File: test_python_grid_and_ocn_sigma.py

package info (click to toggle)
cmor 3.13.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 16,960 kB
  • sloc: ansic: 28,094; f90: 13,872; python: 12,423; sh: 3,738; makefile: 111
file content (163 lines) | stat: -rw-r--r-- 5,294 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from __future__ import print_function
import cmor
import numpy
import os
ntimes = 2
lon = 300
lat = 100
lev = 5


def read_time(it):
    time = [0]
    time_bnds = [0, 0]
    time[0] = (it - 0.5) * 30.
    time_bnds[0] = (it - 1) * 30.
    time_bnds[1] = it * 30.

    time[0] = it
    time_bnds[0] = it
    time_bnds[1] = it + 1
    return time[0], numpy.array(time_bnds)


def gen_irreg_grid(lon, lat):
    lon0 = 5.
    lat0 = -17.5
    delta_lon = .1
    delta_lat = .1
    y = numpy.arange(lat)
    x = numpy.arange(lon)
    lon_coords = numpy.zeros((lat, lon))
    lat_coords = numpy.zeros((lat, lon))
    lon_vertices = numpy.zeros((lat, lon, 4))
    lat_vertices = numpy.zeros((lat, lon, 4))

    for j in range(lat):  # really porr coding i know
        for i in range(lon):  # getting worse i know
            lon_coords[j, i] = lon0 + delta_lon * (j + 1 + i)
            lat_coords[j, i] = lat0 + delta_lat * (j + 1 - i)
            lon_vertices[j, i, 0] = lon_coords[j, i] - delta_lon
            lon_vertices[j, i, 1] = lon_coords[j, i]
            lon_vertices[j, i, 2] = lon_coords[j, i] + delta_lon
            lon_vertices[j, i, 3] = lon_coords[j, i]
# !!$      /* vertices lat */
            lat_vertices[j, i, 0] = lat_coords[j, i]
            lat_vertices[j, i, 1] = lat_coords[j, i] - delta_lat
            lat_vertices[j, i, 2] = lat_coords[j, i]
            lat_vertices[j, i, 3] = lat_coords[j, i] + delta_lat
    print(lat_vertices.min(), '---------------------')
    return x, y, lon_coords, lat_coords, lon_vertices, lat_vertices


myaxes = numpy.zeros(9, dtype='i')
myaxes2 = numpy.zeros(9, dtype='i')
myvars = numpy.zeros(9, dtype='i')


cmor.setup(
    inpath="Tables",
    set_verbosity=cmor.CMOR_NORMAL,
    netcdf_file_action=cmor.CMOR_REPLACE,
    exit_control=cmor.CMOR_EXIT_ON_MAJOR)
cmor.dataset_json("Test/CMOR_input_example.json")

tables = []
a = cmor.load_table("CMIP6_grids.json")
tables.append(a)
tables.append(cmor.load_table("CMIP6_Omon.json"))
print('Tables ids:', tables)

cmor.set_table(tables[0])

x, y, lon_coords, lat_coords, lon_vertices, lat_vertices = gen_irreg_grid(
    lon, lat)
print(lon_vertices.shape, lat_vertices.shape, x.shape, y.shape)

myaxes[1] = cmor.axis(table_entry='y',
                      units='m',
                      coord_vals=y)
myaxes[0] = cmor.axis(table_entry='x',
                      units='m',
                      coord_vals=x)

print('lons:', lon_vertices.shape, lon_coords.shape)
grid_id = cmor.grid(axis_ids=myaxes[:2],
                    latitude=lat_coords,
                    longitude=lon_coords,
                    latitude_vertices=lat_vertices,
                    longitude_vertices=lon_vertices)
print('got grid_id:', grid_id)
myaxes[2] = grid_id

## mapnm = 'lambert_conformal_conic'
# params = [ "standard_parallel1",
# "longitude_of_central_meridian","latitude_of_projection_origin",
# "false_easting","false_northing","standard_parallel2" ]
## punits = ["","","","","","" ]
## pvalues = [-20.,175.,13.,8.,0.,20. ]
# cmor.set_grid_mapping(grid_id=myaxes[2],
##                       mapping_name = mapnm,
##                       parameter_names = params,
##                       parameter_values = pvalues,
# parameter_units = punits)

cmor.set_table(tables[1])
myaxes[3] = cmor.axis(table_entry='time',
                      units='months since 1980')
# Now sets up the ocn sigma stuff
levs = -numpy.arange(lev) / float(lev + 1.)
blevs = -numpy.arange(lev + 1) / float(lev + 1.)
print('Defining zlevs')
myaxes[4] = cmor.axis(
    table_entry='ocean_sigma',
    coord_vals=levs,
    cell_bounds=blevs,
    units='1')

print('definnig zfactor depth', myaxes[2])
depth = numpy.random.random((lon, lat)) * 5000.
print('Depth:', depth.shape, depth.dtype)
idpth = cmor.zfactor(zaxis_id=myaxes[4],
                     units='m',
                     zfactor_name='depth',
                     axis_ids=numpy.array([myaxes[2],
                                           ]),
                     zfactor_values=depth)

print('defining zfactor eta')
ieta = cmor.zfactor(
    zaxis_id=myaxes[4],
    units='m',
    zfactor_name='eta',
    axis_ids=[
        myaxes[2],
        myaxes[3]])
print('ieta:', ieta)
pass_axes = [myaxes[4], myaxes[2], myaxes[3]]
print('defining variable')
myvars[0] = cmor.variable(table_entry='thetao',
                          units='K',
                          axis_ids=pass_axes,
                          positive='down'
                          )
Time = numpy.zeros(ntimes, dtype='d')
bnds_time = numpy.zeros(ntimes * 2, dtype='d')
Time[0], bnds_time[0:2] = read_time(0)
Time[1], bnds_time[2:4] = read_time(1)
for i in range(ntimes):
    data3d = numpy.random.random((lev, lon, lat, ntimes)) * 40. + 273.15
    eta = numpy.random.random((lon, lat, ntimes)) * 10000.
    # print 'writing time: ',i,data3d.shape,data3d
    # print Time[i],bnds_time[2*i:2*i+2]
    print('Writing time', i, 'for var', data3d.shape)
    cmor.write(myvars[0], data3d, 1, time_vals=Time[i],
               time_bnds=bnds_time[2 * i:2 * i + 2])
    print('Writing time', i, 'for eta')
    cmor.write(ieta,
               eta,
               1,
               time_vals=Time[i],
               time_bnds=bnds_time[2 * i:2 * i + 2],
               store_with=myvars[0])
cmor.close()