1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
#!/usr/bin/env python
from __future__ import print_function
import cmor
import numpy
def main():
cmor.setup(inpath='/git/cmip5-cmor-tables/Tables',
netcdf_file_action=cmor.CMOR_REPLACE_3)
cmor.dataset('pre-industrial control', 'ukmo', 'HadCM3', '360_day',
institute_id='ukmo',
model_id='HadCM3',
history='some global history',
forcing='N/A',
parent_experiment_id='N/A',
parent_experiment_rip='N/A',
branch_time=0,
contact='brian clough')
table = 'CMIP5_Oclim'
cmor.load_table(table)
axes = [{'table_entry': 'time2',
'units': 'days since 2000-01-01 00:00:00',
},
{'table_entry': 'depth_coord',
'units': 'm',
'coord_vals': [500, 1000.],
'cell_bounds': [0., 750., 1200.]},
{'table_entry': 'latitude',
'units': 'degrees_north',
'coord_vals': [0],
'cell_bounds': [-1, 1]},
{'table_entry': 'longitude',
'units': 'degrees_east',
'coord_vals': [90],
'cell_bounds': [89, 91]},
]
axis_ids = list()
for axis in axes:
print('doing:', axis)
axis_id = cmor.axis(**axis)
axis_ids.append(axis_id)
for var, units, value in (('tnpeot', 'W m-2', 274),):
values = numpy.array([value, ] *
len(axes[1]['coord_vals']), numpy.float32)
varid = cmor.variable(var,
units,
axis_ids,
history='variable history',
missing_value=-99
)
for i in range(12):
cmor.write(varid, values, time_vals=[
30 * i + 15], time_bnds=[[30 * i, 360 + 30 * (i + 1)]])
cmor.close()
if __name__ == '__main__':
main()
|