File: test_python_forecast_coordinates.py

package info (click to toggle)
cmor 3.13.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 16,960 kB
  • sloc: ansic: 28,094; f90: 13,872; python: 12,423; sh: 3,738; makefile: 111
file content (185 lines) | stat: -rw-r--r-- 9,206 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import json
import numpy as np
import cmor
import unittest
import os

from netCDF4 import Dataset

DATASET_INFO = {
    "_AXIS_ENTRY_FILE": "CMIP6_coordinate_leadtime.json",
    "_FORMULA_VAR_FILE": "Tables/CMIP6_formula_terms.json",
    "_controlled_vocabulary_file": "Tables/CMIP6_CV.json",
    "activity_id": "CMIP",
    "branch_method": "standard",
    "branch_time_in_child": 30.0,
    "branch_time_in_parent": 10800.0,
    "calendar": "360_day",
    "cv_version": "6.2.19.0",
    "experiment": "AMIP",
    "experiment_id": "amip",
    "forcing_index": "3",
    "further_info_url": "https://furtherinfo.es-doc.org/CMIP6.MOHC.HadGEM3-GC31-LL.amip.none.r1i1p1f3",
    "grid": "N96",
    "grid_label": "gn",
    "initialization_index": "1",
    "institution": "Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK",
    "institution_id": "MOHC",
    "license": "CMIP6 model data produced by the Met Office Hadley Centre is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file) and at https://ukesm.ac.uk/cmip6. The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.",
    "mip_era": "CMIP6",
    "nominal_resolution": "250 km",
    "outpath": ".",
    "parent_activity_id": "no parent",
    "physics_index": "1",
    "realization_index": "1",
    "source": "HadGEM3-GC31-LL (2016): \naerosol: UKCA-GLOMAP-mode\natmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km)\natmosChem: none\nland: JULES-HadGEM3-GL7.1\nlandIce: none\nocean: NEMO-HadGEM3-GO6.0 (eORCA1 tripolar primarily 1 deg with meridional refinement down to 1/3 degree in the tropics; 360 x 330 longitude/latitude; 75 levels; top grid cell 0-1 m)\nocnBgchem: none\nseaIce: CICE-HadGEM3-GSI8 (eORCA1 tripolar primarily 1 deg; 360 x 330 longitude/latitude)",
    "source_id": "HadGEM3-GC31-LL",
    "source_type": "AGCM",
    "sub_experiment": "none",
    "sub_experiment_id": "none",
    "tracking_prefix": "hdl:21.14100",
    "variant_label": "r1i1p1f3"
}


class TestHasForecastCoordinates(unittest.TestCase):
    def setUp(self):
        """
        Write out a simple file using CMOR
        """
        # Set up CMOR
        cmor.setup(inpath="TestTables", netcdf_file_action=cmor.CMOR_REPLACE,
                   logfile="cmor.log", create_subdirectories=0)

        # Define dataset using DATASET_INFO
        with open("Test/input_leadtime.json", "w") as input_file_handle:
            json.dump(DATASET_INFO, input_file_handle, sort_keys=True, indent=4)

        # read dataset info
        error_flag = cmor.dataset_json("Test/input_leadtime.json")
        if error_flag:
            raise RuntimeError("CMOR dataset_json call failed")


    def test_has_forcast_coordinates(self):
        # load MIP table
        mip_table = "CMIP6_Amon_leadtime.json"
        table_id = cmor.load_table(mip_table)

        # construct axes
        time = cmor.axis(table_entry="time", units="days since 2000-01-01",
                         coord_vals=np.array([30.0, 60.0]),
                         cell_bounds=np.array([15.0, 45.0, 75.0]))
        reftime = cmor.axis(table_entry="reftime1", units="days since 2000-01-01",
                             coord_vals=np.array([10.0]))
        height2m = cmor.axis(table_entry="height2m", units="m", coord_vals=np.array((2.0,)))
        latitude = cmor.axis(table_entry="latitude", units="degrees_north",
                             coord_vals=np.array(range(5)),
                             cell_bounds=np.array(range(6)))
        longitude = cmor.axis(table_entry="longitude", units="degrees_east",
                              coord_vals=np.array(range(5)),
                              cell_bounds=np.array(range(6)))
        axis_ids = [longitude, latitude, time, reftime, height2m]
        tas_var_id = cmor.variable(table_entry="tas", axis_ids=axis_ids, units="K")
        data = np.random.random(50)
        reshaped_data = data.reshape((5, 5, 2, 1, 1))
        # write data
        cmor.write(tas_var_id, reshaped_data)
        filename = cmor.close(tas_var_id, file_name=True)

        ds = Dataset(filename)
        np.testing.assert_array_equal(ds.variables['reftime'][:].data, [10.0])
        np.testing.assert_array_equal(ds.variables['leadtime'][:].data, [20.0, 50.0])
        ds.close()
        os.remove(filename)


class TestWriteSlices(unittest.TestCase):

    def setUp(self):
        """
        Write out a simple file using CMOR
        """
        # Set up CMOR
        cmor.setup(inpath="TestTables", netcdf_file_action=cmor.CMOR_REPLACE,
                   logfile="cmor.log", create_subdirectories=0)

        # Define dataset using DATASET_INFO
        with open("Test/input_leadtime.json", "w") as input_file_handle:
            json.dump(DATASET_INFO, input_file_handle, sort_keys=True, indent=4)

        # read dataset info
        error_flag = cmor.dataset_json("Test/input_leadtime.json")
        if error_flag:
            raise RuntimeError("CMOR dataset_json call failed")


    def test_multiple_writes(self):
        # load MIP table
        mip_table = "CMIP6_Amon.json"
        table_id = cmor.load_table(mip_table)

        # construct axes
        time = cmor.axis(table_entry="time", units="days since 2000-01-01")
        height2m = cmor.axis(table_entry="height2m", units="m", coord_vals=np.array((2.0,)))
        latitude = cmor.axis(table_entry="latitude", units="degrees_north",
                             coord_vals=np.array(range(5)),
                             cell_bounds=np.array(range(6)))
        longitude = cmor.axis(table_entry="longitude", units="degrees_east",
                              coord_vals=np.array(range(5)),
                              cell_bounds=np.array(range(6)))
        axis_ids = [longitude, latitude, time, height2m]
        tas_var_id = cmor.variable(table_entry="tas", axis_ids=axis_ids, units="K")
        # write data
        for year in range(2):
            data = np.random.random(25*12)
            reshaped_data = data.reshape((5, 5, 12, 1))
            time_vals = [pt*30 + 360.0 * year + 15.0 for pt in range(12)]
            time_bnds = [360.0 * year ] + [pt*30 + 360.0 * year + 30.0 for pt in range(12)]
            cmor.write(tas_var_id, reshaped_data, time_vals=time_vals, time_bnds=time_bnds)

        filename = cmor.close(tas_var_id, file_name=True)
        ds = Dataset(filename)
        np.testing.assert_array_equal(ds.variables['time'][:].data,  [15.,  45.,  75., 105., 135., 165., 195., 225., 255., 285., 315., 345., 375., 405., 435., 465., 495., 525., 555., 585., 615., 645., 675., 705.])
        ds.close()
        os.remove(filename)


    def test_multiple_writes_with_leadtime(self):
        # load MIP table
        mip_table = "CMIP6_Amon_leadtime.json"
        table_id = cmor.load_table(mip_table)

        # construct axes
        time = cmor.axis(table_entry="time", units="days since 2000-01-01")
        height2m = cmor.axis(table_entry="height2m", units="m", coord_vals=np.array((2.0,)))
        latitude = cmor.axis(table_entry="latitude", units="degrees_north",
                             coord_vals=np.array(range(5)),
                             cell_bounds=np.array(range(6)))
        longitude = cmor.axis(table_entry="longitude", units="degrees_east",
                              coord_vals=np.array(range(5)),
                              cell_bounds=np.array(range(6)))
        reftime = cmor.axis(table_entry="reftime1", units="days since 2000-01-01",
                            coord_vals=np.array([10.0]))
        axis_ids = [longitude, latitude, time, reftime, height2m]

        tas_var_id = cmor.variable(table_entry="tas", axis_ids=axis_ids, units="K")
        # write data
        for year in range(2):
            data = np.random.random(25 * 12)
            reshaped_data = data.reshape((5, 5, 12, 1, 1))
            time_vals = [pt * 30 + 360.0 * year + 15.0 for pt in range(12)]
            time_bnds = [360.0 * year] + [pt * 30 + 360.0 * year + 30.0 for pt in range(12)]
            cmor.write(tas_var_id, reshaped_data, time_vals=time_vals, time_bnds=time_bnds)

        filename = cmor.close(tas_var_id, file_name=True)
        ds = Dataset(filename)
        np.testing.assert_array_equal(ds.variables['time'][:].data,
                                      [15., 45., 75., 105., 135., 165., 195., 225., 255., 285., 315., 345., 375., 405.,
                                       435., 465., 495., 525., 555., 585., 615., 645., 675., 705.])
        ds.close()
        os.remove(filename)


if __name__ == '__main__':
    unittest.main()