1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
# This is a dummy version of the ACCESS Post Processor.
# Peter Uhe 24 July 2014
# Martin Dix 21 Nov 2014
#
from __future__ import print_function
import numpy as np
import datetime
import cmor
def save(opts, threeD=True):
cmor.setup(inpath=opts['table_path'],
netcdf_file_action=cmor.CMOR_REPLACE_3,
set_verbosity=cmor.CMOR_NORMAL,
exit_control=cmor.CMOR_NORMAL,
logfile=None, create_subdirectories=1)
cmor.dataset_json("Test/CMOR_input_example.json")
# Load the CMIP tables into memory.
tables = []
tables.append(cmor.load_table('CMIP6_grids.json'))
tables.append(cmor.load_table(opts['cmip_table']))
# Create the dimension axes
# Monthly time axis
min_tvals = []
max_tvals = []
cmor_tName = 'time'
tvals = []
axis_ids = []
for year in range(1850, 1851):
for mon in range(1, 13):
tvals.append(datetime.date(year, mon, 15).toordinal() - 1)
# set up time values and bounds
for i, ordinaldate in enumerate(tvals):
model_date = datetime.date.fromordinal(int(ordinaldate) + 1)
# min bound is first day of month
model_date = model_date.replace(day=1)
min_tvals.append(model_date.toordinal() - 1)
# max_bound is first day of next month
tyr = model_date.year + int(model_date.month / 12)
tmon = model_date.month % 12 + 1
model_date = model_date.replace(year=tyr, month=tmon)
max_tvals.append(model_date.toordinal() - 1)
# correct date to middle of month
mid = (max_tvals[i] - min_tvals[i]) / 2.
tvals[i] = min_tvals[i] + mid
tval_bounds = np.column_stack((min_tvals, max_tvals))
cmor.set_table(tables[1])
time_axis_id = cmor.axis(table_entry=cmor_tName,
units='days since 0001-01-01', length=len(tvals),
coord_vals=tvals[:], cell_bounds=tval_bounds[:],
interval=None)
axis_ids.append(time_axis_id)
if not threeD:
# Pressure
plev = np.array([100000, 92500, 85000, 70000, 60000, 50000,
40000, 30000, 25000, 20000, 15000, 10000,
7000, 5000, 3000, 2000, 1000, 500, 100])
plev_bounds = np.array([
[103750, 96250],
[96250, 88750],
[88750, 77500],
[77500, 65000],
[65000, 55000],
[55000, 45000],
[45000, 35000],
[35000, 27500],
[27500, 22500],
[22500, 17500],
[17500, 12500],
[12500, 8500],
[8500, 6000],
[6000, 4000],
[4000, 2500],
[2500, 1500],
[1500, 750],
[750, 300],
[300, 0]])
plev_axis_id = cmor.axis(table_entry='plev19',
units='Pa', length=len(plev),
coord_vals=plev[:], cell_bounds=plev_bounds[:],
interval=None)
axis_ids.append(plev_axis_id)
# 1 degree resolution latitude and longitude
lat = np.linspace(-89.5, 89.5, 180)
lat_bounds = np.column_stack((np.linspace(-90., 89., 180),
np.linspace(-89., 90., 180)))
lat_axis_id = cmor.axis(table_entry='latitude',
units='degrees_north', length=len(lat),
coord_vals=lat[:], cell_bounds=lat_bounds[:],
interval=None)
axis_ids.append(lat_axis_id)
lon = np.linspace(0.5, 359.5, 360)
lon_bounds = np.column_stack((np.linspace(0., 359., 360),
np.linspace(1., 360., 360)))
lon_axis_id = cmor.axis(table_entry='longitude',
units='degrees_north', length=len(lon),
coord_vals=lon[:], cell_bounds=lon_bounds[:],
interval=None)
axis_ids.append(lon_axis_id)
#
# Define the CMOR variable.
#
cmor.set_table(tables[1])
in_missing = float(1.e20)
if threeD:
variable_id = cmor.variable(table_entry='ts', units='K',
axis_ids=axis_ids, data_type='f', missing_value=in_missing)
else:
variable_id = cmor.variable(table_entry='ta', units='K',
axis_ids=axis_ids, data_type='f', missing_value=in_missing)
#
# Write the data
#
if threeD:
data_vals = np.zeros(
(len(tvals), len(lat), len(lon)), np.float32) + 290.
else:
data_vals = np.zeros(
(len(tvals),
len(plev),
len(lat),
len(lon)),
np.float32) + 290.
try:
print('writing...')
cmor.write(variable_id, data_vals[:], ntimes_passed=np.shape(
data_vals)[0]) # assuming time is the first dimension
except Exception as e:
raise Exception("ERROR writing data!")
try:
path = cmor.close(variable_id, file_name=True)
except BaseException:
raise Exception("ERROR closing cmor file!")
print(path)
if __name__ == "__main__":
opts = {'cmip_table': 'CMIP6_Amon.json',
'outpath': 'Test',
'table_path': 'Tables'}
save(opts, threeD=True)
save(opts, threeD=False)
|