1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
!!$pgf90 -I/work/NetCDF/5.1/include -L/work/NetCDF/5.1/lib -l netcdf -L. -l cmor Test/test1.f90 -IModules -o cmor_test
!!$pgf90 -g -I/pcmdi/charles_work/NetCDF//include -L/pcmdi/charles_work/NetCDF//lib -lnetcdf -module Modules -IModules -L. -lcmor Test/test1.f90 -o cmor_test
MODULE local_subs
PRIVATE
PUBLIC read_coords, read_time, read_3d_input_files, read_2d_input_files
CONTAINS
SUBROUTINE read_coords(alats, alons, plevs, bnds_lat, bnds_lon)
IMPLICIT NONE
DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: alats
DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: alons
DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: plevs
DOUBLE PRECISION, INTENT(OUT), DIMENSION(:,:) :: bnds_lat
DOUBLE PRECISION, INTENT(OUT), DIMENSION(:,:) :: bnds_lon
INTEGER :: i
DO i = 1, SIZE(alons)
alons(i) = (i-1)*360./SIZE(alons)
bnds_lon(1,i) = (i - 1.5)*360./SIZE(alons)
bnds_lon(2,i) = (i - 0.5)*360./SIZE(alons)
END DO
DO i = 1, SIZE(alats)
alats(i) = i*10
bnds_lat(1,i) = i*10. - 5.
bnds_lat(2,i) = i*10. + 5.
END DO
DO i = 1, SIZE(plevs)
plevs(i) = i*1.0e4
END DO
RETURN
END SUBROUTINE read_coords
SUBROUTINE read_time(it, time, time_bnds)
IMPLICIT NONE
INTEGER, INTENT(IN) :: it
DOUBLE PRECISION, INTENT(OUT) :: time
DOUBLE PRECISION, INTENT(OUT), DIMENSION(2) :: time_bnds
time = (it-0.5)*30.
time_bnds(1) = (it-1)*30.
time_bnds(2) = it*30.
RETURN
END SUBROUTINE read_time
SUBROUTINE read_2d_input_files(it, varname, field)
INTEGER, INTENT(IN) :: it
CHARACTER(len=*), INTENT(IN) :: varname
REAL, INTENT(OUT), DIMENSION(:,:) :: field
INTEGER :: i, j
REAL :: factor, offset
SELECT CASE (TRIM(ADJUSTL(varname)))
CASE ('LATENT')
factor = 1.5
offset = 20.
CASE ('TSURF')
factor = 2.2
offset = -220.
CASE ('SOIL_WET')
factor = 10.
offset = 0.
END SELECT
DO j=1,SIZE(field, 1)
DO i=1,SIZE(field, 2)
field(j,i) = ((j-1)*16 + (i-1)*4 + it)*factor - offset
END DO
END DO
END SUBROUTINE read_2d_input_files
END MODULE local_subs
PROGRAM mip_contribution
! include module that contains the user-accessible cmor functions.
USE cmor_users_functions
USE local_subs
IMPLICIT NONE
! dimension parameters:
! ---------------------------------
INTEGER, PARAMETER :: ntimes = 2 ! number of time samples to process
INTEGER, PARAMETER :: lon = 4 ! number of longitude grid cells
INTEGER, PARAMETER :: lat = 3 ! number of latitude grid cells
INTEGER, PARAMETER :: n2d = 1 ! number of AMIP Table 2 fields to be
! output.
! Tables associating the user's variables with AMIP standard output
! variables. The user may choose to make this association in a
! different way (e.g., by defining values of pointers that allow him
! to directly retrieve data from a data record containing many
! different variables), but in some way the user will need to map his
! model output onto the Tables specifying the MIP standard output.
! ----------------------------------
! My variable names for Table 1a fields
! My variable names for Table 2 fields
CHARACTER (LEN=8), DIMENSION(n2d) :: &
varin2d=(/ 'LATENT ' /)
! Units appropriate to my data
CHARACTER (LEN=6), DIMENSION(n2d) :: &
units2d=(/ 'W m-2 ' /)
CHARACTER (LEN=4), DIMENSION(n2d) :: &
positive2d= (/ 'down' /)
! Corresponding AMIP Table 2 entry (variable name)
CHARACTER (LEN=5), DIMENSION(n2d) :: &
entry2d = (/ 'hfls ' /)
! uninitialized variables used in communicating with CMOR:
! ---------------------------------------------------------
INTEGER :: error_flag
INTEGER, PARAMETER :: ntest=400
INTEGER, DIMENSION(3) :: axis2d_ids
INTEGER, DIMENSION(n2d+ntest) :: var2d_ids
REAL, DIMENSION(lat,lon) :: data2d
DOUBLE PRECISION, DIMENSION(lat) :: alats
DOUBLE PRECISION, DIMENSION(lon) :: alons
DOUBLE PRECISION, DIMENSION(5) :: plevs
DOUBLE PRECISION :: time,bt
DOUBLE PRECISION, DIMENSION(2):: bnds_time
DOUBLE PRECISION, DIMENSION(2,lat) :: bnds_lat
DOUBLE PRECISION, DIMENSION(2,lon) :: bnds_lon
!!$ REAL, DIMENSION(lat*lon*lev) :: tmp3d
!!$ REAL, DIMENSION(lat*lon) :: tmp2d
! Other variables:
! ---------------------
INTEGER :: it, m
character (len=200) :: msg,msg2
bt=0.
! ================================
! Execution begins here:
! ================================
! Read coordinate information from model into arrays that will be passed
! to CMOR.
! Read latitude, longitude, and pressure coordinate values into
! alats, alons, and plevs, respectively. Also generate latitude and
! longitude bounds, and store in bnds_lat and bnds_lon, respectively.
! The user must write the subroutine that fills the coordinate arrays
! and their bounds with actual data. The following line is simply a
! a place-holder for the user's code, which should replace it.
! *** possible user-written call ***
print*, 'calling read_coords '
call read_coords(alats, alons, plevs, bnds_lat, bnds_lon)
print*, 'returned from read_coords'
! Specify path where tables can be found, indicate that existing netCDF
! files should not be overwritten, and instruct CMOR to error exit on
! encountering errors of any severity.
error_flag = cmor_setup(inpath='TestTables', &
netcdf_file_action='replace', &
set_verbosity=1, &
exit_control=1)
! Define dataset as output from the GICC model (first member of an
! ensemble of simulations) runcmor_write under IPCC 2xCO2 equilibrium experiment
! conditions, and provide information to be included as attributes in
! all CF-netCDF files written as part of this dataset.
print*, 'calling cmor_dataset_json'
error_flag = cmor_dataset_json("Test/CMOR_input_TestTables.json")
!error_flag = cmor_set_cur_dataset_attribute("initialization_method","4")
!error_flag = cmor_set_cur_dataset_attribute("physics_version","6")
print*, 'returned from cmor_dataset_json'
! Define axes for 3-d fields
print*, 'defining axes'
axis2d_ids(1) = cmor_axis( &
table='CMIP6_Amon_json_hfls', &
table_entry='latitude', &
units='degrees_north', &
length=lat, &
coord_vals=alats, &
cell_bounds=bnds_lat)
axis2d_ids(2) = cmor_axis( &
table='CMIP6_Amon_json_hfls', &
table_entry='longitude', &
length=lon, &
units='degrees_east', &
coord_vals=alons, &
cell_bounds=bnds_lon)
! note that the time axis is defined next, but the time coordinate
! values and bounds will be passed to cmor through function
! cmor_write (below).
print*, 'before time '
axis2d_ids(3) = cmor_axis( &
table='CMIP6_Amon_json_hfls', &
table_entry='time', &
units='days since 1979-1-1', &
length=ntimes, &
interval='1 month')
print*, 'finished defining axes'
! Define variables found in AMIP table 2a (2-d variables)
DO m=1,ntest
write(msg,*) m-1
msg2 = trim(entry2d(1)(1:4)//adjustl(msg))
print*,'Test Code: defining variable: :',msg2
var2d_ids(m) = cmor_variable( &
table='CMIP6_Amon_json_hfls', &
table_entry=msg2, &
!!$ file_suffix='1979-2001', &
units=units2d(1), &
axis_ids=axis2d_ids, &
missing_value=1.0e20, &
positive=positive2d(1), &
original_name=varin2d(1))
ENDDO
print*, 'completed everything up to writing output fields '
! Loop through history files (each containing several different fields,
! but only a single month of data, averaged over the month). Then
! extract fields of interest and write these to netCDF files (with
! one field per file, but all months included in the loop).
DO m=1,ntest
time_loop: DO it=1, ntimes
! In the following loops over the 3d and 2d fields, the user-written
! subroutines (read_3d_input_files and read_2d_input_files) retrieve
! the requested AMIP table 1a and table 2 fields and store them in
! data3d and data2d, respectively. In addition a user-written code
! (read_time) retrieves the time and time-bounds associated with the
! time sample (in units of 'days since 1970-1-1', consistent with the
! axis definitions above). The bounds are set to the beginning and
! the end of the month retrieved, indicating the averaging period.
! The user must write a code to obtain the times and time-bounds for
! the time slice. The following line is simply a place-holder for
! the user's code, which should replace it.
call read_time(it, time, bnds_time)
! Cycle through the 3-d fields, retrieve the requested variable and
! append each to the appropriate netCDF file.
! Cycle through the 2-d fields, retrieve the requested variable and
! append each to the appropriate netCDF file.
! The user must write the code that fills the arrays of data
! that will be passed to CMOR. The following line is simply a
! a place-holder for the user's code, which should replace it.
call read_2d_input_files(it, varin2d(1), data2d)
! append a single time sample of data for a single field to
! the appropriate netCDF file.
print*, RESHAPE(bnds_time, (/ 2,1 /))
error_flag = cmor_write(var_id = var2d_ids(m), &
data = RESHAPE(data2d, (/ lat*lon /)), &
ntimes_passed = 1, &
time_vals = (/ time /), &
time_bnds = RESHAPE(bnds_time, (/ 2,1 /)))
print*, 'after writing variable, ', var2d_ids(m)
IF (error_flag < 0) THEN
! write diagnostic messages to standard output device
write(*,*) ' Error encountered writing AMIP Table 2 ' &
// 'field ', entry2d(m), ', which I call ', varin2d(m)
write(*,*) ' Was processing time sample: ', time
!!$ error_flag = cmor_error_trace(device=0)
END IF
END DO time_loop
error_flag = cmor_close(var2d_ids(m))
END DO
! Close all files opened by CMOR.
error_flag = cmor_close()
print*, '******************************'
print*, ' '
print*, 'CMOR COMPLETED SUCCESSFULLY '
print*, ' '
print*, '******************************'
END PROGRAM mip_contribution
|