = tk * (1. - tj);
	    fjac[k + j * ldfjac] = h__ * min(d__1,d__2) * temp / 2.;
/* L330: */
	}
	fjac[k + k * ldfjac] += 1.;
/* L340: */
    }
    goto L490;

/*     trigonometric function. */

L350:
    for (j = 1; j <= n; ++j) {
	temp = sin(x[j]);
	for (k = 1; k <= n; ++k) {
	    fjac[k + j * ldfjac] = temp;
/* L360: */
	}
	fjac[j + j * ldfjac] = (real) (j+1) * temp - cos(x[j]);
/* L370: */
    }
    goto L490;

/*     variably dimensioned function. */

L380:
    sum = 0.;
    for (j = 1; j <= n; ++j) {
	sum += (real) j * (x[j] - 1.);
/* L390: */
    }
/* Computing 2nd power */
    d__1 = sum;
    temp = 1. + 6. * (d__1 * d__1);
    for (k = 1; k <= n; ++k) {
	for (j = k; j <= n; ++j) {
	    fjac[k + j * ldfjac] = (real) (k*j) * temp;
	    fjac[j + k * ldfjac] = fjac[k + j * ldfjac];
/* L400: */
	}
	fjac[k + k * ldfjac] += 1.;
/* L410: */
    }
    goto L490;

/*     broyden tridiagonal function. */

L420:
    for (k = 1; k <= n; ++k) {
	for (j = 1; j <= n; ++j) {
	    fjac[k + j * ldfjac] = 0.;
/* L430: */
	}
	fjac[k + k * ldfjac] = 3. - 4. * x[k];
	if (k != 1) {
	    fjac[k + (k - 1) * ldfjac] = -1.;
	}
	if (k != n) {
	    fjac[k + (k + 1) * ldfjac] = -2.;
	}
/* L440: */
    }
    goto L490;

/*     broyden banded function. */

L450:
    ml = 5;
    mu = 1;
    for (k = 1; k <= n; ++k) {
	for (j = 1; j <= n; ++j) {
	    fjac[k + j * ldfjac] = 0.;
/* L460: */
	}
/* Computing MAX */
	k1 = max(1,k-ml);
/* Computing MIN */
	k2 = min(k+mu,n);
	for (j = k1; j <= k2; ++j) {
	    if (j != k) {
		fjac[k + j * ldfjac] = -(1. + 2. * x[j]);
	    }
/* L470: */
	}
/* Computing 2nd power */
	d__1 = x[k];
	fjac[k + k * ldfjac] = 2. + 15. * (d__1 * d__1);
/* L480: */
    }
L490:
    return;

/*     last card of subroutine vecjac. */

} /* vecjac_ */