1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
#****** Conflict with 'orog' in formula terms *****
from __future__ import print_function
import cmor
import numpy
error_flag = cmor.setup(inpath='Test', netcdf_file_action=cmor.CMOR_REPLACE)
error_flag = cmor.dataset_json("Test/CMOR_input_example.json")
# creates 1 degree grid
nlat = 180
nlon = 360
alats = numpy.arange(180) - 89.5
bnds_lat = numpy.arange(181) - 90
alons = numpy.arange(360) + .5
bnds_lon = numpy.arange(361)
cmor.load_table("Tables/CMIP6_Emon.json")
ilat = cmor.axis(
table_entry='latitude',
units='degrees_north',
length=nlat,
coord_vals=alats,
cell_bounds=bnds_lat)
ilon = cmor.axis(
table_entry='longitude',
length=nlon,
units='degrees_east',
coord_vals=alons,
cell_bounds=bnds_lon)
lev = 1
ntimes = 12
plevs = (numpy.arange(lev) + 1) * 1.E4
itim = cmor.axis(
table_entry='time',
units='months since 2030-1-1',
length=ntimes,
interval='1 month')
zlevs = numpy.array((0.1, ))
zlev_bnds = numpy.array((0., .2, ))
table_entry = 'hybrid_height'
if table_entry == 'hybrid_height':
ilev = cmor.axis(
table_entry='hybrid_height',
# table_entry='standard_sigma',
# table_entry='standard_hybrid_sigma',
units='m',
length=lev,
coord_vals=zlevs,
cell_bounds=zlev_bnds)
p0 = 0.5e4
## p0 = 1.e5
# a_coeff = (/ 0.1, 0.2, 0.3, 0.2, 0.1 /)
a_coeff = numpy.array((0.2, ))
b_coeff = numpy.array((0.0, ))
# a_coeff_bnds=(/0.,.15, .25, .25, .15, 0./)
a_coeff_bnds = numpy.array((0., .3,))
b_coeff_bnds = numpy.array((0., .05,))
# error_flag = cmor.zfactor(
# zaxis_id=ilev,
# zfactor_name='ptop',
# units='Pa',
# zfactor_values = p0)
error_flag = cmor.zfactor(
zaxis_id=ilev,
zfactor_name='b',
axis_ids=numpy.array((ilev, )),
zfactor_values=b_coeff,
zfactor_bounds=b_coeff_bnds)
# error_flag = cmor.zfactor(
# zaxis_id=ilev,
# zfactor_name='lev',
## axis_ids= numpy.array(( ilev, )),
# units='m',
## zfactor_values = a_coeff,
# zfactor_bounds = a_coeff_bnds )
data2d = numpy.random.random((180, 360)).astype('f') * 8000
zfactor_id = cmor.zfactor(
zaxis_id=ilev,
zfactor_name='orog',
axis_ids=numpy.array((ilon, ilat)),
units='m',
zfactor_values=data2d)
else:
print('yep working case')
ilev = cmor.axis(
table_entry='standard_sigma',
units='1',
length=lev,
coord_vals=zlevs,
cell_bounds=zlev_bnds)
p0 = 0.5E4
a_coeff = numpy.array((0.2, 0.4, 0.6, 0.8, 0.95))
b_coeff = numpy.array((0.0, 0.1, 0.2, 0.5, 0.8))
a_coeff_bnds = numpy.array((0., .3, .5, .7, .9, 1.))
b_coeff_bnds = numpy.array((0., .05, .15, .35, .65, 1.))
error_flag = cmor.zfactor(
zaxis_id=ilev,
zfactor_name='ptop',
units='Pa',
zfactor_values=p0)
error_flag = cmor.zfactor(
zaxis_id=ilev,
zfactor_name='sigma',
axis_ids=numpy.array((ilev, )),
zfactor_values=a_coeff,
zfactor_bounds=a_coeff_bnds)
data2d = numpy.random.random((180, 360)).astype('f') - 97000.
zfactor_id = cmor.zfactor(
zaxis_id=ilev,
zfactor_name='ps',
axis_ids=numpy.array((ilon, ilat, itim)),
units='Pa')
print("ILEV is:", ilev)
var3d_ids = cmor.variable(
table_entry='concdust',
units='kg m-3',
axis_ids=numpy.array((ilev, ilon, ilat, itim)),
missing_value=1.0e28,
original_name='cocoa is good, but concoa is better')
for it in range(ntimes):
time = numpy.array((it))
bnds_time = numpy.array((it, it + 1))
data3d = numpy.random.random((lev, 360, 180)).astype('f') * 40.
error_flag = cmor.write(
var_id=var3d_ids,
data=data3d,
ntimes_passed=1,
time_vals=time,
time_bnds=bnds_time)
error_flag = cmor.close()
|