1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
#include <time.h>
#include <stdio.h>
#include<string.h>
#include "cmor.h"
#include <stdlib.h>
void read_coords(double *alats, double *alons, int *plevs,
double *bnds_lat, double *bnds_lon,
int lon, int lat, int lev)
{
int i;
for (i = 0; i < lon; i++) {
alons[i] = i * 360. / lon;
bnds_lon[2 * i] = (i - 0.5) * 360. / lon;
bnds_lon[2 * i + 1] = (i + 0.5) * 360. / lon;
};
for (i = 0; i < lat; i++) {
alats[i] = (lat - i) * 10;
bnds_lat[2 * i] = (lat - i) * 10 + 5.;
bnds_lat[2 * i + 1] = (lat - i) * 10 - 5.;
};
plevs[0] = 1000;
plevs[1] = 925;
plevs[2] = 850;
plevs[3] = 700;
plevs[4] = 600;
plevs[5] = 500;
plevs[6] = 400;
plevs[7] = 300;
plevs[8] = 250;
plevs[9] = 200;
plevs[10] = 150;
plevs[11] = 100;
plevs[12] = 70;
plevs[13] = 50;
plevs[14] = 30;
plevs[15] = 20;
plevs[16] = 10;
plevs[17] = 5;
plevs[18] = 1;
}
void read_time(int it, double *time, double *time_bnds)
{
time[0] = (it - 0.5) * 30.;
time_bnds[0] = (it - 1) * 30.;
time_bnds[1] = it * 30.;
time[0] = it;
time_bnds[0] = it;
time_bnds[1] = it + 1;
}
#include "reader_2D_3D.h"
int main()
/* Purpose: To serve as a generic example of an application that */
/* uses the "Climate Model Output Rewriter" (CMOR) */
/* CMOR writes CF-compliant netCDF files. */
/* Its use is strongly encouraged by the IPCC and is intended for use */
/* by those participating in many community-coordinated standard */
/* climate model experiments (e.g., AMIP, CMIP, CFMIP, PMIP, APE, */
/* etc.) */
/* Background information for this sample code: */
/* Atmospheric standard output requested by IPCC are listed in */
/* tables available on the web. Monthly mean output is found in */
/* tables A1a and A1c. This sample code processes only two 3-d */
/* variables listed in table A1c ("monthly mean atmosphere 3-D data" */
/* and only four 2-d variables listed in table A1a ("monthly mean */
/* atmosphere + land surface 2-D (latitude, longitude) data"). The */
/* extension to many more fields is trivial. */
/* For this example, the user must fill in the sections of code that */
/* extract the 3-d and 2-d fields from his monthly mean "history" */
/* files (which usually contain many variables but only a single time */
/* slice). The CMOR code will write each field in a separate file, but */
/* many monthly mean time-samples will be stored together. These */
/* constraints partially determine the structure of the code. */
/* Record of revisions: */
/* Date Programmer(s) Description of change */
/* ==== ========== ===================== */
/* 10/22/03 Rusty Koder Original code */
/* 1/28/04 Les R. Koder Revised to be consistent */
/* with evolving code design */
{
/* --------------------------------- */
/* dimension parameters: */
/* --------------------------------- */
#define ntimes 2 /* number of time samples to process */
#define lon 4 /* number of longitude grid cells */
#define lat 3 /* number of latitude grid cells */
#define lev 19 /* number of standard pressure levels */
#define n2d 4 /* number of IPCC Table A1a fields to be output. */
#define n3d 3 /* number of IPCC Table A1c fields to be output. */
/* Tables associating the user's variables with IPCC standard output */
/* variables. The user may choose to make this association in a */
/* different way (e.g., by defining values of pointers that allow him */
/* to directly retrieve data from a data record containing many */
/* different variables), but in some way the user will need to map his */
/* model output onto the Tables specifying the MIP standard output. */
/* ---------------------------------- */
/* My variable names for IPCC Table A1c fields */
char varin3d[n3d][6] = { "CLOUD", "U", "T" };
/* Units appropriate to my data */
char units3d[n3d][6] = { "%", "m s-1", "K" };
/* Corresponding IPCC Table A1c entry (variable name) */
char entry3d[n3d][3] = { "cl", "ua", "ta" };
/* My variable names for IPCC Table A1a fields */
char varin2d[n2d][9] = { "LATENT", "TSURF", "SOIL_WET", "PSURF" };
/* Units appropriate to my data */
char units2d[n2d][7] = { "W m-2", "K", "kg m-2", "Pa" };
char positive2d[n2d][4] = { "down", " ", " ", " " };
/* Corresponding IPCC Table A1a entry (variable name) */
char entry2d[n2d][6] = { "hfls", "tas", "mrsos", "ps" };
/* uninitialized variables used in communicating with CMOR: */
/* --------------------------------------------------------- */
int error_flag;
int znondim_id, zfactor_id;
int var2d_ids[n2d];
int var3d_ids[n3d];
double data2d[lat * lon];
double data3d[lev * lat * lon];
double alats[lat];
double alons[lon];
int ilats[lat];
int ilons[lon];
double plevs[lev];
int iplevs[lev];
long lplevs[lev];
float fplevs[lev];
double Time[2];
double bnds_time[4];
double bnds_lat[lat * 2];
double bnds_lon[lon * 2];
double zlevs[lev];
double zlev_bnds[lev + 1];
double a_coeff[lev] = { 0.1, 0.2, 0.3, 0.22, 0.1 };
double b_coeff[lev] = { 0.0, 0.1, 0.2, 0.5, 0.8 };
float p0 = 1.e5;
double a_coeff_bnds[lev + 1] = { 0., .15, .25, .25, .16, 0. };
double b_coeff_bnds[lev + 1] = { 0., .05, .15, .35, .65, 1. };
int ilon, ilat, ipres, ilev, itim;
double dtmp, dtmp2;
/* Other variables: */
/* --------------------- */
int it, m, i, ierr, j;
int myaxes[10];
int myaxes2[10];
int myvars[10];
char id[CMOR_MAX_STRING];
char units[CMOR_MAX_STRING];
char interval[CMOR_MAX_STRING];
char anames[25][CMOR_MAX_STRING];
char type;
char regions[5][23] =
{ "atlantic_arctic_ocean", "indian_pacific_ocean", "pacific_ocean",
"global_ocean", "sf_bay"
};
double timestest[5];
/* Externals funcs */
int tables[5];
char msg[555];
double bt = 0.;
/* ================================ */
/* Execution begins here: */
/* ================================ */
/* Read coordinate information from model into arrays that will be passed */
/* to CMOR. */
/* Read latitude, longitude, and pressure coordinate values into */
/* alats, alons, and plevs, respectively. Also generate latitude and */
/* longitude bounds, and store in bnds_lat and bnds_lon, respectively. */
/* Note that all variable names in this code can be freely chosen by */
/* the user. */
/* The user must write the subroutine that fills the coordinate arrays */
/* and their bounds with actual data. The following line is simply a */
/* a place-holder for the user's code, which should replace it. */
/* *** possible user-written call *** */
m = CMOR_EXIT_ON_MAJOR;
j = CMOR_REPLACE_4;
i = 1;
it = 0;
printf("ok mode is:%i\n", m);
ierr = cmor_setup(NULL, &j, NULL, &m, NULL, &i); //," ipcc_test.LOG ");
read_coords(&alats[0], &alons[0], &iplevs[0], &bnds_lat[0], &bnds_lon[0],
lon, lat, lev);
int tmpmo[12];
printf("Test code: ok init cmor\n");
char c1[CMOR_MAX_STRING];
char c2[CMOR_MAX_STRING];
strcpy(c1, "GICCM1(2002)\0");
strcpy(c2, "Nat\0");
printf("yep: %s, %s\n", c1, c2);
ierr = cmor_dataset_json("Test/CMOR_input_example.json");
printf("Test code: ok load cmor table(s)\n");
ierr = cmor_load_table("Tables/CMIP6_Omon.json", &tables[0]);
ierr = cmor_load_table("Tables/CMIP6_Amon.json", &tables[1]);
strcpy(id, "time");
strcpy(units, "months since 1980");
strcpy(interval, "1 month");
read_time(0, &Time[0], &bnds_time[0]);
read_time(1, &Time[1], &bnds_time[2]);
ierr =
cmor_axis(&myaxes[0], id, units, ntimes, &Time[0], 'd', &bnds_time[0], 2,
interval);
strcpy(id, "latitude");
strcpy(units, "degrees_north");
strcpy(interval, "");
ierr =
cmor_axis(&myaxes[1], id, units, lat, &alats, 'd', &bnds_lat, 2,
interval);
strcpy(id, "longitude");
strcpy(units, "degrees_east");
ierr =
cmor_axis(&myaxes[2], id, units, lon, &alons, 'd', &bnds_lon, 2,
interval);
strcpy(id, "plev19");
strcpy(units, "hPa");
ierr =
cmor_axis(&myaxes[3], id, units, lev, &iplevs, 'i', NULL, 0, interval);
zlevs[0] = 0.1;
zlevs[1] = 0.3;
zlevs[2] = 0.5;
zlevs[3] = 0.72;
zlevs[4] = 0.9;
zlev_bnds[0] = 0.;
zlev_bnds[1] = .2;
zlev_bnds[2] = .42;
zlev_bnds[3] = .62;
zlev_bnds[4] = .8;
zlev_bnds[5] = 1.;
/* p0 = 1.e5; */
/* a_coeff = { 0.1, 0.2, 0.3, 0.22, 0.1 }; */
/* b_coeff = { 0.0, 0.1, 0.2, 0.5, 0.8 }; */
/* a_coeff_bnds={0.,.15, .25, .25, .16, 0.}; */
/* b_coeff_bnds={0.,.05, .15, .35, .65, 1.}; */
ierr =
cmor_axis(&myaxes[4], "standard_hybrid_sigma", "1", 5, &zlevs, 'd',
&zlev_bnds, 1, interval);
cmor_set_table(tables[0]);
/* ok here we declare a "regions" axis */
printf("Test code: defining axis region \n");
ierr =
cmor_axis(&myaxes[5], "basin", "", 4, ®ions[0], 'c', NULL, 23,
interval);
printf("Test code: Redefining time/lat from O table\n");
strcpy(id, "time");
strcpy(units, "months since 1980");
strcpy(interval, "1 month");
read_time(0, &Time[0], &bnds_time[0]);
read_time(1, &Time[1], &bnds_time[2]);
ierr =
cmor_axis(&myaxes[7], id, units, ntimes, &Time[0], 'd', &bnds_time[0], 2,
interval);
strcpy(id, "latitude");
strcpy(units, "degrees_north");
strcpy(interval, "");
ierr =
cmor_axis(&myaxes[8], id, units, lat, &alats, 'd', &bnds_lat, 2,
interval);
cmor_set_table(tables[1]);
dtmp = -999;
dtmp2 = 1.e-4;
myaxes2[0] = myaxes[0];
myaxes2[1] = myaxes[3];
myaxes2[2] = myaxes[1];
myaxes2[3] = myaxes[2];
printf("Test code: defining variables from table 1, %s\n", positive2d[0]);
ierr =
cmor_variable(&myvars[0], entry2d[0], units2d[0], 3, myaxes, 'd', &dtmp,
&dtmp2, positive2d[0], varin2d[0], "no history",
"no future");
ierr =
cmor_variable(&myvars[1], entry3d[2], units3d[2], 4, myaxes2, 'd', NULL,
&dtmp2, NULL, varin3d[2], "no history", "no future");
printf("Test code: definig tas\n");
ierr =
cmor_variable(&myvars[5], "tas", "K", 3, myaxes, 'd', NULL, &dtmp2, NULL,
"TS", "no history", "no future");
myaxes2[1] = myaxes[4];
ierr =
cmor_variable(&myvars[2], entry3d[0], units3d[0], 4, myaxes2, 'd', NULL,
&dtmp2, NULL, varin3d[0], "no history", "no future");
ierr =
cmor_zfactor(&myvars[3], myaxes2[1], "p0", "Pa", 0, NULL, 'f', &p0, NULL);
ierr =
cmor_zfactor(&myvars[3], myaxes2[1], "b", "", 1, &myaxes2[1], 'd',
&b_coeff, &b_coeff_bnds);
ierr =
cmor_zfactor(&myvars[3], myaxes2[1], "a", "", 1, &myaxes2[1], 'd',
&a_coeff, &a_coeff_bnds);
/* printf("defining ap\n"); */
/* for(i=0;i<5;i++) {a_coeff[i]*=1.e3;printf("sending acoef: %i, %lf\n",i,a_coeff[i]);} */
/* for(i=0;i<6;i++) {a_coeff_bnds[i]*=1.e5;printf("sending acoef: %i, %lf\n",i,a_coeff_bnds[i]);} */
/* ierr = cmor_zfactor(&myvars[3],myaxes2[1],"ap","hPa",1,&myaxes2[1],'d',&a_coeff,&a_coeff_bnds); */
ierr =
cmor_zfactor(&myvars[3], myaxes2[1], "ps", "hPa", 3, &myaxes[0], 'd',
NULL, NULL);
/* ok here we decalre a variable for region axis testing */
cmor_set_table(tables[0]);
myaxes2[0] = myaxes[7]; /* time */
myaxes2[1] = myaxes[5]; /* region */
myaxes2[2] = myaxes[8]; /* latitudes */
printf("Test code: ok we define hfogo positive: %s\n", positive2d[0]);
ierr =
cmor_variable(&myvars[4], "htovgyre", "W", 3, myaxes2, 'd', NULL, &dtmp2,
NULL, varin2d[0], "no history", "no future");
cmor_set_table(tables[1]);
for (i = 0; i < ntimes; i++) {
printf("Test code: writing time: %i of %i\n", i + 1, ntimes);
printf("2d\n");
read_2d_input_files(i, varin2d[0], data2d, lat, lon);
sprintf(id, "%i", i);
ierr = cmor_write(myvars[0], data2d, 'd', NULL, 1, NULL, NULL, NULL);
if (ierr)
return (1);
printf("3d\n");
read_3d_input_files(i, varin3d[2], data3d, lev, lat, lon);
ierr = cmor_write(myvars[1], data3d, 'd', NULL, 1, NULL, NULL, NULL);
if (ierr)
return (1);
printf("writing tas\n");
read_2d_input_files(i, varin2d[1], data2d, lat, lon);
ierr = cmor_write(myvars[5], data2d, 'd', NULL, 1, NULL, NULL, NULL);
if (ierr)
return (1);
printf("3d zfactor\n");
read_3d_input_files(i, varin3d[0], data3d, 5, lat, lon);
ierr = cmor_write(myvars[2], data3d, 'd', NULL, 1, NULL, NULL, NULL);
if (ierr)
return (1);
printf("writing ps\n");
read_2d_input_files(i, varin2d[3], data2d, lat, lon);
ierr = cmor_write(myvars[3], data2d, 'd', NULL, 1, NULL, NULL, &myvars[2]);
if (ierr)
return (1);
/* rereading hfls to fake hfogo */
printf("2d region\n");
read_2d_input_files(i, "htov", data2d, lat, lon);
ierr = cmor_write(myvars[4], data2d, 'd', NULL, 1, NULL, NULL, NULL);
if (ierr)
return (1);
}
ierr = cmor_close_variable(myvars[0], NULL, NULL);
ierr = cmor_close();
return (0);
}
|