File: test_python_common.py

package info (click to toggle)
cmor 3.13.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 16,960 kB
  • sloc: ansic: 28,094; f90: 13,872; python: 12,423; sh: 3,738; makefile: 111
file content (172 lines) | stat: -rw-r--r-- 4,990 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy
# this test tries to mimic ippc_test_code.c but from python
# This one is using direct C calls from python not the python around it
ntimes = 2
lon = 4
lat = 3
lev = 5
lev2 = 19
varin3d = ["CLOUD", "U", "T"]

#  /* Units appropriate to my data */
units3d = ["%", "m s-1", "K"]

#  /* Corresponding IPCC Table A1c entry (variable name)  */
entry3d = ["cl", "ua", "ta"]

#  /* My variable names for IPCC Table A1a fields */
varin2d = ["LATENT", "TSURF", "SOIL_WET", "PSURF"]

#  /* Units appropriate to my data */
units2d = ["W m-2", "K", "kg m-2", "Pa"]

positive2d = ["down", " ", " ", " "]

#  /* Corresponding IPCC Table A1a entry (variable name)  */
entry2d = ["hfls", "tas", "mrsos", "ps"]


def gen_irreg_grid(lon, lat):
    lon0 = 280.
    lat0 = 0.
    delta_lon = 10.
    delta_lat = 10.
    y = numpy.arange(lat)
    x = numpy.arange(lon)
    lon_coords = numpy.zeros((lat, lon))
    lat_coords = numpy.zeros((lat, lon))
    lon_vertices = numpy.zeros((lat, lon, 4))
    lat_vertices = numpy.zeros((lat, lon, 4))

    for j in range(lat):  # really porr coding i know
        for i in range(lon):  # getting worse i know
            lon_coords[j, i] = lon0 + delta_lon * (j + 1 + i)
            lat_coords[j, i] = lat0 + delta_lat * (j + 1 - i)
            lon_vertices[j, i, 0] = lon_coords[j, i] - delta_lon
            lon_vertices[j, i, 1] = lon_coords[j, i]
            lon_vertices[j, i, 2] = lon_coords[j, i] + delta_lon
            lon_vertices[j, i, 3] = lon_coords[j, i]
# !!$      /* vertices lat */
            lat_vertices[j, i, 0] = lat_coords[j, i]
            lat_vertices[j, i, 1] = lat_coords[j, i] - delta_lat
            lat_vertices[j, i, 2] = lat_coords[j, i]
            lat_vertices[j, i, 3] = lat_coords[j, i] + delta_lat
    return x, y, lon_coords, lat_coords, lon_vertices, lat_vertices

# read_data funcs are highly unoptimzed....


def read_coords(lon, lat, lev):
    alons = numpy.zeros(lon)
    bnds_lon = numpy.zeros(2 * lon)
    alats = numpy.zeros(lat)
    bnds_lat = numpy.zeros(2 * lat)
    plevs = numpy.zeros(lev, dtype='i')
    for i in range(lon):
        alons[i] = i * 360. / lon
        bnds_lon[2 * i] = (i - 0.5) * 360. / lon
        bnds_lon[2 * i + 1] = (i + 0.5) * 360. / lon

    for i in range(lat):
        alats[i] = (lat - i) * 10
        bnds_lat[2 * i] = (lat - i) * 10 + 5.
        bnds_lat[2 * i + 1] = (lat - i) * 10 - 5.

    plevs = numpy.array([100000., 92500., 85000., 70000.,
                         60000., 50000., 40000., 30000., 25000., 20000.,
                         15000., 10000., 7000., 5000., 3000., 2000., 1000., 500., 100.])

    return alats, alons, plevs, bnds_lat, bnds_lon


def read_time(it):
    time = [0]
    time_bnds = [0, 0]
    time[0] = (it - 0.5) * 30.
    time_bnds[0] = (it - 1) * 30.
    time_bnds[1] = it * 30.

    time[0] = it
    time_bnds[0] = it
    time_bnds[1] = it + 1
    return time[0], numpy.array(time_bnds)


def read_3d_input_files(it, varname, n0, n1, n2, ntimes):

    if varname == "CLOUD":
        factor = 0.1
        offset = -50.
    elif varname == "U":
        factor = 1.
        offset = 100.
    elif varname == "T":
        factor = 0.5
        offset = -150.

    field = numpy.zeros((n2, n1, n0), dtype='d')
    for k in range(n2):
        for j in range(n1):
            for i in range(n0):
                field[k, j, i] = (k * 64 + j * 16 + i *
                                  4 + it) * factor - offset
    return field


def read_2d_input_files(it, varname, n0, n1):

    if varname == "LATENT":
        factor = 1.25
        offset = 100.
    elif varname == "TSURF":
        factor = 2.0
        offset = -230.
    elif varname == "SOIL_WET":
        factor = 10.
        offset = 0.
    elif varname == "PSURF":
        factor = 1.
        offset = -9.7e2

    field = numpy.zeros((n0, n1), dtype='d')

    for j in range(n0):
        for i in range(n1):
            tmp = (j * 16. + i * 4. + it) * factor - offset
            field[j, i] = tmp
    return field


alats, alons, plevs, bnds_lat, bnds_lon = read_coords(lon, lat, lev)

Time = numpy.zeros(ntimes, dtype='d')
bnds_time = numpy.zeros(ntimes * 2, dtype='d')
Time[0], bnds_time[0:2] = read_time(0)
Time[1], bnds_time[2:4] = read_time(1)

zlevs = numpy.zeros(5, dtype='d')
zlevs[0] = 0.1999999999999999999
zlevs[1] = 0.3
zlevs[2] = 0.55
zlevs[3] = 0.7
zlevs[4] = 0.99999999

zlev_bnds = numpy.zeros(6, dtype='d')
zlev_bnds[0] = 0.
zlev_bnds[1] = 0.2
zlev_bnds[2] = 0.42
zlev_bnds[3] = 0.62
zlev_bnds[4] = 0.8
zlev_bnds[5] = 1.

regions = numpy.array(["atlantic_arctic_ocean",
                       "indian_pacific_ocean",
                       "pacific_ocean",
                       "global_ocean",
                       "sf_bay"])

a_coeff = numpy.array([0.1, 0.2, 0.3, 0.22, 0.1])
b_coeff = numpy.array([0.0, 0.1, 0.2, 0.5, 0.8])
p0 = numpy.array([1.e5, ])
a_coeff_bnds = numpy.array([0., .15, .25, .25, .16, 0.])
b_coeff_bnds = numpy.array([0., .05, .15, .35, .65, 1.])